
Multiple Random Variables

1 Random Vectors

Previously we have only dealt with one random variable. Now suppose we have more random variables.
What distribution functions can we then define?

1.1 Joint and marginal distribution functions

Let’s suppose we have n random variables x1, x2, . . . , xn. We can put them in a so-called random vector
x = [x1, x2, . . . , xn]T . The joint distribution function (also called the simultaneous distribution
function) Fx(x) is then defined as

Fx(x1, x2, . . . , xn) = Fx(x) = P (x1 ≤ x1, x2 ≤ x2, . . . , xn ≤ xn). (1.1)

(You should read the commas ”,” in the above equation as ”and” or, equivalently, as the intersection
operator ∩.) From this joint distribution function, we can derive the marginal distribution function
Fxi

(xi) for the random variable xi. It can be found by inserting ∞ in the joint distribution function for
every xj other than xi. In an equation this becomes

Fxi
(xi) = Fx(∞,∞, . . . ,∞, xi,∞, . . . ,∞). (1.2)

The marginal distribution function can always be derived from the joint distribution function using the
above method. The opposite is, however, not always true. It often isn’t possible to derive the joint
distribution function from the marginal distribution functions.

1.2 Density functions

Just like for random variables, we can also distinguish discrete and continuous random vectors. A random
vector is discrete if its random variables xi are discrete. Similarly, it is continuous if its random variables
are continuous.

For discrete random vectors the joint (mass) distribution function Px(x) is given by

Px(x) = P (x1 = x1, x2 = x2, . . . , xn = xn). (1.3)

For continuous random vectors, there is the joint density function fx. It can be derived from the joint
distribution function Fx(x) according to

fx(x1, x2, . . . , xn) = fx(x) =
∂nFx(x1, x2, . . . , xn)

∂x1 ∂x2 . . . ∂xn
. (1.4)

1.3 Independent random variables

In the first chapter of this summary, we learned how to check whether a series of events A1, . . . , An are
independent. We can also check whether a series of random variables are independent. This is the case if

P (x1 ≤ x1, x2 ≤ x2, . . . , xn ≤ xn) = P (x1 ≤ 1)P (x2 ≤ 2) . . . P (xn ≤ n). (1.5)

If this is, indeed the case, then we can derive the joint distribution function Fx(x) from the marginal
distribution functions Fxi

(xi). This goes according to

Fx(x) = Fx1
(x1)Fx2

(x2) . . . Fxn
(xn) =

n∏
i=1

Fxi
(xi). (1.6)
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2 Covariance and Correlation

Sometimes it may look like there is a relation between two random variables. If this is the case, you
might want to take a look at the covariance and the correlation of these random variables. We will now
take a look at what they are.

2.1 Covariance

Let’s suppose we have two random variables x1 and x2. We also know their joint distribution function
fx1,x2

(x1, x2). The covariance of x1 and x2 is defined as

C(x1, x2) = E ((x1 − x1) (x2 − x2)) =
∫ ∞

−∞
(x1 − x1) (x2 − x2) fx1,x2

(x1, x2)dx1 dx2 = E(x1x2)− x1x2.

(2.1)
The operator C(. . . , . . .) is called the covariance operator. Note that C(x1, x2) = C(x2, x1). We also
have C(x1, x1) = D(x1) = σ2

x1
.

If the random variables x1 and x2 are independent, then it can be shown that E(x1, x2) = E(x1)E(x2) =
x1x2. It directly follows that C(x1, x2) = 0. The opposite, however, isn’t always true.

But the covariance operator has more uses. Suppose we have random variables x1, x2, . . . , xn. Let’s define
a new random variable z as z = x1 + x2 + . . . + xn. How can we find the variance of z? Perhaps we can
add up all the variances of xi? Well, not exactly, but we are close. We can find σ2

z using

σ2
z =

n∑
i=1

n∑
j=1

C(xi, xj) =
n∑

i=1

σ2
xi

+ 2
∑
1≤i<

∑
j≤n

C(xi, xj). (2.2)

We can distinguish a special case now. If the random variables x1, x2, . . . , xn are all independent, then
C(xi, xj) = 0 for every i, j (i 6= j). So then we actually are able to get the variance of z by adding up
the variances of xi.

2.2 The correlation coefficient

Now let’s make another definition. The correlation coefficient is defined as

ρ(x1, x2) =
C(x1, x2)
σx1σx2

. (2.3)

This function has some special properties. Its value is always between −1 and 1. If ρ(x1, x2) ≈ ±1, then
x2 is (approximately) a linear function of x1. If, on the other hand, ρ(x1, x2) = 0, then we say that x1

and x2 are uncorrelated. This doesn’t necessarily mean that they are independent. Two variables can
be uncorrelated, but not independent. If two variables are, however, independent, then C(x1, x2) = 0,
and they are therefore also uncorrelated.

3 Conditional Random Variables

In chapter 1 of this summary, we have seen conditional probability. We can combine this with functions
like the cumulative distribution function, the probability density function, and so on. That is the subject
of this part.
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3.1 Conditional relations

Given an event B, let’s define the conditional CDF as

Fx(x|B) = P (x ≤ x|B) =
P (x ≤ x,B)

P (B)
. (3.1)

Here the event B can be any event. Also, the comma once more indicates an intersection. The conditional
PDF now follows as

fx(x|B) =
dFx(x|B)

dx
. (3.2)

The nice thing is that conditional probability has all the properties of normal probability. So any rule
that you’ve previously seen about probability can also be used now.

Let’s see if we can derive some rules for these conditional functions. We can rewrite the total probability
rule for the conditional CDF and the conditional PDF. Let B1, B2, . . . , Bn be a partition of Ω. We then
have

Fx(x) =
n∑

i=1

Fx(x|Bi)P (Bi) ⇒ fx(x) =
n∑

i=1

fx(x|Bi)P (Bi). (3.3)

From this we can derive an equivalent for Bayes’ rule, being

fx(x|A) =
P (A|x)fx(x)∫∞

−∞ P (A|x)fx(x)dx
. (3.4)

Here the event A can be any event. The probability P (A|x) in the above equation is short for P (A|x = x).

3.2 The conditional probability density function

In the previous paragraph, there always was some event A or B. It would be nice if we can replace that
by a random variable as well. We can use the random variable y for that. By doing so, we can derive
that

fx(x|y) =
fx,y(x, y)

fy(y)
, (3.5)

where fx,y(x, y) is the joint density function of x and y. Note that if x and y are independent, then
fx,y(x, y) = fx(x)fy(y) and thus fx(x|y) = fx(x).

We can also rewrite the total probability rule. We then get

fy(y) =
∫ ∞

−∞
fy(y|x)fx(x)dx. (3.6)

Similarly, we can rewrite Bayes’ rule to

fx(x|y) =
fy(y|x)fx(x)

fy(y)
=

fy(y|x)fx(x)∫∞
−∞ fy(y|x)fx(x)dx

. (3.7)

3.3 The conditional mean

The conditional mean of y, given x = x, can be found using

E(y|x) =
∫ ∞

−∞
y fy(y|x) dy. (3.8)
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Note that this mean depends on x, and is therefore a function of x. Now let’s look at E(y|x). We know
that x is a random variable, and E(y|x) is a function of x. This implies that E(y|x) is a random variable.
We may ask ourselves, what is the mean of this new random variable? In fact, it turns out that

E(E(y|x)) = E(y) = y. (3.9)

3.4 n random variables

Suppose we have n random variables x1, x2, . . . , xn. We can then also have a conditional PDF, being

f(xn, . . . , xk+1|xk, . . . , x1) =
f(x1, . . . , xk, xk+1, . . . , xn)

f(x1, . . . , xk)
. (3.10)

From this, the so-called chain rule can be derived, being

f(x1, . . . , xn) = f(xn|xn−1, . . . , x1)f(xn−1|xn−2, . . . , x1) . . . f(x2|x1)f(x1). (3.11)
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