
Hypothesis Tests

1 Basic Concepts of Hypothesis Tests

We will now examine hypothesis tests. To become familiar with them, we first look at some basic concepts.
After that, we consider the simple case where there are only two hypotheses.

1.1 Definitions

Let’s suppose we have a random vector y. Its PDF is fy(y|x), where the vector x is not known. We can
now assume a certain value for x. Afterwards, we can use a measurement y to check whether our original
assumption of x made sense. We now have a statistical hypothesis, denoted by H : y ∼ fy(y|x).

The (process) state space contains all the possible values for x. Often an hypothesis H states that
x has a certain value. It now completely specifies the distribution of y. It is therefore called a simple
hypothesis. H can also state that x is among a certain group of values. In this case y is not completely
specified. H is then called a composite hypothesis. In this course we only deal with simple hypotheses.

1.2 The binary decision problem

Usually, when you examine hypotheses, you have two hypothesis. It is possible to have multiple hypothesis
H1,H2, . . . ,Hn, but we will treat that later. For now we assume we have just two hypotheses. First there
is the null hypothesis H0 : y ∼ fy(y|x0), representing the nominal state. Second, there is the
alternative hypothesis Ha : y ∼ fy(y|xa). Both distributions state that the random variable y has a
certain PDF fy.

Let’s examine the binary decision problem. We have a single observation y. Based on this observation,
we have to choose whether we accept H0 (assume it to be correct) or reject it. The procedure used to
decide whether to accept H0 or not is called a test.

How do we decide whether to accept H0? For that, we define the critical region K. If y ∈ K, then
we reject H0. On the other hand, if y 6∈ K (or equivalently, y ∈ Kc), then we accept H0. We can also
define the test statistic T = h(y), where T is a scalar and h(y) some function. Corresponding to the
(multi-dimensional) region K is also a scalar region K. We now reject H0 if T ∈ K and accept H0 is
T 6∈ K.

1.3 Four situations

In the binary decision problem, we have two options: accept or reject. In this choice, we can be either
right or wrong. There are now four possible situations:

• We reject H0, when in reality H0 is true. So we made an error. This is called the type 1 error.
Its probability, called the probability of false alarm α, can be found using

α = P (y ∈ K|H0) =
∫

K

fy(y|H0) dy =
∫

K

fy(y|x0) dy, (1.1)

where the latter part is just a different way of writing things. α is also called the size of the test,
or the level of significance.

• We accept H0, when in reality H0 is false. This time we made a type 2 error. The so-called
probability of missed detection β is given by

β = P (y 6∈ K|Ha) =
∫

Kc

fy(y|Ha) dy = 1−
∫

K

fy(y|Ha). (1.2)
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• We accept H0, and were right in doing so. The so-called probability of correct dismissal (which
doesn’t have its own sign) is now given by

P (y 6∈ K|H0) =
∫

Kc

fy(y|H0) dy = 1−
∫

K

fy(y|H0) dy = 1− α (1.3)

• We reject H0, and were right in doing so. The probability of detection, also called the power
of the test γ, now is

γ = P (y ∈ K|Ha) =
∫

K

fy(y|Ha) dy = 1− β. (1.4)

1.4 Defining the critical region

The size of α, β and γ depends on the critical region K. It is our task to define K. According to what
criteria should we do that? Often, in real life, we want to minimize costs. A false alarm has a certain
(positive) cost c0, while a missed detection has a certain (also positive) cost ca. The average cost in an
experiment, also called the Bayes risk, is then c0α+ caβ. (We assume a correct choice has no costs, nor
any special benefits.) We want to find the K for which the costs are at a minimum. (In fact, the Bayes
criterion states that the Bayes risk should be minimized.) So we want to minimize

c0α + caβ = c0

∫
K

fy(y|H0) dy + ca

(
1−

∫
K

fy(y|Ha) dy

)
= ca +

∫
K

(
c0fy(y|H0)− cafy(y|Ha)

)
dy.

(1.5)
We know that ca is constant. So we should minimize the integral on the right. Note that an integral is
something that adds up infinitely many numbers. By choosing K, we choose what numbers this integral
adds up. We want to minimize the value of the integral. So we should make sure it only adds up negative
numbers. (Any positive number would make its value only bigger.) So, we only have y ∈ K if

c0fy(y|H0)− cafy(y|Ha) < 0. (1.6)

The critical region K thus consists of all y for which

fy(y|H0)

fy(y|Ha)
<

ca

c0
. (1.7)

In other words, if the above equation holds for the measurement y, then we reject H0.

1.5 A-priori probabilities

Let’s complicate the situation a bit more. Previously we have made an assumption. We assumed that
we didn’t have a clue whether H0 or Ha would be true in reality. Let’s suppose we do have a clue now.
The probability that H0 is correct (and thus that x = x0) is P (x = x0). (Abbreviated this is P (x0).)
Similarly, we know that the chance for Ha to be correct is P (xa). The probabilities P (x0) and P (xa) are
called a-priori probabilities — probabilities we already know before the experiment. We know that
either H0 or Ha is true, so we have P (x0) + P (xa) = 1.

If H0 is true, then we have a chance α to lose c0. Similarly, if Ha is true, then we have a chance β to lose
ca. Therefore our average costs now become P (x0)c0α + P (xa)caβ. From this we can find that y ∈ K
(we should reject H0) if

fy(y|H0)

fy(y|Ha)
<

P (xa)ca

P (x0)c0
. (1.8)

If we don’t have a clue which hypothesis will be correct, then P (x0) = P (xa) = 1/2. Note that, in this
case, the above equation reduces to the result of the previous paragraph.
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2 Multiple Hypothesis

Previously we have only considered two hypotheses, being H0 and Ha. But what should we do if we have
p hypotheses H1,H2, . . . ,Hp? How do we know which one to choose then? Let’s take a look at that.

2.1 Deciding the hypothesis

First we will make a few definitions. Let’s define the discrete decision δ as our choice of vector
xi. Also, there is the cost function C(x, δ) (not be confused with the covariance operator). Suppose
we accept hypothesis Hj (and thus δ = xj), but in reality we have x = xi. In this case our costs
are C(x = xi, δ = xj). This can also be written as C(xi,xj), or even as Cij . We also assume that
C(xi,xi) = 0. In words, this says that if we accept the right hypothesis, we don’t have any costs.

Suppose we have a measurement y. It is now rather difficult to decide which hypothesis we accept. We
therefore make an assumption. We assume that the costs for all errors are equal. (So Cij = constant
for all i, j with i 6= j.) This is part of the so-called Maximum A Posteriori probability criterion
(MAP). Now we can decide which hypothesis to accept. We should accept Hi if for all j 6= i we have

fy(y|xj)P (xj) < fy(y|xi)P (xi). (2.1)

So we should accept Hi if the number i gives the maximum value for fy(y|xi)P (xi). This is, in fact,
quite logical. If costs don’t matter, we should simply choose the hypothesis which gives us the biggest
chance that we’re right. This also causes the chance that we’re wrong to be the smallest.

2.2 Acceptance regions

Given a measurement y, we now know which hypothesis Hi to choose. Let’s look at all y for which we
will accept Hi. These y form the acceptance region Ai. We can also look at this definition the other
way around: If y ∈ Ai, then we accept Hi.

Let’s ask ourselves something. Suppose that in reality Hi is true. What is then the chance that we accept
Hj? Let’s call this chance βij . Its value depends on the acceptance region Aj and can be found using

βij =
∫

Aj

fy(y|xi) dy. (2.2)

The chance that we make any wrong decision (given that Hi is true) is denoted as βi. It can be found
by simply adding up all the βijs with i 6= j. So,

βi =
p∑

j=1,j 6=i

βij (2.3)

On the other hand, the chance that we make the right decision (given that Hi is true) is written as γi.
Note that we have γi = 1− βi. (You might see that we also have γi = βii. This is correct. However, the
sign β is normally used to indicate errors. So that’s why we use the sign γi now, and not βii.)

You probably already expect the next question we will ask to ourselves. What would be the chance that
we are wrong in general? This chance, called the average probability of incorrect decision, can be
found using

p∑
i=1

P (xi)βi =
p∑

i=1

P (xi)
p∑

j=1,j 6=i

βij

 =
p∑

i=1

P (xi)
p∑

j=1,j 6=i

∫
Aj

fy(y|xi) dy

 . (2.4)

If the acceptance regions are well defined, then this chance is minimal.
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3 Other Methods of Testing

We just saw one way in which we can choose a hypothesis. Naturally, there are more ways. In this part
we will examine another way to choose from two hypotheses H0 and Ha.

3.1 The simple likelihood ratio test

You probably remember the maximum likelihood estimation (MLE) method, from the previous chapter.
In that method, we looked for the x for which fy(y|x) was maximal. We can do the same now. However,
now we only have two possible values of x, being x0 and xa. We thus accept H0 if fy(y|x0) > fy(y|xa).
We reject H0 if

fy(y|x0)

fy(y|xa)
< 1. (3.1)

The critical region K can be derived from the above criterion. This testing method is called the maxi-
mum likelihood test.

Let’s adjust the above method slightly. Instead of taking 1 as a boundary, we now take some (positive)
constant c. We thus reject H0 if

fy(y|x0)

fy(y|xa)
< c. (3.2)

We now have arrived at the simple likelihood ratio (SLR) test.

3.2 The most powerful test

We find another way of testing when we apply the Neyman-Pearson testing principle. To apply this
principle, we should first give the probability of false alarm α (the size of the test) a certain value. We
then examine all tests (or equivalently, all critical regions K) with size α. We select the one for which
the probability of missed detection β is minimal. (Or equivalently, the one for which the power of the
test γ is maximal.) The selected test is called the most powerful (MP) test of size α.

Let’s take another look at the conditions. The value of α should be set, and the value of γ should be
maximal. Now let’s look at the simple likelihood ratio test. We can choose our ratio c such that the test
has size α. This makes sure the first condition is satisfied. Now comes a surprising fact. The SLR test
also always satisfies the second condition. In other words, the SLR test is always the test with maximal
γ — it is always the most powerful test.

So, although we may have believed we had two new testing methods, we only have one. But we do always
know which test is the most powerful one: the simple likelihood ratio test.
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