
Estimation

1 Introduction to Estimation

One of the powers of probability is that you can estimate the behavior of phenomena. How can we do
that? That’s something we will look at in this chapter.

1.1 Definitions

It often occurs that there is some phenomenon of which we want to know the behavior. Such a phe-
nomenon can be modeled as a random vector y, with a certain size m. However, we usually don’t know
the distribution of such a random variable. The PDF just isn’t known to us. But, given certain param-
eters, we can find it. In this case we can put the n unknown parameters into a vector x. Then, once x
is known, we can find the PDF of y. This PDF is written as fy(y|x). (An example could be where we
know y is normally distributed, but we don’t know the mean y and the standard deviation σy.)

Now how can we find x? The truth is, we can’t. However, by observing the phenomenon described by
y, we can guess it. Let’s say our guess x̂ (called the estimate of x) is given by some function x̂ = G(y).
Our task is to set this function G(y). Once we have done so, we can also define a new random variable,
called the estimator, as x̂ = G(y).

1.2 Finding a good estimator

So we now know we have to choose an estimator x̂ = G(y). How would we know what would be a
good one? There are three criteria for that. First there is the estimation error ε̂ = x̂ − x, which
is also a random variable. The estimator x̂ is said to be an unbiased estimator of x if, and only if
E(̂ε) = E(x̂−x) = 0, or, equivalently, E(x̂) = x. If the estimator x̂ is not unbiased, then we say that its
bias is E(̂ε).

Another measure of quality is the mean squared error (MSE), defined as E
(
|x̂− x|2

)
, or, equivalently,

E
(̂
ε2

)
. Of course the mean squared error should be as small as possible.

Finally, let’s look at the third measure of quality. It is defined as P (|x̂− x|2 ≤ r2), for some radius r. In
words, this is the probability that the vector ε̂ is in the (hyper-)sphere with radius r. This chance should
be as big as possible.

There are three common ways of finding an estimator. Which one to use depends on the data that you
have and the accuracy that you want. We will take a look at them in the rest of this chapter.

2 Least-Squares Estimation

One of the most well-known methods of determining an estimation is the least-squares estimation method.
Let’s take a look at how it works.

2.1 The consistent case

Let’s suppose we have a set of measurements y, having size m, and a set of unknown parameters x,
having size n. To apply the least-squares method, we assume that

y = Ax, (2.1)
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where the m×n matrix A is known. In words, this means that the measured parameters (in y) are linear
functions of the unknown variables (in x). However, now the question arises whether, given a (measured)
y, there is an x which satisfies the above equation. If there is, then the system is consistent. Otherwise
it is inconsistent. The inconsistent case will be treated in the next paragraph. Now we’ll take a closer
look at the consistent case.

So suppose the system y = Ax is consistent. In this case we know that there is at least one x satisfying
y = Ax. If there is exactly one solution, then this solution is our estimate x̂. It can be found using

x̂ = A−1y. (2.2)

The corresponding least-squares solution ŷ can be found using ŷ = Ax̂ = y.

It is, however, also possible that there are infinitely many solutions x. In this case we can’t be sure which
x to choose. This often means we need more measurement data. This is the case if the columns of A
aren’t all linearly independent.

2.2 The inconsistent case

Now let’s suppose the system y = Ax is inconsistent. In this case there is no solution x. We now refer
to the system as an overdetermined system, denoted as y ≈ Ax. Assuming that there are no linearly
dependent columns in A, we define the redundancy of the system as m− n.

To make sure there are solutions, we add a measurement error vector e, such that y = Ax + e. We now
want to choose e such that e2 = eT e is minimal. This is the least-squares principle. The minimal e is
denoted by ê. With ê chosen correctly, there is a solution x, called the estimate x̂. It can be found using

x̂ =
(
AT A

)−1
AT y. (2.3)

The corresponding least-squares solution can once more be found using ŷ = Ax̂. The difference ê =
y−Ax̂ = y− ŷ is the least-squares residual vector. The value of ê2 is a measure of the inconsistency
of the system.

The vector y generally consists of measurement data. Sometimes we know that some measurement data
is more accurate than other. That data should thus be taken into account more. For this, there is the
weighted least-squares method. In this case we don’t want to minimize e2 = eT e. This time we
should minimize eT We, where W is the weight matrix. The minimum value êT W ê is now the measure
of inconsistency of the system. The corresponding estimate can then be found using

x̂ =
(
AT WA

)−1
AT Wy. (2.4)

Generally W is a positive diagonal matrix. This is, however, not always the case.

2.3 Orthogonal projectors

Let’s take a closer look at what variables we got now. We have a measurement vector y. In the inconsistent
case y can’t be written as Ax. So we search for a ŷ close to y that can be written as Ax̂. The least-squares
residual vector ê = y − ŷ is as small as possible.

It can now be shown that ŷ and ê are orthogonal vectors. While ŷ lies in the column space of A, ê is
orthogonal to the column space of A. (So ê lies in the column space of A⊥.) Now let’s define the two
matrices PA and P⊥A as

PA = A
(
AT WA

)−1
AT W and P⊥A = Im − PA. (2.5)

These two matrices are orthogonal projectors. What they do is, they project vectors on the column
spaces of A and A⊥. We therefore have

ŷ = PAy and ê = P⊥A y. (2.6)
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2.4 Implementing random vectors

Previously we saw the system of equations y = Ax+e. Here, the vector y represented a series of measure-
ments. However, we can take more measurements from a phenomenon. Every time, these measurements
can take different values. So it would be wise to represent y by a random vector y. Equivalently, the
vector e also has a different value every time. So it should also be a random vector e. We thus get

y = Ax + e. (2.7)

We assume we have chosen our estimate x (which does stay constant during different measurements) such
that E(e) = 0 or, equivalently, E(y) = Ax. If this is indeed the case, then we say that the above linear
system is called a linear model of E(y).

From y, we can derive the random variables x̂, ŷ and ê. For that, we can use relations we actually
already know. They are

x̂ =
(
AT WA

)−1
AT Wy = x +

(
AT WA

)−1
AT We, (2.8)

ŷ = PAy = Ax + PAe and ê = P⊥A y = 0 + P⊥A e. (2.9)

And that’s all we need to know if we want to estimate what the outcome of the experiment will be next.

3 Best linear unbiased estimation

The second method of finding x̂ we will look at is the BLUE method. To use it, you also need the variance
matrix Qyy of y. Because the BLUE method considers Qyy, it can be a rather accurate estimation method.
Let’s find out how it works.

3.1 Definitions and conditions

Let’s consider the linear system of equations

E(y) = Ax. (3.1)

Just like in the previously discussed method, we want to find an estimate x (or more precise, an estimator
x) that corresponds to certain conditions. Before we look at those conditions, we first make some
definitions.

Let’s define the vector z (having size k) as a linear combination of x. So, z = FT x + f0, for some known
n × k matrix F and k-vector f0. Just like we want to find an estimator x̂ for x, we can also be looking
for an estimator z for z. This gives us also the relation z = FT x + f0. So to find x we might as well try
to find z. The estimator z depends on y. So let’s define G(y) such that z = G(y).

Enough definitions. Let’s look at what conditions we want the estimator z to have. First of all we want
it to be unbiased. This means that E(z) = z or, equivalently, E(G(y)) = FT x + f0. For reasons of
simplicity, we also want it to be linear. This is the case if G(y) is a linear function, and can thus be
written as G(y) = LT y + l0 for some m× k matrix L and a k-vector l0. This linearity condition can be
rewritten to two conditions, being

AT L = F and l0 = f0. (3.2)

Any estimator z of z that is both linear and unbiased is called a linear unbiased estimator (LUE).
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3.2 Finding the best linear unbiased estimator

There is one slight problem. There are many LUEs. We want only the so-called best linear unbiased
estimator (BLUE), denoted by ẑ. But what is the best LUE? We now define the best LUE (the BLUE)
to be the LUE with the smallest mean squared error (MSE). So we have

E
(
|ẑ− z|2

)
≤ E

(
|z− z|2

)
(3.3)

for every LUE z. Now the question arises how we can find this BLUE ẑ and the corresponding best
estimator x̂ for x. For that, we use the Gauss-Markov theorem, which states that

x̂ =
(
AT Q−1

yy A
)−1

AT Q−1
yy y and ẑ = FT x̂ + f0, (3.4)

where Qyy is the variance matrix of y (so Qyy = D(y)). It is interesting to note that the final value of x̂
does not depend on the matrix F or the vector f0 at all. It just depends on A and y.

Another interesting fact to note is the link with the weighted least-squares estimation method. If the
weight matrix W in the WLSE method is equal to the inverse of the variance matrix Qyy (so W = Q−1

yy )
in the BLUE method, you would find exactly the same estimator x.

4 Maximum Likelihood Estimation and Confidence Regions

The third method of finding x̂ uses the PDF of y. It can therefore not always be applied. But its
advantage is that it can be applied in the case where y can’t be written as Ax.

4.1 The condition

To make a maximum likelihood estimation (MLE) we need to know the PDF of y, given a certain
unknown vector x. We write this as fy(y|x).

Now suppose we have some measurement y. The idea behind the MLE is to choose the value of x for
which it is most likely that y occurred. The likelihood of y then is fy(y|x). Note that this likelihood
is a function of the unknown vector x. This likelihood should be maximized. The corresponding x, now
denoted as x̂, is the maximum likelihood estimation.

4.2 Finding the maximum likelihood estimation

There is no general method of finding the MLE. For relatively easy PDFs of y, simple logic can often
lead to the MLE. For more difficult PDFs, finding the MLE might even require complicated (numerical)
computation.

If, however, fy(y|x) is sufficiently smooth, then x̂ can be found using the conditions

∂xfy(y|x̂) = 0 and ∂2
xxT fy (y|x̂) < 0. (4.1)

If the PDF simply gives a scalar result, then the above states that the first derivative must be zero,
indicating that there is a local minimum/maximum. The second derivative must be smaller than zero,
indicating it is in fact a maximum.

If, however, the PDF returns a vector, then things are a bit more difficult. Then the first condition
requires that the gradient has to be zero. The second condition states that the so-called Hessian
matrix (the matrix of derivatives) needs to be negative definite. In other words, all its eigenvectors need
to be negative.

Finally, when multiple values satisfy the above conditions, just insert their values x̂ into fy(y|x̂) and see
which value gives the highest likelihood of y.
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4.3 Confidence Regions

Suppose we have finally acquired a good estimate ŷ of y (using any of the three discussed methods).
How can we indicate how good this estimate actually is? We can do this, using confidence regions.

Suppose we have a region S. For example, S can be defined as the interval [ŷ− ε, ŷ + ε]. We now take a
new measurement y. Let’s examine the chance that y is in the region S. This chance then is

P (y ∈ S) = 1− α. (4.2)

We now say that S is a 100(1− α) percent confidence region. (For example, if α = 0.01, then it is a
99% confidence region.) Also 1− α is called the confidence coefficient.
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