
Transformations

1 Transformations of Random Variables

Let’s suppose that we have got some random variables. We can make new random variables out of those,
using functions. How do those new random variables behave? We will take a look at that now. This
chapter of the summary is rather difficult, while it is not incredibly important. So do not stare yourself
blind on this part.

1.1 Finding the CDF

Suppose we have a random variable x. We can define a new variable y to be a function of x, so y = g(x).
Now we would like to know how we can find the CDF Fy(y). It can be found using

Fy(y) = P (y ≤ y) = P (g(x) ≤ y) = P (x ∈ Iy), (1.1)

where the set Iy consists of all x such that g(x) ≤ y. So, to find the CDF Fy(y), we first need to find Iy:
We need to know for what x we have g(x) ≤ y. The intervals that are found can then be used to express
Fy in Fx.

Let’s look at a special case. When g(x) is strictly increasing, or strictly decreasing, we have

Fy(y) = Fx(g−1(y)) for increasing g(x) and Fy(y) = 1− Fx(g−1(y)) for decreasing g(x). (1.2)

Here the function g−1(y) is the inverse of g(x). It is defined such that if y = g(x), then x = g−1(y).

1.2 Finding the PDF

Now that we’ve got the CDF Fy(y), it’s time to find the PDF fy(y). You probably remember that the
PDF is simply the derivative of the CDF. That rule can be used to find the PDF.

Let’s consider the special case that g(x) is either strictly increasing or strictly decreasing. Now we have

fy(y) =
dFy(y)

dy
=

{
fx(g−1(y))dg−1(y)

dy for increasing g(x)

−fx(g−1(y))dg−1(y)
dy for decreasing g(x)

= fx(g−1(y))
∣∣∣∣dg−1(y)

dy

∣∣∣∣ . (1.3)

Note that we have simply taken the derivative of equation (1.2), using the chain rule. Also note that if
g(x) is decreasing, also g−1(y) is decreasing, and thus dg−1(y)/dy is negative. This explains the last step
in the above equation, where the absolute stripes | . . . | suddenly appear.

Now what should we do if g(x) is not increasing or decreasing? In this case no inverse function g−1(y)
exists. Let’s suppose that for a given y the equation y = g(x) has n solutions x1, x2, . . . , xn. Now we can
say that

fy(y) =
n∑

i=1

fx(xi)∣∣∣dg(xi)
dx

∣∣∣ . (1.4)

If only one solution xi is present, then this equation reduces back to equation (1.3).
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1.3 Functions of two random variables

Let’s suppose we now have two random variables x1 and x2. Also, let’s define y = g(x1, x2). In this case,
we can find the CDF Fy(y) using

Fy(y) = P (y ≤ y) = P (g(x1, x2) ≤ y) = P ((x1, x2) ∈ Dy), (1.5)

where the set Dy consists of all the pairs (x1, x2) such that g(x1, x2) ≤ y. To find the PDF, we can use

fy(y) =
∫ ∞
−∞

fx1,x2
(x1, g

−1(x1, y))
∣∣∣∣dg−1(x1, y)

dy

∣∣∣∣ dx1 =
∫ ∞
−∞

fx1,x2
(g−1(y, x2), x2)

∣∣∣∣dg−1(y, x2)
dy

∣∣∣∣ dx2.

(1.6)

1.4 Transformations of two random variables

Now let’s not only define y
1

= g1(x1, x2), but also y
2

= g2(x1, x2). Now we can find the joint CDF using

Fy
1
,y

2
(y1, y2) = P (y

1
≤ y1, y2

≤ y2) = P (g1(x1, x2) ≤ y1, g2(x1, x2) ≤ y2) = P ((x1, x2) ∈ Dy1,y2), (1.7)

where the region Dy1,y2 is the intersection of the regions Dy1 and Dy2 . We can now find the joint PDF
by differentiating the CDF. We then get

fy1,y2(y1, y2) =
∂2Fy

1
,y

2
(y1, y2)

∂y1 ∂y2
=

∂2

∂y1 ∂y2

∫ ∫
Dy1,y2

fx1,x2
(x1, x2) dx1 dx2. (1.8)

There is, however, another way to find the joint PDF. For that, let’s examine the matrix

g(x1, x2)∂x
T =

[
g1(x1, x2)
g2(x1, x2)

] [
∂
∂x1

∂
∂x2

]
=

[
∂g1(x1,x2)

∂x1

∂g1(x1,x2)
∂x2

∂g2(x1,x2)
∂x1

∂g2(x1,x2)
∂x2

]
. (1.9)

The determinant of this matrix is called the Jacobian of g. The joint PDF can now be found using

fy
1
,y

2
(y1, y2) =

fx1,x2
(x1, x2)∣∣∣det

(
g(x1, x2)∂x

T
)∣∣∣ . (1.10)

The above equation also works for dimension higher than 2. In fact, it works for any pair of n-dimensional
vectors y and x for which y = g(x).

1.5 The multi-dimensional mean

Let’s suppose we have an n-dimensional random vector x, an m-dimensional random vector y and a
function G(x) such that y = G(x). It would be interesting to know the expectation vector E(y). It
can be found using

E(y) =
∫
Rm

yfy(y) dy ⇔ E(y
i
) =

∫
Rm

yify(y) dy. (1.11)

Using the right part of the above equation, you can find one component of E(y). The left part is the
general (vector) equation. Note that in both cases you need to integrate m times. Once for every
component of y.

Generally, we don’t know fy(y) though. But we do know fx(x). So to find E(y), we can first find fy(y).
This is, however, not always necessary. There is a way to find E(y) without finding fy(y). You then
have to use

E(y) = E(G(x)) =
∫
Rn

G(x)fx(x) dx. (1.12)
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The above equation is called the expectation law. If the function G(x) is linear (so you can write it
as G(x) = Ax + b for a constant matrix A), then the above equation simplifies greatly. In that case we
have y = Ax + b, where y = E(y) and x = E(x).

1.6 Multi-dimensional variance and covariance

Calculating the variance D(y) of y goes more or less similar to calculating the mean. There is a slight
difference though. While E(y) was an m× 1 vector, D(y) is an m×m matrix. To find this matrix, we
can use either of the following two equations

D(y) = E
(
(y − y) (y − y)T

)
=
∫
Rm

(y − y) (y − y)T
fy(y) dy, (1.13)

D(y) = D(G(x)) = E
(
(G(x)− y) (G(x)− y)T

)
=
∫
Rn

(G(x)− y) (G(x)− y)T
fx(x) dx. (1.14)

If G(x) is, once more, linear, we can simplify the above equation. In this case we have

D(y) = AD(x)AT ⇔ Qyy = AQxxAT , (1.15)

where Qyy = D(y) and Qxx = D(x). From these two matrices, we can also find the covariance matrices
Qyx and Qxy, according to

C(y,x) = Qyx = AQxx and C(x,y) = Qxy = QxxAT . (1.16)

Here Qyx is an m × n matrix, while Qxy is an n ×m matrix. So in the multi-dimensional situation we
do not have C(y,x) = C(x,y). However, since Qxx is symmetric, we do have Qyx = QT

xy.

2 The Central Limit Theorem

If we put together multiple random variables, interesting things start happening. And it has something
to do with the normal distribution. If you want to know more about it, then quickly read the chapter
below.

2.1 The central limit theorem

Let’s suppose we have a number of (possibly different) independent random variables x1, x2, . . . , xn. Now
let’s define a new random variable y as the sum of all these variables, so y = x1 + x2 + . . . + xn. Let’s
suppose we know the mean y and the standard deviation and σy. The central limit theorem states
that as n increases, we have

Fy(y) ≈ Φ
(

y − y

σy

)
. (2.1)

In words, we see that as n increases, y behaves like a normal distribution with average y and standard
deviation σy. The corresponding PDF then is

fy(y) ≈ 1
σy

√
2π

e
− (y−y)2

2σ2
y . (2.2)

Let’s now look at a special case. Suppose x1 = x2 = . . . = xn = x. Also, all these distributions have
mean x and standard deviation σx. In this case we can find y and σy. We have y = nx. The average of y
evidently becomes y = nx. To find the standard deviation of y, we first look at the variance of y. Since
the random variables x are independent, we find that σ2

y = nσ2
x. From this follows that σy =

√
nσx.

The random variable y thus behaves like a normal distribution with the just found mean y and standard
deviation σy.
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2.2 The De Moivre-Laplace theorem

Let’s suppose the random variable x is binomially distributed. So it is a discrete variable with as
mean x = np and as variance σ2

x = np (1− p). The De Moivre-Laplace theorem now states that
for certain conditions the (discrete) binomial distribution of x also starts behaving like a (continuous)
normal distribution. So,

Px(k) =

(
n

k

)
pk (1− p)n−k ≈ 1

σx

√
2π

e
− (k−x)2

2σ2
x =

1√
2πnp (1− p)

e−
(k−np)2

2np(1−p) . (2.3)

The condition for which the above equation is accurate is that k must be in the interval (x−3σx, x+3σx).
Of course k can’t be smaller than 0 or bigger than n.

Suppose we do n experiments, with x denoting the amount of successes. We would like to know the
chance that we have exactly k successes. We now know how to calculate that (approximately). We
simply insert k−x

σx
in the PDF of the standard normal distribution. But what should we do if we want to

know the chance that we have at least

P (k1 ≤ x ≤ k2) = Φ
(

k2 + 1/2− x

σx

)
− Φ

(
k1 − 1/2− x

σx

)
. (2.4)

Note the halves in the above equation. They are present because the binomial distribution is discrete,
while the normal distribution is continuous. If we, for example, want to have at least 42 successes, and
at most 54, then for the normal distribution we should take as boundaries 41.5 and 54.5.

3 Composed Distributions

There are some distributions we haven’t treated yet. That was because they were a bit too difficult to
start with right away. Often this was because they are composed of multiple other distributions. But
now the time has come to take a look at them.

3.1 The multivariate normal distribution

Suppose we have an n-dimensional random vector x with mean x and variance matrix Qxx. We say that
x has a multivariate normal distribution (x ∼ Nn (x, Qxx)) if its PDF has the form

fx(x) =
1√

det (2πQxx)
e(−

1
2 (x−x)T Q−1

xx (x−x)), (3.1)

where the variance matrix Qxx has only positive entries.

Let’s suppose x is 2-dimensional. If we plot fx(x), we get a 3-dimensional graph. For this graph, we can
draw contour lines (lines for which fx(x) is constant). This implies that

(x− x)T
Q−1

xx (x− x) = r2, (3.2)

for some constant r. The shapes we then get are ellipses. We can do the same if x is 3-dimensional.
However, we then draw contour areas, which take the shape of ellipsoids. In situations with even more
dimensions, we get hyper-ellipsoids. All these shapes are called the ellipsoids of concentration.

The shape of these ellipsoids depends on the variance matrix Qxx. If Qxx is the identity matrix In, or a
multiple of it, then the ellipsoids will be circles/spheres/hyperspheres. If Qxx is just a diagonal matrix,
then the principal axes of the ellipsoids will be the axes x1, x2, . . . , xn itself. In other cases, the axes of
the ellipsoid will have shifted.

4



Many things can be derived from the PDF, for which we just gave the equation. Examples are the marginal
distributions and the conditional distributions. An interesting thing is that those distributions are, in
turn, also normal distributions. And if that wasn’t interesting enough, also all linear transformations of
a multivariate normal distribution are (multivariate) normal distributions.

3.2 The χ2 distribution

Let’s suppose x1, x2, . . . xn are all normally distributed random variables with mean xi and variance 1,
so xi ∼ N (xi, 1). The Chi-square distribution with n degrees of freedom, denoted as χ2 (n, λ), is now
defined as

χ2 =
n∑

i=1

x2
i . (3.3)

The non-centrality parameter λ is defined as

λ =
n∑

i=1

x2
i . (3.4)

If λ = 0, we are dealing with the central Chi-square distribution χ2 (n, 0).

The Chi-square distribution has mean E(χ2) = n+λ and variance D(χ2) = 2n+4λ. If two (independent)
Chi-square distributions χ2

1
and χ2

2
are added up, we once more get a Chi-square distribution, but now

with (n1 + n2) degrees of freedom and non-centrality parameter (λ1 + λ2).

3.3 The t distribution

Suppose that x ∼ N (∇, 1) and χ2 ∼ χ2 (n, 0) are independent random variables. The (Student’s) t
distribution with n degrees of freedom, denoted as t (n,∇), is now defined as

t =
x√
χ2/n

. (3.5)

Here ∇ is the non-centrality parameter. If ∇ = 0, we are dealing with the central t distribution.

3.4 The F distribution

Suppose that χ2
1
∼ χ2 (n1, λ) and χ2

2
∼ χ2 (n2, 0) are two independent Chi-square distributions. The F

distribution, denoted as F (n1, n2, λ), is then defined as

F =
χ2

1
/n1

χ2
2
/n2

. (3.6)

It is said to have n1 and n2 degrees of freedom. Also, λ is the non-centrality parameter. When λ = 0,
we are dealing with a central F distribution.
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