
Random Variables and Distributions

1 Random Variable Definitions

Suppose we know all the possible outcomes of an experiment, and their probabilities. What can we do
with them? Not much, yet. What we need, are some tools. We will now introduce these tools.

1.1 Random variables

It is often convenient to attach a number to each event ωi. This number is called a random variable
and is denoted by x(ωi) or simply x. You can see the random variable as a number, which can take
different values. For example, when throwing a dice we can say that x(head) = 0 and x(tail) = 1. So x
is now a number that can be either 0 or 1.

Random variables can generally be split up in two categories: discrete and continuous random variables.
A random variable x is discrete if it takes a finite or countable infinite set of possible values. (With
countable finite we mean the degree of infinity. The sets of natural numbers N and rational numbers Q
are countable finite, while the set of real numbers R is not.)

Both types of random variables have fundamental differences, so in the coming chapters we will often
explicitly mention whether a rule/definition applies to discrete or continuous random variables.

1.2 Probability mass function

Let’s look at the probability that x = x for some number x. This probability depends on the random
variable ”function” x(ωi) and the number x. It is denoted by

Px(x) = P (x = x). (1.1)

The function Px(k) is called the probability mass function (PMF). It, however, only exists for discrete
random variables. For continuous random variables Px(k) = 0 (per definition).

1.3 Cumulative distribution function

Now let’s take a look at the probability that x ≤ x for some x. This is denoted by

Fx(x) = P (x ≤ x). (1.2)

The function Fx(x) is called the cumulative distribution function (CDF) of the random variable x.
The CDF has several properties. Let’s name a few.

• The limits of Fx(x) are given by

lim
x→−∞

Fx(x) = 0 and lim
x→∞

Fx(x) = 1. (1.3)

• Fx(x) is increasing. If x1 ≤ x2, then Fx(x1) ≤ Fx(x2).
• P (x > x) = 1− Fx(x).
• P (x1 < x̄ ≤ x2) = Fx(x2)− Fx(x1).

The CDF exists for both discrete and continuous random variables. For discrete random variables, the
function Fx(x) takes the form of a staircase function: its graph consists of a series of horizontal lines. For
continuous random variables the function Fx(x) is continuous.
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1.4 Probability density function

For continuous random variables there is a continuous CDF. From it, we can derive the probability
density function (PDF), which is defined as

fx(x) =
dFx(x)

dx
⇔ Fx(x) =

∫ x

−∞
fx(t)dt. (1.4)

Since the CDF Fx(x) is always increasing, we know that fx(x) ≥ 0. The PDF does not exist for discrete
random variables.

2 Discrete Distribution types

There are many distribution types. We’ll be looking at discrete distributions in this part, while continuous
distributions will be examined in the next part. But before we even start examining any distributions,
we have to increase our knowledge on combinations. We use the following paragraph for that.

2.1 Permutations and combinations

Suppose we have n elements and want to order them. In how many ways can we do that? The answer
to that is

n! = n · (n− 1) · . . . · 2 · 1. (2.1)

Here n! means n factorial. But what if we only want to order k items out of a set of n items? The
amount of ways is called the amount of permutations and is

n!
(n− k)!

= n · (n− 1) · . . . · (n− k + 1). (2.2)

Sometimes the ordering doesn’t matter. What if we just want to select k items out of a set of n items?
In how many ways can we do that? This result is the amount of combinations and is(

n

k

)
=

n!
k!(n− k)!

=
n · (n− 1) · . . . · (n− k + 1)

k · (k − 1) · . . . · 2 · 1
. (2.3)

2.2 The binomial distribution and related distributions

Now we will examine some types of discrete distributions. The most important parameter for discrete
distributions is the probability mass function (PMF) Px(k). So we will find it for several distribution
types.

Suppose we have an experiment with two outcomes: success and failure. The chance for success is always
just p. We do the experiment n times. The random variable x denotes the amount of successes. We now
have

Px(k) = P (x = k) =

(
n

k

)
pk(1− p)n−k. (2.4)

This distribution is called the binomial distribution.

Sometimes we want to know the probability that we need exactly k trials to obtain r successes. In other
words, the rth success should occur in the kth trial. The random variable x now denotes the amount of
trials needed. In this case we have

Px(k) = P (x = k) =

(
k − 1
r − 1

)
pr(1− p)k−r. (2.5)

2



This distribution is called the negative binomial distribution.

We can also ask ourselves: how many trials do we need if we only want one success? This is simply the
negative binomial distribution with r = 1. We thus have

Px(k) = P (x = k) = p(1− p)k−1. (2.6)

This distribution is called the geometric distribution.

2.3 Other discrete distributions

Let’s discuss some other discrete distributions. A random variable x follows a Poisson distribution
with parameter λ > 0 if

Px(k) = e−λ λk

k!
. (2.7)

This distribution is an approximation of the binomial distribution if np = λ, p → 0 and n →∞.

A random variable x has a uniform distribution if

Px(k) =
1
n

, (2.8)

where n is the amount of possible outcomes of the experiment. In this case every outcome is equally
likely.

A random variable has a Bernoulli distribution (with parameter p) if

Px(k) =

{
p for k = 1,

1− p for k = 0.
(2.9)

Finally there is the hypergeometric distribution, for which

Px(k) =

(
r

k

)(
m− r

n− k

)
(

m

n

) . (2.10)

3 Continuous Distribution Types

It’s time we switch to continuous distributions. The most important function for continuous distributions
is the probability density function (PDF) fx(k). We will find it for several distribution types.

3.1 The normal distribution

We start with the most important distribution type there is: the normal distribution (also called
Gaussian distribution). A random variable x is a normal random variable (denoted by x ∼
N(x, σ2

x)) if

fx(x) =
1√

2πσx

e−
1
2 ( x−x

σx
)2

. (3.1)

Here x and σx are, respectively, the mean and the standard deviation. (We will discuss them in the next
part.) It follows that the cumulative distribution function (CDF) is

Fx(x) =
1√

2πσx

∫ x

−∞
e−

1
2 ( t−x

σx
)2

dt. (3.2)
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The above integral doesn’t have an analytical solution. To get a solution anyway, use is made of the
standard normal distribution. This is simply the normal distribution with parameters x = 0 and
σx = 1. So,

Φ(z) = P (z < z) =
1√
2π

∫ z

−∞
e−

1
2 t2dt. (3.3)

There are a lot of tables in which you can simply insert z and retrieve Φ(z). To get back to the variable
x, you make use of the transformation

z =
x− x

σx
⇔ x = σxz + x. (3.4)

3.2 Other continuous distributions

There is also a continuous uniform distribution. A random variable x has a uniform distribution
(denoted by x ∼ U(a, b)) on the interval (a, b) if

fx(x) =

{
1

b−a for a ≤ x ≤ b,

0 otherwise.
(3.5)

A random variable has an exponential distribution if

fx(x) =

{
λe−λx for x ≥ 0
0 for x < 0.

(3.6)

Finally, a random variable has a gamma distribution if

fx(x) =

{
ba

Γ(a)x
a−1e−bx for x ≥ 0

0 for x < 0,
(3.7)

where Γ is the gamma function, given by

Γ(a) =
∫ ∞

0

xa−1e−x dx. (3.8)

4 Important parameters

Certain parameters apply to all distribution types. They say something about the distribution. Let’s
take a look at what parameters there are.

4.1 The mean

The mean is the expected (average) value of a random variable x. It is denoted by E(x) = x. For
discrete distributions we have

E(x) = x =
n∑

i=1

xiPx(xi), (4.1)

with x1, . . . xn the possible outcomes. For continuous distributions we have

E(x) = x =
∫ ∞
−∞

xfx(x) dx. (4.2)

By the way, E(. . .) is the mathematical expectation operator. It is subject to the rules of linearity, so

E(ax + b) = aE(x) + b, (4.3)
E(g1(x) + . . . + gn(x)) = E(g1(x)) + . . . + E(gn(x)). (4.4)
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4.2 The variance

The variance or dispersion of a random variable is denoted by σ2
x. Here σx is the standard deviation.

If x is discrete, then the variance is given by

σ2
x = D(x) = E

(
(x− x)2

)
=

n∑
i=1

(xi − x)2 Px(xi) (4.5)

If x is continuous, then it is given by

σ2
x = D(x) = E

(
(x− x)2

)
=
∫ ∞
−∞

(x− x)2fx(x) dx. (4.6)

Here D(. . .) is the mathematical dispersion operator. It can be shown that σ2
x can also be found (for

both discrete and continuous random variables) using

σ2
x = E(x2)− x2. (4.7)

Note that in general E(x2) 6= x2. The value E(x) = x is called the first moment, while E(x2) is called
the second moment. The variance σ2

x is called the second central moment.

This is all very nice to know, but what is it good for? Let’s take a look at that. The variance σ2
x tells

something about how far values are away from the mean x. In fact, Chebyshev’s inequality states
that for every ε > 0 we have

P (|x− x| ≥ ε) ≤ σ2
x

ε2
. (4.8)

4.3 Other moments

After the first and the second moment, there is of course also the third moment, being

E
(
(x− x)3

)
. (4.9)

The third moment is a measure of the symmetry around the center (the skewness). For symmetrical
distributions this third moment is 0.

The fourth moment E
(
(x− x)4

)
is a measure of how peaked a distribution is (the kurtosis). The

kurtosis of the normal distribution is 3. If the kurtosis of a distribution is less than 3 (so the distribution
is less peaked than the normal distribution), then the distribution is platykurtic. Otherwise it is
leptokurtic.

4.4 Median and mode

Finally there are the median and the mode. The median is the value x for which Fx(x) = 1/2. So half
of the possible outcomes has a value lower than x and the other half has values higher than x.

The mode is the value x for which (for discrete distributions) Px(x) or (for continuous distributions)
fx(x) is at a maximum. So you can see the mode as the value x which is most likely to occur.
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