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Chapter 10 
VAPOR AND COMBINED POWER CYCLES 

 
Carnot Vapor Cycle 

 

10-1C Because excessive moisture in steam causes erosion on the turbine blades. The highest moisture 
content allowed is about 10%. 

 

10-2C The Carnot cycle is not a realistic model for steam power plants because (1) limiting the heat 
transfer processes to two-phase systems to maintain isothermal conditions severely limits the maximum 
temperature that can be used in the cycle, (2) the turbine will have to handle steam with a high moisture 
content which causes erosion, and (3) it is not practical to design a compressor that will handle two phases. 

 

 

 

10-3E A steady-flow Carnot engine with water as the working fluid operates at specified conditions. The 
thermal efficiency, the quality at the end of the heat rejection process, and the net work output are to be 
determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis (a)  We note that 

and 
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(b)  Noting that s4 = s1 = sf @ 180 psia = 0.53274 Btu/lbm·R, 
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(c)  The enthalpies before and after the heat addition process are 
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10-4  A steady-flow Carnot engine with water as the working fluid operates at specified conditions. The 
thermal efficiency, the amount of heat rejected, and the net work output are to be determined.  

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis (a)  Noting that TH = 250°C = 523 K and TL = Tsat @ 20 kPa = 60.06°C = 333.1 K, the thermal 
efficiency becomes 
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(b)  The heat supplied during this cycle is simply the 
enthalpy of vaporization, 
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(c)  The net work output of this cycle is 

 ( )( ) kJ/kg623.0 kJ/kg 3.17153632.0inthnet === qw η  

 

 

 

10-5  A steady-flow Carnot engine with water as the working fluid operates at specified conditions. The 
thermal efficiency, the amount of heat rejected, and the net work output are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis (a)  Noting that TH = 250°C = 523 K and TL = Tsat @ 10 kPa = 45.81°C = 318.8 K, the thermal 
efficiency becomes 
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(b)  The heat supplied during this cycle is simply the 
enthalpy of vaporization, 

Thus, 
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(c)  The net work output of this cycle is 
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10-6 A steady-flow Carnot engine with water as the working fluid operates at specified conditions. The 
thermal efficiency, the pressure at the turbine inlet, and the net work output are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis (a)  The thermal efficiency is determined from 
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(b)  Note that  

s2 = s3 = sf + x3sfg  

                         = 0.8313 + 0.891 × 7.0769 = 7.1368 kJ/kg·K 
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(c)  The net work can be determined by calculating the enclosed area on the T-s diagram, 
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The Simple Rankine Cycle 

 

10-7C  The four processes that make up the simple ideal cycle are (1) Isentropic compression in a pump, 
(2) P = constant heat addition in a boiler, (3) Isentropic expansion in a turbine, and (4) P = constant heat 
rejection in a condenser. 

 

10-8C  Heat rejected decreases; everything else increases. 

 

10-9C  Heat rejected decreases; everything else increases. 

 

10-10C  The pump work remains the same, the moisture content decreases, everything else increases. 

 

10-11C  The actual vapor power cycles differ from the idealized ones in that the actual cycles involve 
friction and pressure drops in various components and the piping, and heat loss to the surrounding medium 
from these components and piping. 

 

10-12C  The boiler exit pressure will be (a) lower than the boiler inlet pressure in actual cycles, and (b) the 
same as the boiler inlet pressure in ideal cycles. 

 

10-13C  We would reject this proposal because wturb = h1 - h2 - qout, and any heat loss from the steam will 
adversely affect the turbine work output. 

 

10-14C  Yes, because the saturation temperature of steam at 10 kPa is 45.81°C, which is much higher than 
the temperature of the cooling water. 
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10-15E A simple ideal Rankine cycle with water as the working fluid operates between the specified 
pressure limits. The rates of heat addition and rejection, and the thermal efficiency of the cycle are to be 
determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4E, A-5E, and A-6E), 
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Knowing the power output from the turbine the mass flow rate of steam in the cycle is determined from 
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The rates of heat addition and rejection are 
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10-16 A simple ideal Rankine cycle with water as the working fluid operates between the specified pressure 
limits. The maximum thermal efficiency of the cycle for a given quality at the turbine exit is to be 
determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  For maximum thermal efficiency, the quality at state 4 would be at its minimum of 85% (most 
closely approaches the Carnot cycle), and the properties at state 4 would be (Table A-5) 
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Since the expansion in the turbine is isentropic, 
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Other properties are obtained as follows (Tables A-4, A-5, and A-6), 
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Thus, 
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10-17 A simple ideal Rankine cycle with water as the working fluid operates between the specified pressure 
limits. The power produced by the turbine and consumed by the pump are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4, A-5, and A-6), 
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The power produced by the turbine and consumed by the pump are 
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10-18E A simple ideal Rankine cycle with water as the working fluid operates between the specified 
pressure limits. The turbine inlet temperature and the thermal efficiency of the cycle are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 
Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4E, A-5E, 
and A-6E), 
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10-19 A simple ideal Rankine cycle with water as the working fluid operates between the specified pressure 
limits. The power produced by the turbine, the heat added in the boiler, and the thermal efficiency of the 
cycle are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4, A-5, and A-6), 
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Thus, 
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10-20 A simple Rankine cycle with water as the working fluid operates between the specified pressure 
limits. The isentropic efficiency of the turbine, and the thermal efficiency of the cycle are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4, A-5, and A-6), 
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The isentropic efficiency of the turbine is  
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10-21E A simple steam Rankine cycle  operates between the specified pressure limits. The mass flow rate, 
the power produced by the turbine, the rate of heat addition, and the thermal efficiency of the cycle are to 
be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4E, A-5E, and A-6E), 
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 kJ/kg 13.839)70.7870.1302)(90.0(0.1302)( 4s3T34
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The mass flow rate of steam in the cycle is determined from 
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The power output from the turbine and the rate of heat addition are 

 
Btu/s 2549

kW 1016

===

=⎟
⎠
⎞

⎜
⎝
⎛−=−=

Btu/lbm) 4.8lbm/s)(122 081.2(

Btu 0.94782
kJ 1Btu/lbm)13.8392.0lbm/s)(130 081.2()(

inin

43outT,

qmQ

hhmW

&&

&&
 

and the thermal efficiency of the cycle is 
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10-22E A simple steam Rankine cycle operates between the specified pressure limits. The mass flow rate, 
the power produced by the turbine, the rate of heat addition, and the thermal efficiency of the cycle are to 
be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4E, A-5E, and A-6E), 
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 kJ/kg 13.839)70.7870.1302)(90.0(0.1302)( 4s3T34
43

43
T =−−=−−=⎯→⎯

−
−

= hhhh
hh
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s
ηη  

The mass flow rate of steam in the cycle is determined from 

    lbm/s 2.048
kJ 1

Btu 0.94782
Btu/lbm 839.13)(1302.0

kJ/s 1000)(
43

net
43net =⎟

⎠
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⎝
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−
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−
=⎯→⎯−=
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&&&  

The rate of heat addition is 

 Btu/s 2508
Btu 0.94782

kJ 1Btu/lbm)18.772.0lbm/s)(130 048.2()( 23in =⎟
⎠
⎞

⎜
⎝
⎛−=−= hhmQ &&  

and the thermal efficiency of the cycle is 

 0.3779
kJ 1

Btu 0.94782
Btu/s 2508
kJ/s 1000
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Q
W
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The thermal efficiency in the previous problem was determined to be 0.3718. The error in the thermal 
efficiency caused by neglecting the pump work is then  

 1.64%=×
−

= 100
3718.0

3718.03779.0Error  
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10-23 A 300-MW coal-fired steam power plant operates on a simple ideal Rankine cycle between the 
specified pressure limits. The overall plant efficiency and the required rate of the coal supply are to be 
determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis (a)  From the steam tables (Tables A-4, A-5, and A-6), 

 ( )
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The thermal efficiency is determined from 

 
kJ/kg 2.200496.2712.2276
kJ/kg 2.304003.2772.3317

14out
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hhq
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Thus, 
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(b)  Then the required rate of coal supply becomes 
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10-24  A solar-pond power plant that operates on a simple ideal Rankine cycle with refrigerant-134a as the 
working fluid is considered. The thermal efficiency of the cycle and the power output of the plant are to be 
determined.  

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis (a)  From the refrigerant tables (Tables A-11, A-12, and A-13), 
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Thus , 

 
kJ/kg 34.1338.17372.186

kJ/kg 38.17382.8820.262
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10-25  A steam power plant operates on a simple ideal Rankine cycle between the specified pressure limits. 
The thermal efficiency of the cycle, the mass flow rate of the steam, and the temperature rise of the cooling 
water are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis (a)  From the steam tables (Tables A-4, A-5, and A-6), 
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Thus,  

kJ/kg 7.12508.19615.3212
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(c)  The rate of heat rejection to the cooling water and its temperature rise are 

 
( )( )

( )( ) C8.4°=
°⋅

==Δ

===

CkJ/kg 4.18kg/s 2000
kJ/s 70,586

)(

kJ/s  ,58670kJ/kg 1961.8kg/s 35.98

watercooling

out
watercooling

outout

cm
Q

T

qmQ

&

&

&&

 

qin

qout 

10 kPa
1

3 

2

4 

7 MPa

s 

T



 

PROPRIETARY MATERIAL. © 2008 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to teachers and 
educators for course preparation.  If you are a student using this Manual, you are using it without permission. 

10-16

 

10-26  A steam power plant operates on a simple nonideal Rankine cycle between the specified pressure 
limits. The thermal efficiency of the cycle, the mass flow rate of the steam, and the temperature rise of the 
cooling water are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis (a)  From the steam tables (Tables A-4, A-5, and A-6), 
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Thus,  

kJ/kg 2.10863.21255.3211
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(c)  The rate of heat rejection to the cooling water and its temperature rise are 
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10-27 The net work outputs and the thermal efficiencies for a Carnot cycle and a simple ideal Rankine 
cycle are to be determined.  

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis (a) Rankine cycle analysis: From the steam tables (Tables A-4, A-5, and A-6), 
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(b) Carnot Cycle analysis: 

         

kJ/kg 9.1093)5.2357)(3574.0(42.251

3574.0
0752.7

8320.03603.3
kPa 20

KkJ/kg 3603.3
kJ/kg 8.1407

0
C 0.311

C 0.311
kJ/kg 5.2725

1
MPa 10

11

1
1

21

1

2

2

2

32

3

3

3

3

=+=

+=

=
−

=
−

=

⎭
⎬
⎫

=
=

⋅=
=

⎭
⎬
⎫

=
°==

°=
=

⎭
⎬
⎫

=
=

fgf

fg

f

hxhh
s

ss
x

ss
P

s
h

x
TT

T
h

x
P

 

kJ/kg 565.4=−=−=
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10-28 A single-flash geothermal power plant uses hot geothermal water at 230ºC as the heat source. The 
mass flow rate of steam through the turbine, the isentropic efficiency of the turbine, the power output from 
the turbine, and the thermal efficiency of the plant are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis (a) We use properties of water for 
geothermal water (Tables A-4 through A-6) 
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The mass flow rate of steam 
through the turbine is 
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(c) The power output from the turbine is 
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(d) We use saturated liquid state at the standard temperature for dead state enthalpy 
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10-29  A double-flash geothermal power plant uses hot geothermal water at 230ºC as the heat source. The 
temperature of the steam at the exit of the second flash chamber, the power produced from the second 
turbine, and the thermal efficiency of the plant are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis (a) We use properties of water for geothermal water (Tables A-4 through A-6) 
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(b) The mass flow rate at the lower stage of the turbine is 
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The power outputs from the high and low pressure stages of the turbine are 
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 (c) We use saturated liquid state at the standard temperature for the dead state enthalpy 
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10-30  A combined flash-binary geothermal power plant uses hot geothermal water at 230ºC as the heat 
source. The mass flow rate of isobutane in the binary cycle, the net power outputs from the steam turbine 
and the binary cycle, and the thermal efficiencies for the binary cycle and the combined plant are to be 
determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis (a) We use properties of water for geothermal water (Tables A-4 through A-6) 

1661.0
kJ/kg 14.990

kPa 500

kJ/kg 14.990
0

C230

2
12

2

1
1

1

=
⎭
⎬
⎫

==
=

=
⎭
⎬
⎫

=
°=

x
hh

P

h
x
T

 

kg/s 80.19120.38230
kg/s 38.20kg/s) 230)(1661.0(

316

123

=−=−=
===

mmm
mxm

&&&

&&
 

kJ/kg 7.2344
90.0
kPa 10

kJ/kg 1.2748
1

kPa 500

4
4

4

3
3

3

=
⎭
⎬
⎫

=
=

=
⎭
⎬
⎫

=
=

h
x
P

h
x
P

  

kJ/kg 04.377
0

C90

kJ/kg 09.640
0

kPa 500

7
7

7

6
6

6

=
⎭
⎬
⎫

=
°=

=
⎭
⎬
⎫

=
=

h
x
T

h
x
P

 

The isobutane properties 
are obtained from EES: 

/kgm 001839.0
kJ/kg 83.270

0
kPa 400

kJ/kg 01.691
C80
kPa 400

kJ/kg 05.755
C145
kPa 3250

3
10

10

10

10

9
9

9

8
8

8

=
=

⎭
⎬
⎫

=
=

=
⎭
⎬
⎫

°=
=

=
⎭
⎬
⎫

°=
=

v

h
x
P

h
T
P

h
T
P

 

( )
( )( )

kJ/kg 65.27682.583.270
kJ/kg. 82.5

90.0/
mkPa 1

kJ 1kPa 4003250/kgm 001819.0

/

in,1011

3
3

101110in,

=+=+=
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
−=

−=

p

pp

whh

PPw ηv

 

An energy balance on the heat exchanger gives  
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(b) The power outputs from the steam turbine and the binary cycle are 
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 (c) The thermal efficiencies of the binary cycle and the combined plant are  
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The Reheat Rankine Cycle 

 

10-31C  The pump work remains the same, the moisture content decreases, everything else increases. 

 

10-32C The T-s diagram shows two reheat cases for the reheat Rankine cycle similar to the one shown in 
Figure 10-11.  In the first case there is expansion through the high-pressure turbine from 6000 kPa to 4000 
kPa between states 1 and 2 with reheat at 4000 kPa to state 3 and finally expansion in the low-pressure 
turbine to state 4.  In the second case there is expansion through the high-pressure turbine from 6000 kPa to 
500 kPa between states 1 and 5 with reheat at 500 kPa to state 6 and finally expansion in the low-pressure 
turbine to state 7.  Increasing the pressure for reheating increases the average temperature for heat addition 
makes the energy of the steam more available for doing work, see the reheat process 2 to 3 versus the 
reheat process 5 to 6.   Increasing the reheat pressure will increase the cycle efficiency.  However, as the 
reheating pressure increases, the amount of condensation increases during the expansion process in the low-
pressure turbine, state 4 versus state 7.  An optimal pressure for reheating generally allows for the moisture 
content of the steam at the low-pressure turbine exit to be in the range of 10 to 15% and this corresponds to 
quality in the range of 85 to 90%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10-33C  The thermal efficiency of the simple ideal Rankine cycle will probably be higher since the average 
temperature at which heat is added will be higher in this case. 
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10-34 [Also solved by EES on enclosed CD] A steam power plant that operates on the ideal reheat Rankine 
cycle is considered. The turbine work output and the thermal efficiency of the cycle are to be determined.  

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4, A-5, and A-6), 
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The turbine work output and the thermal efficiency are determined from 
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10-35 EES Problem 10-34 is reconsidered. The problem is to be solved by the diagram window data entry 
feature of EES by including the effects of the turbine and pump efficiencies and reheat on the steam quality 
at the low-pressure turbine exit Also, the T-s diagram is to be plotted. 

Analysis The problem is solved using EES, and the solution is given below.   

 
"Input Data - from diagram window" 
{P[6] = 20 [kPa] 
P[3] = 8000 [kPa] 
T[3] = 500 [C] 
P[4] = 3000 [kPa] 
T[5] = 500 [C] 
Eta_t = 100/100 "Turbine isentropic efficiency" 
Eta_p = 100/100 "Pump isentropic efficiency"} 
 
"Pump analysis" 
function x6$(x6) "this function returns a string to indicate the state of steam at point 6" 
 x6$='' 
 if (x6>1) then x6$='(superheated)' 
 if (x6<0) then x6$='(subcooled)' 
end 
 
Fluid$='Steam_IAPWS' 
 
P[1] = P[6] 
P[2]=P[3] 
x[1]=0  "Sat'd liquid" 
h[1]=enthalpy(Fluid$,P=P[1],x=x[1]) 
v[1]=volume(Fluid$,P=P[1],x=x[1]) 
s[1]=entropy(Fluid$,P=P[1],x=x[1]) 
T[1]=temperature(Fluid$,P=P[1],x=x[1]) 
W_p_s=v[1]*(P[2]-P[1])"SSSF isentropic pump work assuming constant specific volume" 
W_p=W_p_s/Eta_p   
h[2]=h[1]+W_p   "SSSF First Law for the pump" 
v[2]=volume(Fluid$,P=P[2],h=h[2]) 
s[2]=entropy(Fluid$,P=P[2],h=h[2]) 
T[2]=temperature(Fluid$,P=P[2],h=h[2]) 
"High Pressure Turbine analysis" 
h[3]=enthalpy(Fluid$,T=T[3],P=P[3]) 
s[3]=entropy(Fluid$,T=T[3],P=P[3]) 
v[3]=volume(Fluid$,T=T[3],P=P[3]) 
s_s[4]=s[3] 
hs[4]=enthalpy(Fluid$,s=s_s[4],P=P[4]) 
Ts[4]=temperature(Fluid$,s=s_s[4],P=P[4]) 
Eta_t=(h[3]-h[4])/(h[3]-hs[4])"Definition of turbine efficiency" 
T[4]=temperature(Fluid$,P=P[4],h=h[4]) 
s[4]=entropy(Fluid$,T=T[4],P=P[4]) 
v[4]=volume(Fluid$,s=s[4],P=P[4]) 
h[3] =W_t_hp+h[4]"SSSF First Law for the high pressure turbine" 
"Low Pressure Turbine analysis" 
P[5]=P[4] 
s[5]=entropy(Fluid$,T=T[5],P=P[5]) 
h[5]=enthalpy(Fluid$,T=T[5],P=P[5]) 
s_s[6]=s[5] 
hs[6]=enthalpy(Fluid$,s=s_s[6],P=P[6]) 
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Ts[6]=temperature(Fluid$,s=s_s[6],P=P[6]) 
vs[6]=volume(Fluid$,s=s_s[6],P=P[6]) 
Eta_t=(h[5]-h[6])/(h[5]-hs[6])"Definition of turbine efficiency" 
h[5]=W_t_lp+h[6]"SSSF First Law for the low pressure turbine" 
x[6]=QUALITY(Fluid$,h=h[6],P=P[6]) 
"Boiler analysis" 
Q_in + h[2]+h[4]=h[3]+h[5]"SSSF First Law for the Boiler" 
"Condenser analysis" 
h[6]=Q_out+h[1]"SSSF First Law for the Condenser" 
T[6]=temperature(Fluid$,h=h[6],P=P[6]) 
s[6]=entropy(Fluid$,h=h[6],P=P[6]) 
x6s$=x6$(x[6]) 
 
"Cycle Statistics" 
W_net=W_t_hp+W_t_lp-W_p 
Eff=W_net/Q_in 
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SOLUTION 
Eff=0.389   Eta_p=1    Eta_t=1  
Fluid$='Steam_IAPWS'  h[1]=251.4 [kJ/kg]   h[2]=259.5 [kJ/kg] 
h[3]=3400 [kJ/kg]   h[4]=3105 [kJ/kg]   h[5]=3457 [kJ/kg] 
h[6]=2385 [kJ/kg]   hs[4]=3105 [kJ/kg]  hs[6]=2385 [kJ/kg] 
P[1]=20 [kPa]   P[2]=8000 [kPa]   P[3]=8000 [kPa]  
P[4]=3000 [kPa]   P[5]=3000 [kPa]   P[6]=20 [kPa] 
Q_in=3493 [kJ/kg]  Q_out=2134 [kJ/kg]  s[1]=0.832 [kJ/kg-K] 
s[2]=0.8321 [kJ/kg-K]  s[3]=6.727 [kJ/kg-K]  s[4]=6.727 [kJ/kg-K] 
s[5]=7.236 [kJ/kg-K]  s[6]=7.236 [kJ/kg-K]  s_s[4]=6.727 [kJ/kg-K] 
s_s[6]=7.236 [kJ/kg-K]  T[1]=60.06 [C]   T[2]=60.4 [C] 
T[3]=500 [C]   T[4]=345.2 [C]   T[5]=500 [C]  
T[6]=60.06 [C]   Ts[4]=345.2 [C]   Ts[6]=60.06 [C] 
v[1]=0.001017 [m^3/kg]  v[2]=0.001014 [m^3/kg]  v[3]=0.04177 [m^3/kg] 
v[4]=0.08968 [m^3/kg]  vs[6]=6.922 [m^3/kg]  W_net=1359 [kJ/kg] 
W_p=8.117 [kJ/kg]  W_p_s=8.117 [kJ/kg]  W_t_hp=294.8 [kJ/kg] 
W_t_lp=1072 [kJ/kg]  x6s$=''    x[1]=0  
x[6]=0.9051     
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10-36E An ideal reheat steam Rankine cycle produces 5000 kW power. The rates of heat addition and 
rejection, and the thermal efficiency of the cycle are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4E, A-5E, and A-6E or EES), 
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Thus, 
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The mass flow rate of steam in the cycle is determined from 
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The rates of heat addition and rejection are 

 
Btu/s 12,250
Btu/s 16,995

===

===

Btu/lbm) .7lbm/s)(909 47.13(

Btu/lbm) 1.7lbm/s)(126 47.13(

outout

inin

qmQ

qmQ
&&

&&
 

and the thermal efficiency of the cycle is 
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10-37E An ideal reheat steam Rankine cycle produces 5000 kW power. The rates of heat addition and 
rejection, and the thermal efficiency of the cycle are to be determined for a reheat pressure of 100 psia. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4E, A-5E, and A-6E or EES), 
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Thus, 
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The mass flow rate of steam in the cycle is determined from 
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The rates of heat addition and rejection are 
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and the thermal efficiency of the cycle is 
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Discussion The thermal efficiency for 200 psia reheat pressure was determined in the previous problem to 
be 0.2790. Thus, operating the reheater at 100 psia causes a slight decrease in the thermal efficiency. 
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10-38 An ideal reheat Rankine with water as the working fluid is considered. The temperatures at the inlet 
of both turbines, and the thermal efficiency of the cycle are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic 
and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4, A-5, and A-6), 
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kJ/kg 7.2344)1.2392)(90.0(81.191

    
90.0
kPa 10

T
h

ss
P

sxss
hxhh

x
P

fgf

fgf  

Thus, 

 
kJ/kg 9.215281.1917.2344

kJ/kg 4.32353.25372.302984.1954.2939)()(

16out

4523in

=−=−=
=−+−=−+−=

hhq
hhhhq

 

and 

 0.335=−=−=
4.3235
9.215211
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out
th q

q
η  
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10-39 An ideal reheat Rankine cycle with water as the working fluid is considered. The thermal efficiency 
of the cycle is to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4, A-5, and A-6 or EES), 

 

kJ/kg 51.35897.1754.340
kJ/kg 97.17 mkPa 1

kJ 1 kPa)5017500)(/kgm 001030.0(
)(

/kgm 001030.0

kJ/kg 54.340

inp,12

3
3

121inp,

3
kPa 50 @1
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=+=+=
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⎟
⎠
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⎜
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⎛

⋅
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f

f

v
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kJ/kg 5.2841   
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KkJ/kg 4266.6
kJ/kg 6.3423
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kPa 500,17

4
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4

3

3

3

3

=
⎭
⎬
⎫

=
=

⋅=
=

⎭
⎬
⎫
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=

h
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s
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T
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kJ/kg 9.2352)7.2304)(8732.0(54.340
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0912.17684.6
    

kPa 50

KkJ/kg 7684.6
kJ/kg 2.3024
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kPa 2000
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6
6
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5

5
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5
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=
−

=
−
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⎭
⎬
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⎭
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s
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T
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Thus, 

 
kJ/kg 4.201254.3409.2352

kJ/kg 8.32475.28412.302451.3586.3423)()(

16out

4523in

=−=−=
=−+−=−+−=

hhq
hhhhq

 

and 

 0.380=−=−=
8.3247
4.201211
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10-40 An ideal reheat Rankine cycle with water as the working fluid is considered. The thermal efficiency 
of the cycle is to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4, A-5, and A-6 or EES), 

 

kJ/kg 52.35897.1754.340
kJ/kg 97.17 mkPa 1

kJ 1 kPa)5017500)(/kgm 001030.0(
)(

/kgm 001030.0

kJ/kg 54.340

inp,12

3
3

121inp,

3
kPa 50 @1

kPa 50 @1
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⎠
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⎜
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⎛
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kJ/kg 5.2841   
kPa 2000

KkJ/kg 4266.6
kJ/kg 6.3423
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4
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3

=
⎭
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⋅=
=
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⎬
⎫
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T
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kJ/kg 0.2638)7.2304)(9968.0(54.340

9968.0
5019.6

0912.15725.7
    

kPa 50

KkJ/kg 5725.7
kJ/kg 0.3579

    
C550
kPa 2000
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6
6
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⎬
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=
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s
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T
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Thus, 

 
kJ/kg 4.229754.3400.2638

kJ/kg 6.38025.28410.357952.3586.3423)()(

16out

4523in

=−=−=
=−+−=−+−=

hhq
hhhhq

 

and 

 0.396=−=−=
6.3802
4.229711

in

out
th q

q
η  

The thermal efficiency was determined to be 0.380 when the temperature at the inlet of low-pressure 
turbine was 300°C. When this temperature is increased to 550°C, the thermal efficiency becomes 0.396. 
This corresponding to a percentage increase of 4.2% in thermal efficiency. 
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10-41  A steam power plant that operates on an ideal reheat Rankine cycle between the specified pressure 
limits is considered. The pressure at which reheating takes place, the total rate of heat input in the boiler, 
and the thermal efficiency of the cycle are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis (a)  From the steam tables (Tables A-4, A-5, and A-6), 

 
( )

( )( )

kJ/kg 95.20614.1581.191

kJ/kg .1415
mkPa 1

kJ 1
kPa  10000,15/kgm  00101.0

/kgm  00101.0
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⎠
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( )

kJ/kg 2.2817
MPa 15.2

kJ/kg 61.3466
pressurereheat  theC500

KkJ/kg 3988.74996.790.06492.0

kJ/kg 7.23441.239290.081.191kPa 10

KkJ/kg 3480.6
kJ/kg .83310
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kPa 2150
 

(b)  The rate of heat supply is 

 
( ) ( )[ ]

( )( ) kW 45,039=−+−=
−+−=

kJ/kg2.281761.346695.2068.3310kg/s 12
4523in hhhhmQ &&

 

(c)  The thermal efficiency is determined from 

Thus, 
( ) ( )( )

42.6%=−=−=

=−=−=

kJ/s 45,039
kJ/s 25,834

11

kJ/s ,83525kJ/kg81.1917.2344kJ/s 12

in

out
th

16out

Q
Q
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&
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10-42 A steam power plant that operates on a reheat Rankine cycle is considered. The condenser pressure, 
the net power output, and the thermal efficiency are to be determined. 
Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 
Analysis (a) From the steam tables (Tables A-4, A-5, and A-6), 

    

( )
( )( )

( )
( )( )

kJ/kg 3.3027
1.29482.335885.02.3358

?

95.0
?

KkJ/kg 2815.7
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MPa 2
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The pressure at state 6 may be determined by a trial-error approach from the steam tables or by using EES 
from the above equations: 
 P6 = 9.73 kPa,   h6 = 2463.3 kJ/kg,   
(b) Then,  

( )
( )( ) ( )

kJ/kg  59.20302.1457.189

kJ/kg  14.02
0.90/

mkPa  1
kJ 1kPa 73.912,500/kgm 0.00101

/

/kgm  001010.0

kJ/kg 57.189

in,12

3
3

121in,

3
kPa 10 @1

kPa 73.9 @1

=+=+=

=
⎟
⎟
⎠

⎞
⎜
⎜
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⋅
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f
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Cycle analysis: 
( ) ( )

kW 10,242==−=

=−=−=

=−+−=−+−=

kg2273.7)kJ/-.8kg/s)(3603 7.7()(

kJ/kg 7.227357.1893.3027

kJ/kg 8.36033.24632.33583.30275.3476

outinnet

16out

4523in

qqmW

hhq

hhhhq

&&

 

(c) The thermal efficiency is 

36.9%==−=−= 369.0
kJ/kg 3603.8
kJ/kg 2273.7
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Regenerative Rankine Cycle 

 

10-43C  Moisture content remains the same, everything else decreases. 

 

10-44C  This is a smart idea because we waste little work potential but we save a lot from the heat input.  
The extracted steam has little work potential left, and most of its energy would be part of the heat rejected 
anyway.  Therefore, by regeneration, we utilize a considerable amount of heat by sacrificing little work 
output. 

 

10-45C  In open feedwater heaters, the two fluids actually mix, but in closed feedwater heaters there is no 
mixing. 

 

10-46C  Both cycles would have the same efficiency. 

 

10-47C  To have the same thermal efficiency as the Carnot 
cycle, the cycle must receive and reject heat isothermally. 
Thus the liquid should be brought to the saturated liquid 
state at the boiler pressure isothermally, and the steam must 
be a saturated vapor at the turbine inlet.  This will require 
an infinite number of heat exchangers (feedwater heaters), 
as shown on the T-s diagram. 

 

 

 

 

 

 

Boiler 
exit 
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T
Boiler 
inlet

qin

qout
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10-48 Feedwater is heated by steam in a feedwater heater of a regenerative The required mass flow rate of 
the steam is to be determined. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential 
energy changes are negligible. 3 There are no work interactions. 4 The device is adiabatic and thus heat 
transfer is negligible. 

Properties From the steam tables (Tables A-4 through A-6 or EES), 

 h1  ≅  hf @ 70°C = 293.07 kJ/kg 

 kJ/kg 7.2789    
C160
kPa 200

2
2

2 =
⎭
⎬
⎫

°=
=

h
T
P

 

 h3 =  hf  @ 200 kPa = 504.71 kJ/kg 

Analysis  We take the mixing chamber as the system, which is a control volume since mass crosses the 
boundary. The mass and energy balances for this steady-flow system can be expressed in the rate form as 

Mass balance:   

321

outin

(steady)  0
systemoutin

  

0

mmm
mm

mmm

&&&

&&

&&&

=+
=

=Δ=−

 

Energy balance: 

     

   )(
0)peke  (since   

0

3212211

332211

outin

energies etc. potential,         
kinetic, internal,in  change of Rate

(steady)  0
system

mass and  work,heat,by  
nsferenergy tranet  of Rate

outin

hmmhmhm
WQhmhmhm

EE

EEE

&&&&

&&&&&

&&

444 3444 21
&

43421
&&

+=+
≅Δ≅Δ===+

=

=Δ=−

 

Solving for 2m& , and substituting gives 

 kg/s 0.926=
−
−

=
−
−

=
kJ/kg )7.278971.504(
kJ/kg )71.50407.293(kg/s) 10(

23

31
12 hh

hh
mm &&  

 

 

Water 
70°C 

200 kPa 
10 kg/s 

Steam 
200 kPa 
160°C 

1

2
3 

Water 
200 kPa 
sat. liq. 
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10-49E In a regenerative Rankine cycle, the closed feedwater heater with a pump as shown in the figure is 
arranged so that the water at state 5 is mixed with the water at state 2 to form a feedwater which is a 
saturated liquid. The mass flow rate of bleed steam required to operate this unit is to be determined. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential 
energy changes are negligible. 3 There are no work interactions. 4 The device is adiabatic and thus heat 
transfer is negligible. 

Properties From the steam tables (Tables A-4E through A-6E), 

Btu/lbm 46.355    
0

psia 200

Btu/lbm 0.1218    
F400

psia 160

Btu/lbm 73.321    
F350
psia 200
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6
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h
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hh
T
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Analysis  We take the entire unit as the system, which is a control volume since mass crosses the boundary. 
The energy balance for this steady-flow system can be expressed in the rate form as 

     

631inP,33311

66inP,33311

outin

energies etc. potential,         
kinetic, internal,in  change of Rate
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system

mass and  work,heat,by  
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Solving this for 3m& , 

 lbm/s 0.0782=
+−

−
=

+−
−

=
1344.046.3550.1218

73.32146.355lbm/s) 2(
)( inP,63

16
13 whh

hh
mm &&  

where  

 
Btu/lbm 1344.0

ftpsia 5.404
Btu 1psia )160200)(/lbmft 01815.0(
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1 2
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200 psia 
350°F 
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Steam 
160 psia 
400°F 

200 psia
sat. liq. 
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10-50E The closed feedwater heater of a regenerative Rankine cycle is to heat feedwater to a saturated 
liquid. The required mass flow rate of bleed steam is to be determined. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential 
energy changes are negligible. 3 There are no work interactions. 4 Heat loss from the device to the 
surroundings is negligible and thus heat transfer from the hot fluid is equal to the heat transfer to the cold 
fluid.  

Properties From the steam tables (Tables A-4E through A-6E), 

Btu/lbm 94.393    
0

psia 300

Btu/lbm 9.1257    
F500
psia 300

Btu/lbm 13.424    
0
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Btu/lbm 88.342    
F370
psia 400
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Analysis We take the heat exchanger as the system, which is a 
control volume. The mass and energy balances for this steady-flow 
system can be expressed in the rate form as 

Mass balance (for each fluid stream): 

sfw mmmmmmmmmmm &&&&&&&&&&& ====→=→=Δ=− 4321outin
(steady)  0

systemoutin and  0  

Energy balance (for the heat exchanger):  

0)peke  (since   

0

44223311

outin

energies etc. potential,         
kinetic, internal,in  change of Rate

(steady)  0
system

mass and  work,heat,by  
nsferenergy tranet  of Rate

outin

≅Δ≅Δ==+=+

=

=Δ=−

WQhmhmhmhm
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&&&&&&

&&

444 344 21
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43421
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Combining the two,       

)()( 4312 hhmhhm sfw −=− &&  

Solving for sm& :   

fws m
hh
hh

m &&
43

12

−
−

=  

Substituting, 

 lbm/s 0.0940=
−
−

= )lbm/s 1(
94.3939.1257
88.34213.424

sm&  

 

Steam 
300 psia
400°F 

 

Feedwater
400 psia 
370°F 

300 psia 
Sat. liq. 

400 psia 
Sat. liq. 
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10-51 The closed feedwater heater of a regenerative Rankine cycle is to heat feedwater to a saturated liquid. 
The required mass flow rate of bleed steam is to be determined. 

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential 
energy changes are negligible. 3 There are no work interactions. 4 Heat loss from the device to the 
surroundings is negligible and thus heat transfer from the hot fluid is equal to the heat transfer to the cold 
fluid.  

Properties From the steam tables (Tables A-4 through A-6), 

kJ/kg 3.1008    
0
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kJ/kg 26.852    
C200
kPa 4000

kPa 3000 @ 4
4

4

33
3

3

C245 @ 2
2

2

C200 @ 1
1

1

==
⎭
⎬
⎫

=
=

=+=

+=
⎭
⎬
⎫

=
=

=≅
⎭
⎬
⎫

°=
=

=≅
⎭
⎬
⎫

°=
=

°

°

f

fgf

f

f

hh
x
P

hxhh
x
P

hh
T
P

hh
T
P

 

Analysis We take the heat exchanger as the system, which is a 
control volume. The mass and energy balances for this steady-flow 
system can be expressed in the rate form as 

Mass balance (for each fluid stream): 

sfw mmmmmmmmmmm &&&&&&&&&&& ====→=→=Δ=− 4321outin
(steady)  0

systemoutin and  0  

Energy balance (for the heat exchanger):  
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0

44223311

outin
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Combining the two,       

)()( 4312 hhmhhm sfw −=− &&  

Solving for sm& :   
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−
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Substituting, 

 kg/s 0.777=
−
−

= )kg/s 6(
3.10087.2623

26.8525.1061
sm&  

Steam 
3 MPa 
x = 0.90

 

Feedwater
4 MPa 
200°C 

3 MPa 
Sat. liq. 

4 MPa 
245°C 
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10-52  A steam power plant operates on an ideal regenerative Rankine cycle with two open feedwater 
heaters. The net power output of the power plant and the thermal efficiency of the cycle are to be 
determined.  

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  

 

 

 

 

 

 

 

 

 

 

 

(a)  From the steam tables (Tables A-4, A-5, and A-6), 
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( ) ( )( )

( ) ( )( )
kJ/kg 10.35

mkPa 1
kJ 1
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The fraction of steam extracted is determined from the steady-flow energy balance equation applied to the 
feedwater heaters. Noting that 0ΔpeΔke ≅≅≅≅WQ && , 

FWH-2:     
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where y is the fraction of steam extracted from the turbine ( = & / &m m8 5 ).  Solving for y, 
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where z is the fraction of steam extracted from the turbine ( = & / &m m9 5 ) at the second stage. Solving for z, 
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 ( )( ) ( )( )
kJ/kg 2.13888.15560.2945

kJ/kg  1556.8137.752105.01373.007133.011
kJ/kg 0.294573.6808.3625

outinnet

110out

67in

=−=−=
=−−−=−−−=

=−=−=

qqw
hhzyq

hhq
 

and 

 ( )( ) MW 30.5≅=== kW 540,30kJ/kg 1388.2kg/s 22netnet wmW &&  

(b) 47.1%=−=−=
kJ/kg  2945.0
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10-53 [Also solved by EES on enclosed CD] A steam power plant operates on an ideal regenerative Rankine 
cycle with two feedwater heaters, one closed and one open. The mass flow rate of steam through the boiler 
for a net power output of 250 MW and the thermal efficiency of the cycle are to be determined.  

Assumptions 1 Steady operating conditions 
exist. 2 Kinetic and potential energy changes 
are negligible. 

Analysis  (a)  From the steam tables (Tables 
A-4, A-5, and A-6), 
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The fraction of steam extracted is determined from the steady-flow energy balance equation applied to the 
feedwater heaters. Noting that 0ΔpeΔke ≅≅≅≅WQ && , 
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where y is the fraction of steam extracted from the turbine ( 510 / mm &&= ).  Solving for y, 
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where z is the fraction of steam extracted from the turbine ( = & / &m m9 5 ) at the second stage. Solving for z, 
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10-54 EES Problem 10-53 is reconsidered. The effects of turbine and pump efficiencies on the mass flow 
rate and thermal efficiency are to be investigated. Also, the T-s diagram is to be plotted.  

Analysis The problem is solved using EES, and the solution is given below.   

 
"Input Data" 
P[8] = 12500 [kPa] 
T[8] = 550 [C] 
P[9] = 800 [kPa] 
"P_cfwh=300 [kPa]" 
P[10] = P_cfwh 
P_cond=10 [kPa] 
P[11] = P_cond 
W_dot_net=250 [MW]*Convert(MW, kW) 
Eta_turb= 100/100 "Turbine isentropic efficiency" 
Eta_turb_hp = Eta_turb "Turbine isentropic efficiency for high pressure stages" 
Eta_turb_ip = Eta_turb "Turbine isentropic efficiency for intermediate pressure stages" 
Eta_turb_lp = Eta_turb "Turbine isentropic efficiency for low pressure stages" 
Eta_pump = 100/100 "Pump isentropic efficiency" 
 
"Condenser exit pump  or Pump 1 analysis" 
 
Fluid$='Steam_IAPWS' 
P[1] = P[11] 
P[2]=P[10]  
h[1]=enthalpy(Fluid$,P=P[1],x=0) {Sat'd liquid} 
v1=volume(Fluid$,P=P[1],x=0) 
s[1]=entropy(Fluid$,P=P[1],x=0) 
T[1]=temperature(Fluid$,P=P[1],x=0) 
w_pump1_s=v1*(P[2]-P[1])"SSSF isentropic pump work assuming constant specific volume" 
w_pump1=w_pump1_s/Eta_pump "Definition of pump efficiency" 
h[1]+w_pump1= h[2]  "Steady-flow conservation of energy" 
s[2]=entropy(Fluid$,P=P[2],h=h[2]) 
T[2]=temperature(Fluid$,P=P[2],h=h[2]) 
 
"Open Feedwater Heater analysis" 
z*h[10] + y*h[7] + (1-y-z)*h[2] = 1*h[3] "Steady-flow conservation of energy" 
h[3]=enthalpy(Fluid$,P=P[3],x=0) 
T[3]=temperature(Fluid$,P=P[3],x=0) "Condensate leaves heater as sat. liquid at P[3]" 
s[3]=entropy(Fluid$,P=P[3],x=0) 
 
"Boiler condensate pump  or Pump 2 analysis" 
P[5]=P[8] 
P[4] = P[5] 
P[3]=P[10] 
v3=volume(Fluid$,P=P[3],x=0) 
w_pump2_s=v3*(P[4]-P[3])"SSSF isentropic pump work assuming constant specific volume" 
w_pump2=w_pump2_s/Eta_pump "Definition of pump efficiency" 
h[3]+w_pump2= h[4]  "Steady-flow conservation of energy" 
s[4]=entropy(Fluid$,P=P[4],h=h[4]) 
T[4]=temperature(Fluid$,P=P[4],h=h[4]) 
 
"Closed Feedwater Heater analysis" 
P[6]=P[9] 
 y*h[9] + 1*h[4] = 1*h[5] + y*h[6] "Steady-flow conservation of energy" 
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h[5]=enthalpy(Fluid$,P=P[6],x=0) "h[5] = h(T[5], P[5]) where T[5]=Tsat at P[9]" 
T[5]=temperature(Fluid$,P=P[5],h=h[5]) "Condensate leaves heater as sat. liquid at P[6]" 
s[5]=entropy(Fluid$,P=P[6],h=h[5]) 
h[6]=enthalpy(Fluid$,P=P[6],x=0) 
T[6]=temperature(Fluid$,P=P[6],x=0) "Condensate leaves heater as sat. liquid at P[6]" 
s[6]=entropy(Fluid$,P=P[6],x=0) 
 
"Trap analysis" 
P[7] = P[10] 
y*h[6] = y*h[7]  "Steady-flow conservation of energy for the trap operating as a throttle" 
T[7]=temperature(Fluid$,P=P[7],h=h[7])  
s[7]=entropy(Fluid$,P=P[7],h=h[7]) 
 
"Boiler analysis" 
q_in + h[5]=h[8]"SSSF conservation of energy for the Boiler" 
h[8]=enthalpy(Fluid$, T=T[8], P=P[8]) 
s[8]=entropy(Fluid$, T=T[8], P=P[8]) 
 
"Turbine analysis" 
ss[9]=s[8] 
hs[9]=enthalpy(Fluid$,s=ss[9],P=P[9]) 
Ts[9]=temperature(Fluid$,s=ss[9],P=P[9]) 
h[9]=h[8]-Eta_turb_hp*(h[8]-hs[9])"Definition of turbine efficiency for high pressure stages" 
T[9]=temperature(Fluid$,P=P[9],h=h[9]) 
s[9]=entropy(Fluid$,P=P[9],h=h[9]) 
ss[10]=s[8] 
hs[10]=enthalpy(Fluid$,s=ss[10],P=P[10]) 
Ts[10]=temperature(Fluid$,s=ss[10],P=P[10]) 
h[10]=h[9]-Eta_turb_ip*(h[9]-hs[10])"Definition of turbine efficiency for Intermediate pressure 
stages" 
T[10]=temperature(Fluid$,P=P[10],h=h[10]) 
s[10]=entropy(Fluid$,P=P[10],h=h[10]) 
ss[11]=s[8] 
hs[11]=enthalpy(Fluid$,s=ss[11],P=P[11]) 
Ts[11]=temperature(Fluid$,s=ss[11],P=P[11]) 
h[11]=h[10]-Eta_turb_lp*(h[10]-hs[11])"Definition of turbine efficiency for low pressure stages" 
T[11]=temperature(Fluid$,P=P[11],h=h[11]) 
s[11]=entropy(Fluid$,P=P[11],h=h[11]) 
h[8] =y*h[9] + z*h[10] + (1-y-z)*h[11] + w_turb "SSSF conservation of energy for turbine" 
 
"Condenser analysis" 
(1-y-z)*h[11]=q_out+(1-y-z)*h[1]"SSSF First Law for the Condenser" 
 
"Cycle Statistics" 
w_net=w_turb - ((1-y-z)*w_pump1+ w_pump2) 
Eta_th=w_net/q_in 
W_dot_net = m_dot * w_net 
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ηturb ηturb ηth m [kg/s] 
0.7 0.7 0.3916 231.6 

0.75 0.75 0.4045 224.3 
0.8 0.8 0.4161 218 

0.85 0.85 0.4267 212.6 
0.9 0.9 0.4363 207.9 

0.95 0.95 0.4452 203.8 
1 1 0.4535 200.1 
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10-55 An ideal regenerative Rankine cycle with a closed feedwater heater is considered. The work 
produced by the turbine, the work consumed by the pumps, and the heat added in the boiler are to be 
determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4, A-5, and A-6), 
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For an ideal closed feedwater heater, the feedwater is heated to the exit temperature of the extracted steam, 
which ideally leaves the heater as a saturated liquid at the extraction pressure. 
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An energy balance on the heat exchanger gives the fraction of steam extracted from the turbine ( 45 / mm &&= ) 
for closed feedwater heater:  
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Rearranging, 

 

 2437.0
51.7629.2851
45.25453.763

75

23 =
−
−

=
−
−

=
hh
hh

y  

Then, 

          
kJ/kg 2353

kJ/kg 3.03
kJ/kg 740.9

=−=−=

=

=−−+−=−−+−=

53.7631.3116

)7.22219.2851)(2437.01(9.28511.3116))(1(

34in

inP,

6554outT,

hhq
w

hhyhhw
 

Also, 
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10-56 An ideal regenerative Rankine cycle with a closed feedwater heater is considered. The change in 
thermal efficiency when the steam serving the closed feedwater heater is extracted at 600 kPa rather than 
1000 kPa is to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4, A-5, and A-6 or EES), 
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For an ideal closed feedwater heater, the feedwater is heated to the exit temperature of the extracted steam, 
which ideally leaves the heater as a saturated liquid at the extraction pressure. 
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An energy balance on the heat exchanger gives the fraction of steam extracted from the turbine ( 45 / mm &&= ) 
for closed feedwater heater:  
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Rearranging, 
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Also, 

 kJ/kg 4.78503.34.788inP,outT,net =−=−= www  

0.3213===
2444

4.785

in

net
th q

w
η  

When the steam serving the closed feedwater heater is extracted at 600 kPa rather than 1000 kPa, the 
thermal efficiency increases from 0.3136 to 0.3213. This is an increase of 2.5%. 
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10-57 EES The optimum bleed pressure for the open feedwater heater that maximizes the thermal 
efficiency of the cycle is to be determined by EES. 

Analysis The EES program used to solve this problem as well as the solutions are given below. 

 
"Given" 
P[4]=3000 [kPa] 
T[4]=350 [C] 
P[5]=600 [kPa] 
P[6]=20 [kPa] 
 
P[3]=P[4] 
P[2]=P[3] 
P[7]=P[5] 
P[1]=P[6] 
 
"Analysis" 
Fluid$='steam_iapws' 
 
"pump I" 
x[1]=0 
h[1]=enthalpy(Fluid$, P=P[1], x=x[1]) 
v[1]=volume(Fluid$, P=P[1], x=x[1]) 
w_p_in=v[1]*(P[2]-P[1]) 
h[2]=h[1]+w_p_in   
 
"turbine" 
h[4]=enthalpy(Fluid$, P=P[4], T=T[4])   
s[4]=entropy(Fluid$, P=P[4], T=T[4]) 
s[5]=s[4] 
h[5]=enthalpy(Fluid$, P=P[5], s=s[5])   
T[5]=temperature(Fluid$, P=P[5], s=s[5])   
x[5]=quality(Fluid$, P=P[5], s=s[5])   
s[6]=s[4] 
h[6]=enthalpy(Fluid$, P=P[6], s=s[6])   
x[6]=quality(Fluid$, P=P[6], s=s[6])   
 
"closed feedwater heater" 
x[7]=0 
h[7]=enthalpy(Fluid$, P=P[7], x=x[7]) 
T[7]=temperature(Fluid$, P=P[7], x=x[7]) 
T[3]=T[7] 
h[3]=enthalpy(Fluid$, P=P[3], T=T[3]) 
y=(h[3]-h[2])/(h[5]-h[7])  "y=m_dot_5/m_dot_4" 
 
"cycle" 
q_in=h[4]-h[3] 
w_T_out=h[4]-h[5]+(1-y)*(h[5]-h[6]) 
w_net=w_T_out-w_p_in 
Eta_th=w_net/q_in 
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P 6 [kPa] ηth 
100 0.32380 
110 0.32424 
120 0.32460 
130 0.32490 
140 0.32514 
150 0.32534 
160 0.32550 
170 0.32563 
180 0.32573 
190 0.32580 
200 0.32585 
210 0.32588 
220 0.32590 
230 0.32589 
240 0.32588 
250 0.32585 
260 0.32581 
270 0.32576 
280 0.32570 
290 0.32563 

 
 

100 140 180 220 260 300
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10-58 A regenerative Rankine cycle with a closed feedwater heater is considered. The thermal efficiency is 
to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4, A-5, and A-6 or EES), 
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For an ideal closed feedwater heater, the feedwater is heated to the exit temperature of the extracted steam, 
which ideally leaves the heater as a saturated liquid at the extraction pressure. 
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An energy balance on the heat exchanger gives the fraction of steam extracted from the turbine ( 45 / mm &&= ) 
for closed feedwater heater:  
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Rearranging, 
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10-59 A regenerative Rankine cycle with a closed feedwater heater is considered. The thermal efficiency is 
to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4, A-5, and A-6 or EES), 

 

 

 

 

 

 

 

 

 

 

 

When the liquid enters the pump 10°C cooler than a saturated liquid at the condenser pressure, the 
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/kgm 001012.0

kJ/kg 34.209
    

C501006.6010
kPa 20

3
C50 @ 1

C50 @ 1

kPa 20 @sat 1

1

=≅

=≅

⎭
⎬
⎫

°≅−=−=
=

°

°

f

fhh
TT

P
vv

 

 
kJ/kg 02.3 mkPa 1

kJ 1 kPa)203000)(/kgm 001012.0(
)(

3
3

121inp,

=
⎟
⎠

⎞
⎜
⎝

⎛

⋅
−=

−= PPw v

 

 kJ/kg 36.21202.334.209inp,12 =+=+= whh  

 

kJ/kg 7.2221)5.2357)(8357.0(42.251

8357.0
0752.7

8320.07450.6
    

kPa 20

kJ/kg 9.2851    
kPa 1000

KkJ/kg 7450.6
kJ/kg 1.3116

    
C350
kPa 3000

66

6
6

46

6

5
45

5

4

4

4

4

=+=+=

=
−

=
−

=

⎭
⎬
⎫

=
=

=
⎭
⎬
⎫

=
=

⋅=
=

⎭
⎬
⎫

°=
=

fgsfs

fg

fs
s

s

s
s

hxhh
s

ss
x

ss
P

h
ss

P

s
h

T
P

 

 kJ/kg 3.2878)9.28511.3116)(90.0(1.3116)( 5s4T45
54

54
T =−−=−−=⎯→⎯

−
−

= hhhh
hh
hh

s
ηη  

 kJ/kg 1.2311)7.22211.3116)(90.0(1.3116)( 6s4T46
64

64
T =−−=−−=⎯→⎯

−
−

= hhhh
hh
hh

s
ηη  

For an ideal closed feedwater heater, the feedwater is heated to the exit temperature of the extracted steam, 
which ideally leaves the heater as a saturated liquid at the extraction pressure. 
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An energy balance on the heat exchanger gives the fraction of steam extracted from the turbine ( 45 / mm &&= ) 
for closed feedwater heater:  
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Rearranging, 
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10-60 EES The effect of pressure drop and non-isentropic turbine on the rate of heat input is to be 
determined for a given power plant.  

Analysis The EES program used to solve this problem as well as the solutions are given below. 

 
"Given" 
P[3]=3000 [kPa] 
DELTAP_boiler=10 [kPa] 
P[4]=P[3]-DELTAP_boiler 
T[4]=350 [C] 
P[5]=1000 [kPa] 
P[6]=20 [kPa] 
eta_T=0.90 
 
P[2]=P[3] 
P[7]=P[5] 
P[1]=P[6] 
 
"Analysis" 
Fluid$='steam_iapws' 
"(a)" 
"pump I" 
x[1]=0 
h[1]=enthalpy(Fluid$, P=P[1], x=x[1]) 
v[1]=volume(Fluid$, P=P[1], x=x[1]) 
w_p_in=v[1]*(P[2]-P[1]) 
h[2]=h[1]+w_p_in   
"turbine" 
h[4]=enthalpy(Fluid$, P=P[4], T=T[4])   
s[4]=entropy(Fluid$, P=P[4], T=T[4]) 
s[5]=s[4] 
h_s[5]=enthalpy(Fluid$, P=P[5], s=s[5])   
T[5]=temperature(Fluid$, P=P[5], s=s[5])   
x_s[5]=quality(Fluid$, P=P[5], s=s[5])   
s[6]=s[4] 
h_s[6]=enthalpy(Fluid$, P=P[6], s=s[6])   
x_s[6]=quality(Fluid$, P=P[6], s=s[6])   
 
h[5]=h[4]-eta_T*(h[4]-h_s[5]) 
h[6]=h[4]-eta_T*(h[4]-h_s[6]) 
x[5]=quality(Fluid$, P=P[5], h=h[5])   
x[6]=quality(Fluid$, P=P[6], h=h[6])   
 
"closed feedwater heater" 
x[7]=0 
h[7]=enthalpy(Fluid$, P=P[7], x=x[7]) 
T[7]=temperature(Fluid$, P=P[7], x=x[7]) 
T[3]=T[7] 
h[3]=enthalpy(Fluid$, P=P[3], T=T[3]) 
y=(h[3]-h[2])/(h[5]-h[7])  "y=m_dot_5/m_dot_4" 
 
"cycle" 
q_in=h[4]-h[3] 
w_T_out=h[4]-h[5]+(1-y)*(h[5]-h[6]) 
w_net=w_T_out-w_p_in 
Eta_th=w_net/q_in 
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Solution with 10 kPa pressure drop in the boiler: 
 
DELTAP_boiler=10 [kPa]   eta_T=0.9  
Eta_th=0.2827    Fluid$='steam_iapws' 
P[3]=3000 [kPa]    P[4]=2990 [kPa] 
q_in=2352.8 [kJ/kg]   w_net=665.1 [kJ/kg] 
w_p_in=3.031 [m^3-kPa/kg]  w_T_out=668.1 [kJ/kg] 
y=0.2405 
 
 
Solution without any pressure drop in the boiler: 
 
DELTAP_boiler=0 [kPa]   eta_T=1  
Eta_th=0.3136    Fluid$='steam_iapws' 
P[3]=3000 [kPa]    P[4]=3000 [kPa] 
q_in=2352.5 [kJ/kg]   w_net=737.8 [kJ/kg] 
w_p_in=3.031 [m^3-kPa/kg]  w_T_out=740.9 [kJ/kg] 
y=0.2437 
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10-61E  A steam power plant operates on an ideal reheat-regenerative Rankine cycle with one reheater and 
two open feedwater heaters. The mass flow rate of steam through the boiler, the net power output of the 
plant, and the thermal efficiency of the cycle are to be determined. 
Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 
Analysis  
 
 
 
 
 
 
 
 
 
 
 
(a)  From the steam tables (Tables A-4E, A-5E, and A-6E), 
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The fraction of steam extracted is determined from the steady-flow energy balance equation applied to the 
feedwater heaters. Noting that 0ΔpeΔke ≅≅≅≅WQ && , 

FWH-2:       
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where y is the fraction of steam extracted from the turbine ( = & / &m m8 5 ).  Solving for y, 
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where z is the fraction of steam extracted from the turbine ( = & / &m m9 5 ) at the second stage. Solving for z, 
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outinnet

112out

91067in

=−=−=
=−−−=−−−=

=−−+−=−−+−=

qqw
hhzyq

hhyhhq
 

and 

 lbm/s 282.5=
×

==
Btu/lbm  1415.8

Btu/s 104 5

in

in

q
Q

m
&

&  

(b) ( )( ) MW 200.1=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

Btu 1
kJ 1.055

Btu/lbm 671.4lbm/s 282.5netnet wmW &&  

(c) 47.4%=−=−=
Btu/lbm 1415.8
Btu/lbm 744.4

11
in

out
th q

q
η  
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10-62 A steam power plant that operates on an ideal regenerative Rankine cycle with a closed feedwater 
heater is considered. The temperature of the steam at the inlet of the closed feedwater heater, the mass flow 
rate of the steam extracted from the turbine for the closed feedwater heater, the net power output, and the 
thermal efficiency are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis (a)  From the steam tables (Tables A-4, A-5, and A-6), 

( )

kJ/kg 85.265

43.1442.251

kJ/kg .4314
88.0
1)kPa 2012,500)(/kgm  0.001017(

/

/kgm  001017.0
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121in,
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kPa 20 @1

kPa 20 @1
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whh

PPw
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/kgm 001127.0
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MPa 1

3
MPa 1 @3

MPa 1 @33
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==

⎭
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f

fhhP
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( )

kJ/kg 25.77773.1451.762
kJ/kg 73.14

88.0/)kPa 001012,500)(/kgm 001127.0(

/

in,311

3

3113in,

=+=+=
=

−=

−=

pII

ppII

whh

PPw ηv

 

Also, h4 = h10 = h11 = 777.25 kJ/kg since the two fluid streams which are being mixed have the same 
enthalpy. 
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( )
( )( ) kJ/kg 2.24929.23479.355088.09.3550

kJ/kg 9.2347
kPa 20
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The fraction of steam extracted from the low pressure turbine for closed feedwater heater is determined 
from the steady-flow energy balance equation applied to the feedwater heater. Noting that 
& &Q W ke pe≅ ≅ ≅ ≅Δ Δ 0 , 

( )( ) ( )
1788.0)51.7621.3111()85.26525.777)(1(

1 38210

=⎯→⎯−=−−

−=−−

yyy

hhyhhy
 

The corresponding mass flow rate is 

 kg/s 4.29=== kg/s) 24)(1788.0(58 mym &&  

(c) Then, 

 ( )( ) ( )( ) kJ/kg 1.184042.2512.24921788.011
kJ/kg 7.30295.32209.355025.7775.3476

19out

6745in

=−−=−−=
=−+−=−+−=

hhyq
hhhhq

 

and 

 kW 28,550=−=−= kJ/kg)1.18407.3029)(kg/s 24()( outinnet qqmW &&  

(b) The thermal efficiency is determined from 

 39.3%==−=−= 393.0
kJ/kg 3029.7
kJ/kg 1840.1

11
in

out
th q

q
η  

 

 



 

PROPRIETARY MATERIAL. © 2008 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to teachers and 
educators for course preparation.  If you are a student using this Manual, you are using it without permission. 

10-61

 

Second-Law Analysis of Vapor Power Cycles 

 

10-63C In the simple ideal Rankine cycle, irreversibilities occur during heat addition and heat rejection 
processes in the boiler and the condenser, respectively, and both are due to temperature difference. 
Therefore, the irreversibilities can be decreased and thus the 2nd law efficiency can be increased by 
minimizing the temperature differences during heat transfer in the boiler and the condenser. One way of 
doing that is regeneration.  

 

 

 

10-64  The exergy destruction associated with the heat rejection process in Prob. 10-25 is to be determined 
for the specified source and sink temperatures. The exergy of the steam at the boiler exit is also to be 
determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis From Problem 10-25, 

 

kJ/kg 8.1961
kJ/kg 4.3411

KkJ/kg 8000.6

KkJ/kg 6492.0

out

3

43

kPa10@21

=
=

⋅==

⋅===

q
h

ss

sss f

 

The exergy destruction associated with the heat rejection process is 

 ( ) kJ/kg 178.0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=

K 290
kJ/kg 1961.8

8000.66492.0K 29041,
41041destroyed,

R

R

T
q

ssTx  

The exergy of the steam at the boiler exit is simply the flow exergy, 

 ( ) ( )
( ) ( )03003

0
3

02
3

030033 2ssThh
qzssThh

−−−=
++−−−=

Vψ  

where  

( )
( ) KkJ/kg 2533.0

kJ/kg 95.71

K 290 @ kPa 100,K 290@0

K 290 @ kPa 100 ,K 290@0

⋅=≅=
=≅=

f

f

sss
hhh

 

Thus,  

( ) ( )( ) kJ/kg  1440.9=⋅−−−=ψ KkJ/kg 2532.0800.6K 290kJ/kg 95.714.34113  
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10-65E The exergy destructions associated with each of the processes of the Rankine cycle described in 
Prob. 10-15E are to be determined for the specified source and sink temperatures. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis From Problem 10-15E, 

 

Btu/lbm 38.98202.1384.1120
Btu/lbm 5.149052.1390.1630

RBtu/lbm 8075.1

RBtu/lbm 24739.0

24out

23in

43

psia 6 @ 21
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⋅==

⋅===

hhq
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sss f

 

The exergy destruction during a process of a stream from 
an inlet state to exit state is given by  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−==

sink

out

source

in
0gen0dest T

q
T

q
ssTsTx ie  

Application of this equation for each process of the cycle gives 

     

Btu/lbm 202.3
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Processes 1-2 and 3-4 are isentropic, and thus  
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10-66 The exergy destructions associated with each of the processes of the Rankine cycle described in 
Prob. 10-17 are to be determined for the specified source and sink temperatures. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis From Problem 10-17, 

 

kJ/kg 3.226242.2517.2513
kJ/kg 8.365047.2553.3906

KkJ/kg 6214.7

KkJ/kg 8320.0

14out
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The exergy destruction during a process of a stream from 
an inlet state to exit state is given by  

 ⎟⎟
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Application of this equation for each process of the cycle gives 
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Processes 1-2 and 3-4 are isentropic, and thus  
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10-67E The exergy destructions associated with each of the processes of the ideal reheat Rankine cycle 
described in Prob. 10-36E are to be determined for the specified source and sink temperatures. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis From Problem 10-36E, 

 

Btu/lbm 7.909
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The exergy destruction during a process of a stream from 
an inlet state to exit state is given by  
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Application of this equation for each process of the cycle gives 
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Processes 1-2, 3-4, and 5-6 are isentropic, and thus,  
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10-68  The exergy destructions associated with each of the processes of the reheat Rankine cycle described 
in Prob. 10-34 are to be determined for the specified source and sink temperatures. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis From Problem 10-34, 
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Processes 1-2, 3-4, and 5-6 are isentropic. Thus, i12 = i34 = i56 = 0.  Also, 
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10-69 EES  Problem 10-68 is reconsidered. The problem is to be solved by the diagram window data entry 
feature of EES by including the effects of the turbine and pump efficiencies. Also, the T-s diagram is to be 
plotted. 

Analysis The problem is solved using EES, and the solution is given below.   

 
function x6$(x6) "this function returns a string to indicate the state of steam at point 6" 
 x6$='' 
 if (x6>1) then x6$='(superheated)' 
 if (x6<0) then x6$='(subcooled)' 
end 
"Input Data - from diagram window" 
{P[6] = 20 [kPa] 
P[3] = 8000 [kPa] 
T[3] = 500 [C] 
P[4] = 3000 [kPa] 
T[5] = 500 [C] 
Eta_t = 100/100 "Turbine isentropic efficiency" 
Eta_p = 100/100 "Pump isentropic efficiency"} 
"Data for the irreversibility calculations:" 
T_o = 300 [K] 
T_R_L = 300 [K] 
T_R_H = 1800 [K] 
"Pump analysis" 
Fluid$='Steam_IAPWS' 
P[1] = P[6] 
P[2]=P[3] 
x[1]=0  "Sat'd liquid" 
h[1]=enthalpy(Fluid$,P=P[1],x=x[1]) 
v[1]=volume(Fluid$,P=P[1],x=x[1]) 
s[1]=entropy(Fluid$,P=P[1],x=x[1]) 
T[1]=temperature(Fluid$,P=P[1],x=x[1]) 
W_p_s=v[1]*(P[2]-P[1])"SSSF isentropic pump work assuming constant specific volume" 
W_p=W_p_s/Eta_p   
h[2]=h[1]+W_p   "SSSF First Law for the pump" 
v[2]=volume(Fluid$,P=P[2],h=h[2]) 
s[2]=entropy(Fluid$,P=P[2],h=h[2]) 
T[2]=temperature(Fluid$,P=P[2],h=h[2]) 
"High Pressure Turbine analysis" 
h[3]=enthalpy(Fluid$,T=T[3],P=P[3]) 
s[3]=entropy(Fluid$,T=T[3],P=P[3]) 
v[3]=volume(Fluid$,T=T[3],P=P[3]) 
s_s[4]=s[3] 
hs[4]=enthalpy(Fluid$,s=s_s[4],P=P[4]) 
Ts[4]=temperature(Fluid$,s=s_s[4],P=P[4]) 
Eta_t=(h[3]-h[4])/(h[3]-hs[4])"Definition of turbine efficiency" 
T[4]=temperature(Fluid$,P=P[4],h=h[4]) 
s[4]=entropy(Fluid$,T=T[4],P=P[4]) 
v[4]=volume(Fluid$,s=s[4],P=P[4]) 
h[3] =W_t_hp+h[4]"SSSF First Law for the high pressure turbine" 
"Low Pressure Turbine analysis" 
P[5]=P[4] 
s[5]=entropy(Fluid$,T=T[5],P=P[5]) 
h[5]=enthalpy(Fluid$,T=T[5],P=P[5]) 
s_s[6]=s[5] 
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hs[6]=enthalpy(Fluid$,s=s_s[6],P=P[6]) 
Ts[6]=temperature(Fluid$,s=s_s[6],P=P[6]) 
vs[6]=volume(Fluid$,s=s_s[6],P=P[6]) 
Eta_t=(h[5]-h[6])/(h[5]-hs[6])"Definition of turbine efficiency" 
h[5]=W_t_lp+h[6]"SSSF First Law for the low pressure turbine" 
x[6]=QUALITY(Fluid$,h=h[6],P=P[6]) 
"Boiler analysis" 
Q_in + h[2]+h[4]=h[3]+h[5]"SSSF First Law for the Boiler" 
"Condenser analysis" 
h[6]=Q_out+h[1]"SSSF First Law for the Condenser" 
T[6]=temperature(Fluid$,h=h[6],P=P[6]) 
s[6]=entropy(Fluid$,h=h[6],P=P[6]) 
x6s$=x6$(x[6]) 
"Cycle Statistics" 
W_net=W_t_hp+W_t_lp-W_p 
Eff=W_net/Q_in 
"The irreversibilities (or exergy destruction) for each of the processes are:" 
q_R_23 = - (h[3] - h[2]) "Heat transfer for the high temperature reservoir to process 2-3" 
i_23 = T_o*(s[3] -s[2] + q_R_23/T_R_H) 
q_R_45 = - (h[5] - h[4]) "Heat transfer for the high temperature reservoir to process 4-5" 
i_45 = T_o*(s[5] -s[4] + q_R_45/T_R_H) 
q_R_61 =  (h[6] - h[1]) "Heat transfer to the low temperature reservoir in process 6-1" 
i_61 = T_o*(s[1] -s[6] + q_R_61/T_R_L) 
i_34 = T_o*(s[4] -s[3])  
i_56 = T_o*(s[6] -s[5])  
i_12 = T_o*(s[2] -s[1]) 
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SOLUTION 
 
Eff=0.389  
Eta_p=1  
Eta_t=1  
Fluid$='Steam_IAPWS' 
h[1]=251.4 [kJ/kg] 
h[2]=259.5 [kJ/kg] 
h[3]=3400 [kJ/kg] 
h[4]=3105 [kJ/kg] 
h[5]=3457 [kJ/kg] 
h[6]=2385 [kJ/kg] 
hs[4]=3105 [kJ/kg] 
hs[6]=2385 [kJ/kg] 
i_12=0.012 [kJ/kg] 
i_23=1245.038 [kJ/kg] 
i_34=-0.000 [kJ/kg] 
i_45=94.028 [kJ/kg] 
i_56=0.000 [kJ/kg] 
i_61=212.659 [kJ/kg] 
P[1]=20 [kPa] 
P[2]=8000 [kPa] 
P[3]=8000 [kPa] 
P[4]=3000 [kPa] 
P[5]=3000 [kPa] 
P[6]=20 [kPa] 
Q_in=3493 [kJ/kg] 
Q_out=2134 [kJ/kg] 
q_R_23=-3140 [kJ/kg] 
q_R_45=-352.5 [kJ/kg] 
q_R_61=2134 [kJ/kg] 

s[1]=0.832 [kJ/kg-K] 
s[2]=0.8321 [kJ/kg-K] 
s[3]=6.727 [kJ/kg-K] 
s[4]=6.727 [kJ/kg-K] 
s[5]=7.236 [kJ/kg-K] 
s[6]=7.236 [kJ/kg-K] 
s_s[4]=6.727 [kJ/kg-K] 
s_s[6]=7.236 [kJ/kg-K] 
T[1]=60.06 [C] 
T[2]=60.4 [C] 
T[3]=500 [C] 
T[4]=345.2 [C] 
T[5]=500 [C] 
T[6]=60.06 [C] 
Ts[4]=345.2 [C] 
Ts[6]=60.06 [C] 
T_o=300 [K] 
T_R_H=1800 [K] 
T_R_L=300 [K] 
v[1]=0.001017 [m^3/kg] 
v[2]=0.001014 [m^3/kg] 
v[3]=0.04177 [m^3/kg] 
v[4]=0.08968 [m^3/kg] 
vs[6]=6.922 [m^3/kg] 
W_net=1359 [kJ/kg] 
W_p=8.117 [kJ/kg] 
W_p_s=8.117 [kJ/kg] 
W_t_hp=294.8 [kJ/kg] 
W_t_lp=1072 [kJ/kg] 
x6s$='' 
x[1]=0  
x[6]=0.9051
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10-70 A single-flash geothermal power plant uses hot geothermal water at 230ºC as the heat source. The 
power output from the turbine, the thermal efficiency of the plant, the exergy of the geothermal liquid at the 
exit of the flash chamber, and the exergy destructions and exergy efficiencies for the flash chamber, the 
turbine, and the entire plant are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis (a) We use properties of water for 
geothermal water (Tables A-4, A-5, and A-6) 

   

kJ/kg.K 6841.2
1661.0

kJ/kg 14.990
kPa 500
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0
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6

6

6

6

⋅=
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⎭
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=
=

s
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x
P

  

   kg/s 81.19119.38230316 =−=−= mmm &&&  

The power output from the turbine is 

kW 10,842=−=−= kJ/kg)3.24648.1kJ/kg)(274 38.19()( 433T hhmW &&  

We use saturated liquid state at the standard temperature for dead state properties 

 
kJ/kg 3672.0
kJ/kg 83.104

0
C25

0

0

0

0

=
=

⎭
⎬
⎫

=
°=

s
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x
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kW 622,203kJ/kg)83.104.14kJ/kg)(990 230()( 011in =−=−= hhmE &&  

 5.3%==== 0.0532
622,203

842,10

in

outT,
th E

W
&

&
η  

(b) The specific exergies at various states are 

     kJ/kg 53.216kJ/kg.K)3672.0K)(2.6100 (298kJ/kg)83.104(990.14)( 010011 =−−−=−−−= ssThhψ  

     kJ/kg 44.194kJ/kg.K)3672.0K)(2.6841 (298kJ/kg)83.104(990.14)( 020022 =−−−=−−−= ssThhψ  

     kJ/kg 10.719kJ/kg.K)3672.0K)(6.8207 (298kJ/kg)83.104(2748.1)( 030033 =−−−=−−−= ssThhψ  

     kJ/kg 05.151kJ/kg.K)3672.0K)(7.7739 (298kJ/kg)83.104(2464.3)( 040044 =−−−=−−−= ssThhψ  

     kJ/kg 97.89kJ/kg.K)3672.0K)(1.8604 (298kJ/kg)83.104(640.09)( 060066 =−−−=−−−= ssThhψ  

production
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The exergy of geothermal water at state 6 is 

 kW 17,257=== kJ/kg) 7kg/s)(89.9 .81191(666 ψmX &&  

(c) Flash chamber: 

kW 5080=−=−= kJ/kg)44.19453kg/s)(216. 230()( 211FC dest, ψψmX &&  

89.8%==== 0.898
53.216
44.194

1

2
FCII, ψ

ψ
η  

(d) Turbine: 

kW 10,854=−=−−= kW 10,842-kJ/kg)05.15110kg/s)(719. 19.38()( T433Tdest, WmX &&& ψψ  

50.0%==
−

=
−

= 0.500
)kJ/kg05.15110kg/s)(719. 19.38(

kW 842,10
)( 433

T
TII, ψψ

η
m

W
&

&
 

(e) Plant: 

kW 802,49kJ/kg) 53kg/s)(216. 230(11Plantin, === ψmX &&  

kW 38,960=−=−= 842,10802,49TPlantin,Plantdest, WXX &&&  

21.8%==== 0.2177
kW 802,49
kW 842,10

Plantin,

T
PlantII, X

W
&

&
η  
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Cogeneration 

 

10-71C  The utilization factor of a cogeneration plant is the ratio of the energy utilized for a useful purpose 
to the total energy supplied.  It could be unity for a plant that does not produce any power. 

 

10-72C  No.  A cogeneration plant may involve throttling, friction, and heat transfer through a finite 
temperature difference, and still have a utilization factor of unity. 

 

10-73C  Yes, if the cycle involves no irreversibilities such as throttling, friction, and heat transfer through a 
finite temperature difference. 

 

10-74C  Cogeneration is the production of more than one useful form of energy from the same energy 
source. Regeneration is the transfer of heat from the working fluid at some stage to the working fluid at 
some other stage. 
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10-75 A cogeneration plant is to generate power and process heat. Part of the steam extracted from the 
turbine at a relatively high pressure is used for process heating. The net power produced and the utilization 
factor of the plant are to be determined. 
Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 
Analysis  From the steam tables (Tables A-4, A-5, and A-6), 

( )
( )( )
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kJ/kg 4.3411
C500

MPa 7
6

6

6

6
⋅=

=

⎭
⎬
⎫

°=
=

s
h

T
P

 

( )( ) kJ/kg 6.21531.23928201.081.191
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Then, 

 

( ) ( )
( )( ) ( )( )

( )( ) ( )( )
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=+=+=
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6.210077,33
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Also, ( ) ( )( ) kW 782,15kJ/kg 38.6706.2774kg/s 7.5377process =−=−= hhmQ &&  
 

( ) ( )( ) kW 788,9247.3184.3411kg/s 30565in =−=−= hhmQ &&  
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10-76E  A large food-processing plant requires steam at a relatively high pressure, which is extracted from 
the turbine of a cogeneration plant. The rate of heat transfer to the boiler and the power output of the 
cogeneration plant are to be determined. 
Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 
Analysis  
(a)  From the steam tables (Tables A-4E, A-5E, and A-6E), 
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Then,  ( ) ( )( ) Btu/s 6667=−=−= Btu/lbm72.1722.1506lbm/s 5565in hhmQ &&  
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10-77  A cogeneration plant has two modes of operation. In the first mode, all the steam leaving the turbine 
at a relatively high pressure is routed to the process heater. In the second mode, 60 percent of the steam is 
routed to the process heater and remaining is expanded to the condenser pressure. The power produced and 
the rate at which process heat is supplied in the first mode, and the power produced and the rate of process 
heat supplied in the second mode are to be determined. 
Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 
Analysis (a)  From the steam tables (Tables A-4, A-5, and A-6), 
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When the entire steam is routed to the process heater, 
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(b) When only 60% of the steam is routed to the process heater, 
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10-78  A cogeneration plant modified with regeneration is to generate power and process heat. The mass 
flow rate of steam through the boiler for a net power output of 15 MW is to be determined. 
Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis    

From the steam tables (Tables A-4, A-5, and A-6), 

( )
( )( )

( )
( )( )

kJ/kg 73.61007.666.604
kJ/kg 07.6

mkPa 1
kJ 1kPa 4006000/kgm  0.001084

/kgm 001084.0

kJ/kg 66.604

kJ/kg 20.19239.081.191
kJ/kg 0.39

mkPa 1
kJ 1kPa 10400/kgm  0.00101

/kgm  00101.0
kJ/kg 81.191

inpII,45

3
3

454inpII,

3
MPa 4.0 @ 4

MPa 4.0 @ 943

inpI,12

3
3

121inpI,

3
kPa 10 @ 1

kPa 10 @ 1

=+=+=
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
−=

−=

==

====

=+=+=
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
−=

−=

==

==

whh

PPw

hhhh

whh

PPw

hh

f

f

f

f

v

vv

v

vv

 

( )( )

( )( ) kJ/kg 7.21281.23928097.081.191

8097.0
4996.7

6492.07219.6
kPa 10

kJ/kg 7.26654.21339661.066.604

9661.0
1191.5

7765.17219.6
MPa 4.0

KkJ/kg 7219.6
kJ/kg 9.3302

C450
MPa 6

88

8
8

68

8

77

7
7

67

7

6

6

6

6

=+=+=

=
−

=
−

=

⎭
⎬
⎫

=
=

=+=+=

=
−

=
−

=

⎭
⎬
⎫

=
=

⋅=
=

⎭
⎬
⎫

°=
=

fgf

fg

f

fgf

fg

f

hxhh
s

ss
x

ss
P

hxhh
s

ss
x

ss
P

s
h

T
P

 

Then, per kg of steam flowing through the boiler, we have 
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10-79 EES Problem 10-78 is reconsidered. The effect of the extraction pressure for removing steam from 
the turbine to be used for the process heater and open feedwater heater on the required mass flow rate is to 
be investigated.  

Analysis The problem is solved using EES, and the solution is given below.   

 
"Input Data" 
y = 0.6 "fraction of steam extracted from turbine for feedwater heater and process heater" 
P[6] = 6000 [kPa] 
T[6] = 450 [C] 
P_extract=400 [kPa] 
P[7] = P_extract 
P_cond=10 [kPa] 
P[8] = P_cond 
W_dot_net=15 [MW]*Convert(MW, kW) 
Eta_turb= 100/100 "Turbine isentropic efficiency" 
Eta_pump = 100/100 "Pump isentropic efficiency" 
P[1] = P[8] 
P[2]=P[7]  
P[3]=P[7] 
P[4] = P[7] 
P[5]=P[6] 
P[9] = P[7] 
 
"Condenser exit pump  or Pump 1 analysis" 
Fluid$='Steam_IAPWS' 
 
h[1]=enthalpy(Fluid$,P=P[1],x=0) {Sat'd liquid} 
v1=volume(Fluid$,P=P[1],x=0) 
s[1]=entropy(Fluid$,P=P[1],x=0) 
T[1]=temperature(Fluid$,P=P[1],x=0) 
w_pump1_s=v1*(P[2]-P[1])"SSSF isentropic pump work assuming constant specific volume" 
w_pump1=w_pump1_s/Eta_pump "Definition of pump efficiency" 
h[1]+w_pump1= h[2]  "Steady-flow conservation of energy" 
s[2]=entropy(Fluid$,P=P[2],h=h[2]) 
T[2]=temperature(Fluid$,P=P[2],h=h[2]) 
 
"Open Feedwater Heater analysis:" 
z*h[7]  + (1- y)*h[2] = (1- y + z)*h[3] "Steady-flow conservation of energy" 
h[3]=enthalpy(Fluid$,P=P[3],x=0) 
T[3]=temperature(Fluid$,P=P[3],x=0) "Condensate leaves heater as sat. liquid at P[3]" 
s[3]=entropy(Fluid$,P=P[3],x=0) 
 
"Process heater analysis:" 
(y - z)*h[7]  = q_process + (y - z)*h[9] "Steady-flow conservation of energy" 
Q_dot_process = m_dot*(y - z)*q_process"[kW]" 
h[9]=enthalpy(Fluid$,P=P[9],x=0) 
T[9]=temperature(Fluid$,P=P[9],x=0) "Condensate leaves heater as sat. liquid at P[3]" 
s[9]=entropy(Fluid$,P=P[9],x=0) 
 
"Mixing chamber at 3, 4, and 9:" 
(y-z)*h[9]  + (1-y+z)*h[3] = 1*h[4] "Steady-flow conservation of energy" 
T[4]=temperature(Fluid$,P=P[4],h=h[4]) "Condensate leaves heater as sat. liquid at P[3]" 
s[4]=entropy(Fluid$,P=P[4],h=h[4]) 
 
"Boiler condensate pump  or Pump 2 analysis" 
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v4=volume(Fluid$,P=P[4],x=0) 
w_pump2_s=v4*(P[5]-P[4])"SSSF isentropic pump work assuming constant specific volume" 
w_pump2=w_pump2_s/Eta_pump "Definition of pump efficiency" 
h[4]+w_pump2= h[5]  "Steady-flow conservation of energy" 
s[5]=entropy(Fluid$,P=P[5],h=h[5]) 
T[5]=temperature(Fluid$,P=P[5],h=h[5]) 
 
"Boiler analysis" 
q_in + h[5]=h[6]"SSSF conservation of energy for the Boiler" 
h[6]=enthalpy(Fluid$, T=T[6], P=P[6]) 
s[6]=entropy(Fluid$, T=T[6], P=P[6]) 
 
"Turbine analysis" 
ss[7]=s[6] 
hs[7]=enthalpy(Fluid$,s=ss[7],P=P[7]) 
Ts[7]=temperature(Fluid$,s=ss[7],P=P[7]) 
h[7]=h[6]-Eta_turb*(h[6]-hs[7])"Definition of turbine efficiency for high pressure stages" 
T[7]=temperature(Fluid$,P=P[7],h=h[7]) 
s[7]=entropy(Fluid$,P=P[7],h=h[7]) 
ss[8]=s[7] 
hs[8]=enthalpy(Fluid$,s=ss[8],P=P[8]) 
Ts[8]=temperature(Fluid$,s=ss[8],P=P[8]) 
h[8]=h[7]-Eta_turb*(h[7]-hs[8])"Definition of turbine efficiency for low pressure stages" 
T[8]=temperature(Fluid$,P=P[8],h=h[8]) 
s[8]=entropy(Fluid$,P=P[8],h=h[8]) 
h[6] =y*h[7] + (1- y)*h[8] + w_turb "SSSF conservation of energy for turbine" 
 
"Condenser analysis" 
(1- y)*h[8]=q_out+(1- y)*h[1]"SSSF First Law for the Condenser" 
 
"Cycle Statistics" 
w_net=w_turb - ((1- y)*w_pump1+ w_pump2) 
Eta_th=w_net/q_in 
W_dot_net = m_dot * w_net 
 
 

Pextract 
[kPa] 

ηth m 
[kg/s] 

Qprocess 
[kW] 

100 0.3413 15.26 9508 
200 0.3284 16.36 9696 
300 0.3203 17.12 9806 
400 0.3142 17.74 9882 
500 0.3092 18.26 9939 
600 0.305 18.72 9984 
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10-80E  A cogeneration plant is to generate power while meeting the process steam requirements for a 
certain industrial application. The net power produced, the rate of process heat supply, and the utilization 
factor of this plant are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  

(a)  From the steam tables (Tables A-4E, A-5E, and A-6E), 

Btu/lbm 5.1229
psia 120

RBtu/lbm 6348.1
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−=

−=
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755net hhmW &&  

(b)  

( )( ) ( )( ) ( )( )
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−= ∑∑
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(c)  εu = 1  since all the energy is utilized. 
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10-81 A cogeneration plant is to generate power and process heat. Part of the steam extracted from the 
turbine at a relatively high pressure is used for process heating. The mass flow rate of steam that must be 
supplied by the boiler, the net power produced, and the utilization factor of the plant are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

 

 

 

 

 

 

 

 

 

 

 

Analysis  From the steam tables (Tables A-4, A-5, and A-6), 
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This is one-fourth of the mass flowing through the boiler. Thus, the mass flow rate of steam that must be 
supplied by the boiler becomes 

 kg/s 16.35=== kg/s) 4.088(44 76 mm &&  

(b) Cycle analysis: 
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Combined Gas-Vapor Power Cycles 

 

10-82C  The energy source of the steam is the waste energy of the exhausted combustion gases. 

 

10-83C  Because the combined gas-steam cycle takes advantage of the desirable characteristics of the gas 
cycle at high temperature, and those of steam cycle at low temperature, and combines them.  The result is a 
cycle that is more efficient than either cycle executed operated alone. 
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10-84 [Also solved by EES on enclosed CD] A 450-MW combined gas-steam power plant is considered. 
The topping cycle is a gas-turbine cycle and the bottoming cycle is an ideal Rankine cycle with an open 
feedwater heater. The mass flow rate of air to steam, the required rate of heat input in the combustion 
chamber, and the thermal efficiency of the combined cycle are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 3 
Air is an ideal gas with variable specific heats. 

Analysis (a)  The analysis of gas 
cycle yields (Table A-17) 
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From the steam tables (Tables A-4, A-5, A-6), 

 
( )

( )( )

kJ/kg 01.25259.042.251
kJ/kg 0.59

mkPa 1
kJ 1

kPa 20600/kgm  0.001017

/kgm  001017.0
kJ/kg 42.251

inpI,12

3
3

121inpI,

3
kPa 20 @ 1

kPa 20 @ 1

=+=+=
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
−=

−=

==
==

whh

PPw

hh

f

f

v

vv

 

 
( )

( )( )

kJ/kg 53.67815.838.670
kJ/kg 8.15

mkPa 1
kJ 1kPa 6008,000/kgm 0.001101

/kgm  001101.0
kJ/kg 38.670

inpI,34

3
3

343inpII,

3
MPa 6.0 @ 3

MPa 6.0 @ 3

=+=+=
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
−=

−=

==
==

whh

PPw

hh

f

f

v

vv

 

 
( )( )

( )( ) kJ/kg 2.20955.23577821.042.251

7821.0
0752.7

8320.03658.6
kPa 20

kJ/kg 1.25868.20859185.038.670

9185.0
8285.4

9308.13658.6
MPa 6.0

KkJ/kg 3658.6
kJ/kg 4.3139

C400
MPa 8

77

7
7

57

7

66

6
6

56

6

5

5

5

5

=+=+=

=
−

=
−

=

⎭
⎬
⎫

=
=

=+=+=

=
−

=
−

=

⎭
⎬
⎫

=
=

⋅=
=

⎭
⎬
⎫

°=
=

fgf

fg

f

fgf

fg

f

hxhh
s

ss
x

ss
P

hxhh
s

ss
x

ss
P

s
h

T
P

 

Noting that 0ΔpeΔke ≅≅≅≅WQ && for the heat exchanger, the steady-flow energy balance equation yields 
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(b)  Noting that & &Q W ke pe≅ ≅ ≅ ≅Δ Δ 0 for the open FWH, the steady-flow energy balance equation yields 
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The net work output per unit mass of gas is 
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10-85 EES  Problem 10-84 is reconsidered. The effect of the gas cycle pressure ratio on the ratio of gas 
flow rate to steam flow rate and cycle thermal efficiency is to be investigated. 

Analysis The problem is solved using EES, and the solution is given below.   

 
"Input data" 
T[8] = 300 [K] "Gas compressor inlet" 
P[8] = 14.7 [kPa] "Assumed air inlet pressure" 
"Pratio = 14" "Pressure ratio for gas compressor" 
T[10] = 1400 [K]  "Gas turbine inlet" 
T[12] = 460 [K] "Gas exit temperature from Gas-to-steam heat exchanger " 
P[12] = P[8] "Assumed air exit pressure" 
W_dot_net=450 [MW] 
Eta_comp = 1.0 
Eta_gas_turb = 1.0 
Eta_pump = 1.0 
Eta_steam_turb = 1.0 
P[5] = 8000 [kPa]  "Steam turbine inlet" 
T[5] =(400+273) "[K]"  "Steam turbine inlet" 
P[6] = 600 [kPa] "Extraction pressure for steam open feedwater heater" 
P[7] = 20 [kPa] "Steam condenser pressure" 
 
"GAS POWER CYCLE ANALYSIS" 
 
"Gas Compressor anaysis" 
s[8]=ENTROPY(Air,T=T[8],P=P[8]) 
ss9=s[8] "For the ideal case the entropies are constant across the compressor" 
P[9] = Pratio*P[8] 
Ts9=temperature(Air,s=ss9,P=P[9])"Ts9 is the isentropic value of T[9] at compressor exit" 
Eta_comp = w_gas_comp_isen/w_gas_comp "compressor adiabatic efficiency, w_comp > 
w_comp_isen" 
h[8] + w_gas_comp_isen =hs9"SSSF conservation of energy for the isentropic compressor, 
assuming: adiabatic, ke=pe=0 per unit gas mass flow rate in kg/s" 
h[8]=ENTHALPY(Air,T=T[8]) 
hs9=ENTHALPY(Air,T=Ts9) 
h[8] + w_gas_comp = h[9]"SSSF conservation of energy for the actual compressor, assuming: 
adiabatic, ke=pe=0" 
T[9]=temperature(Air,h=h[9]) 
s[9]=ENTROPY(Air,T=T[9],P=P[9]) 
 
"Gas Cycle External heat exchanger analysis" 
h[9] + q_in = h[10]"SSSF conservation of energy for the external heat exchanger, assuming W=0, 
ke=pe=0" 
h[10]=ENTHALPY(Air,T=T[10]) 
P[10]=P[9] "Assume process 9-10 is SSSF constant pressure" 
Q_dot_in"MW"*1000"kW/MW"=m_dot_gas*q_in 
 
"Gas Turbine analysis" 
s[10]=ENTROPY(Air,T=T[10],P=P[10]) 
ss11=s[10] "For the ideal case the entropies are constant across the turbine" 
P[11] = P[10] /Pratio 
Ts11=temperature(Air,s=ss11,P=P[11])"Ts11 is the isentropic value of T[11] at gas turbine exit" 
Eta_gas_turb = w_gas_turb /w_gas_turb_isen "gas turbine adiabatic efficiency, w_gas_turb_isen 
> w_gas_turb" 
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h[10] = w_gas_turb_isen + hs11"SSSF conservation of energy for the isentropic gas turbine, 
assuming: adiabatic, ke=pe=0" 
hs11=ENTHALPY(Air,T=Ts11) 
h[10] = w_gas_turb + h[11]"SSSF conservation of energy for the actual gas turbine, assuming: 
adiabatic, ke=pe=0" 
T[11]=temperature(Air,h=h[11]) 
s[11]=ENTROPY(Air,T=T[11],P=P[11]) 
 
"Gas-to-Steam Heat Exchanger" 
"SSSF conservation of energy for the gas-to-steam heat exchanger, assuming: adiabatic,  
W=0, ke=pe=0"  
m_dot_gas*h[11] + m_dot_steam*h[4] = m_dot_gas*h[12] + m_dot_steam*h[5] 
h[12]=ENTHALPY(Air, T=T[12]) 
s[12]=ENTROPY(Air,T=T[12],P=P[12]) 
 
"STEAM CYCLE ANALYSIS" 
"Steam Condenser exit pump  or Pump 1 analysis" 
Fluid$='Steam_IAPWS' 
P[1] = P[7] 
P[2]=P[6]  
h[1]=enthalpy(Fluid$,P=P[1],x=0) {Saturated liquid} 
v1=volume(Fluid$,P=P[1],x=0) 
s[1]=entropy(Fluid$,P=P[1],x=0) 
T[1]=temperature(Fluid$,P=P[1],x=0) 
w_pump1_s=v1*(P[2]-P[1])"SSSF isentropic pump work assuming constant specific volume" 
w_pump1=w_pump1_s/Eta_pump "Definition of pump efficiency" 
h[1]+w_pump1= h[2]  "Steady-flow conservation of energy" 
s[2]=entropy(Fluid$,P=P[2],h=h[2]) 
T[2]=temperature(Fluid$,P=P[2],h=h[2]) 
"Open Feedwater Heater analysis" 
y*h[6] + (1-y)*h[2] = 1*h[3] "Steady-flow conservation of energy" 
P[3]=P[6] 
h[3]=enthalpy(Fluid$,P=P[3],x=0) "Condensate leaves heater as sat. liquid at P[3]" 
T[3]=temperature(Fluid$,P=P[3],x=0)  
s[3]=entropy(Fluid$,P=P[3],x=0) 
"Boiler condensate pump  or Pump 2 analysis" 
P[4] = P[5] 
v3=volume(Fluid$,P=P[3],x=0) 
w_pump2_s=v3*(P[4]-P[3])"SSSF isentropic pump work assuming constant specific volume" 
w_pump2=w_pump2_s/Eta_pump "Definition of pump efficiency" 
h[3]+w_pump2= h[4]  "Steady-flow conservation of energy" 
s[4]=entropy(Fluid$,P=P[4],h=h[4]) 
T[4]=temperature(Fluid$,P=P[4],h=h[4]) 
w_steam_pumps = (1-y)*w_pump1+ w_pump2 "Total steam pump work input/ mass steam" 
"Steam Turbine analysis" 
h[5]=enthalpy(Fluid$,T=T[5],P=P[5])  
s[5]=entropy(Fluid$,P=P[5],T=T[5]) 
ss6=s[5] 
hs6=enthalpy(Fluid$,s=ss6,P=P[6]) 
Ts6=temperature(Fluid$,s=ss6,P=P[6]) 
h[6]=h[5]-Eta_steam_turb*(h[5]-hs6)"Definition of steam turbine efficiency" 
T[6]=temperature(Fluid$,P=P[6],h=h[6]) 
s[6]=entropy(Fluid$,P=P[6],h=h[6]) 
ss7=s[5] 
hs7=enthalpy(Fluid$,s=ss7,P=P[7]) 
Ts7=temperature(Fluid$,s=ss7,P=P[7]) 
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h[7]=h[5]-Eta_steam_turb*(h[5]-hs7)"Definition of steam turbine efficiency" 
T[7]=temperature(Fluid$,P=P[7],h=h[7]) 
s[7]=entropy(Fluid$,P=P[7],h=h[7]) 
"SSSF conservation of energy for the steam turbine: adiabatic, neglect ke and pe" 
h[5] = w_steam_turb + y*h[6] +(1-y)*h[7] 
"Steam Condenser analysis" 
(1-y)*h[7]=q_out+(1-y)*h[1]"SSSF conservation of energy for the Condenser per unit mass" 
Q_dot_out*Convert(MW, kW)=m_dot_steam*q_out 
"Cycle Statistics" 
MassRatio_gastosteam =m_dot_gas/m_dot_steam 
W_dot_net*Convert(MW, kW)=m_dot_gas*(w_gas_turb-w_gas_comp)+ 
m_dot_steam*(w_steam_turb - w_steam_pumps)"definition of the net cycle work" 
Eta_th=W_dot_net/Q_dot_in*Convert(, %) "Cycle thermal efficiency, in percent" 
Bwr=(m_dot_gas*w_gas_comp + m_dot_steam*w_steam_pumps)/(m_dot_gas*w_gas_turb + 
m_dot_steam*w_steam_turb) "Back work ratio" 
W_dot_net_steam = m_dot_steam*(w_steam_turb - w_steam_pumps)  
W_dot_net_gas = m_dot_gas*(w_gas_turb - w_gas_comp) 
NetWorkRatio_gastosteam = W_dot_net_gas/W_dot_net_steam 
 
 

Pratio MassRatio 
gastosteam 

Wnetgas 
[kW] 

Wnetsteam 
[kW] 

ηth 
[%] 

NetWorkRatio 
gastosteam 

10 7.108 342944 107056 59.92 3.203 
11 7.574 349014 100986 60.65 3.456 
12 8.043 354353 95647 61.29 3.705 
13 8.519 359110 90890 61.86 3.951 
14 9.001 363394 86606 62.37 4.196 
15 9.492 367285 82715 62.83 4.44 
16 9.993 370849 79151 63.24 4.685 
17 10.51 374135 75865 63.62 4.932 
18 11.03 377182 72818 63.97 5.18 
19 11.57 380024 69976 64.28 5.431 
20 12.12 382687 67313 64.57 5.685 
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10-86 A combined gas-steam power cycle uses a simple gas turbine for the topping cycle and simple 
Rankine cycle for the bottoming cycle. The mass flow rate of air for a specified power output is to be 
determined. 

Assumptions 1 Steady operating conditions exist. 2 The air-standard assumptions are applicable fo Brayton 
cycle. 3 Kinetic and potential energy changes are negligible. 4 Air is an ideal gas with constant specific 
heats. 

Properties The properties of air at room temperature are cp  = 1.005 kJ/kg·K  and  k = 1.4  (Table A-2a). 

Analysis  Working around the topping cycle 
gives the following results: 
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Fixing the states around the bottom steam cycle yields (Tables A-4, A-5, A-6): 

 

kJ/kg 5.25708.642.251
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The net work outputs from each cycle are 

 

kJ/kg 2.275
K)2937.5725.8191373)(KkJ/kg 1.005(

)()( 5687

inC,outT,cycle gas net,

=
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An energy balance on the heat exchanger gives 
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That is, 1 kg of exhaust gases can heat only 0.1010 kg of water. Then, the mass flow rate of air is 

 kg/s 279.3=
×+×
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10-87 A combined gas-steam power cycle uses a simple gas turbine for the topping cycle and simple 
Rankine cycle for the bottoming cycle. The mass flow rate of air for a specified power output is to be 
determined. 

Assumptions 1 Steady operating conditions exist. 2 The air-standard assumptions are applicable fo Brayton 
cycle. 3 Kinetic and potential energy changes are negligible. 4 Air is an ideal gas with constant specific 
heats. 

Properties The properties of air at room 
temperature are cp  = 1.005 kJ/kg·K  and           
k = 1.4  (Table A-2a). 

Analysis  With an ideal regenerator, the 
temperature of the air at the compressor exit 
will be heated to the to the temperature at the 
turbine exit. Representing this state by “6a” 

 K 5.81986 == TT a  

The rate of heat addition in the cycle is 

kW 370,155
K )5.8191373(C)kJ/kg 005.1(kg/s) 3.279(

)( 67in

=
−°⋅=

−= apa TTcmQ &&

 

The thermal efficiency of the cycle is then 

 0.6436===
kW 370,155
kW 000,100

in
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th Q

W
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&
η  

Without the regenerator, the rate of heat addition and the thermal efficiency are 

 kW 640,224K )7.5721373(C)kJ/kg 005.1(kg/s) 3.279()( 67in =−°⋅=−= TTcmQ pa&
&  

 0.4452===
kW 640,224
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th Q

W
&

&
η  

The change in the thermal efficiency due to using the ideal regenerator is 

 0.1984=−=Δ 4452.06436.0thη  
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10-88 The component of the combined cycle with the largest exergy destruction of the component of the 
combined cycle in Prob. 10-86 is to be determined. 

Assumptions 1 Steady operating conditions 
exist. 2 Kinetic and potential energy changes 
are negligible. 

Analysis  From Problem 10-86, 
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The largest exergy destruction occurs during the heat addition process in the combustor of the gas cycle.  
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10-89  A 450-MW combined gas-steam power plant is considered. The topping cycle is a gas-turbine cycle 
and the bottoming cycle is a nonideal Rankine cycle with an open feedwater heater. The mass flow rate of 
air to steam, the required rate of heat input in the combustion chamber, and the thermal efficiency of the 
combined cycle are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 
Kinetic and potential energy changes are negligible. 3 
Air is an ideal gas with variable specific heats. 

Analysis (a) Using the properties of air from Table 
A-17, the analysis of gas cycle yields  
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From the steam tables (Tables A-4, A-5, and A-6), 
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Noting that 0ΔpeΔke ≅≅≅≅WQ && for the heat exchanger, the steady-flow energy balance equation yields 
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(b)  Noting that 0ΔpeΔke ≅≅≅≅WQ && for the open FWH, the steady-flow energy balance equation yields 
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Thus, 
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The net work output per unit mass of gas is 
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10-90 EES Problem 10-89 is reconsidered. The effect of the gas cycle pressure ratio on the ratio of gas 
flow rate to steam flow rate and cycle thermal efficiency is to be investigated. 

Analysis The problem is solved using EES, and the solution is given below.   

 
"Input data" 
T[8] = 300 [K]  "Gas compressor inlet" 
P[8] = 14.7 [kPa] "Assumed air inlet pressure" 
"Pratio = 14"  "Pressure ratio for gas compressor" 
T[10] = 1400 [K]  "Gas turbine inlet" 
T[12] = 460 [K] "Gas exit temperature from Gas-to-steam heat exchanger " 
P[12] = P[8] "Assumed air exit pressure" 
W_dot_net=450 [MW] 
Eta_comp = 0.82 
Eta_gas_turb = 0.86 
Eta_pump = 1.0 
Eta_steam_turb = 0.86 
P[5] = 8000 [kPa]  "Steam turbine inlet" 
T[5] =(400+273) "K"  "Steam turbine inlet" 
P[6] = 600 [kPa] "Extraction pressure for steam open feedwater heater" 
P[7] = 20 [kPa] "Steam condenser pressure" 
 
"GAS POWER CYCLE ANALYSIS" 
 
"Gas Compressor anaysis" 
s[8]=ENTROPY(Air,T=T[8],P=P[8]) 
ss9=s[8] "For the ideal case the entropies are constant across the compressor" 
P[9] = Pratio*P[8] 
Ts9=temperature(Air,s=ss9,P=P[9])"Ts9 is the isentropic value of T[9] at compressor exit" 
Eta_comp = w_gas_comp_isen/w_gas_comp "compressor adiabatic efficiency, w_comp > 
w_comp_isen" 
h[8] + w_gas_comp_isen =hs9"SSSF conservation of energy for the isentropic compressor, 
assuming: adiabatic, ke=pe=0 per unit gas mass flow rate in kg/s" 
h[8]=ENTHALPY(Air,T=T[8]) 
hs9=ENTHALPY(Air,T=Ts9) 
h[8] + w_gas_comp = h[9]"SSSF conservation of energy for the actual compressor, assuming: 
adiabatic, ke=pe=0" 
T[9]=temperature(Air,h=h[9]) 
s[9]=ENTROPY(Air,T=T[9],P=P[9]) 
 
"Gas Cycle External heat exchanger analysis" 
h[9] + q_in = h[10]"SSSF conservation of energy for the external heat exchanger, assuming W=0, 
ke=pe=0" 
h[10]=ENTHALPY(Air,T=T[10]) 
P[10]=P[9] "Assume process 9-10 is SSSF constant pressure" 
Q_dot_in"MW"*1000"kW/MW"=m_dot_gas*q_in 
 
"Gas Turbine analysis" 
s[10]=ENTROPY(Air,T=T[10],P=P[10]) 
ss11=s[10] "For the ideal case the entropies are constant across the turbine" 
P[11] = P[10] /Pratio 
Ts11=temperature(Air,s=ss11,P=P[11])"Ts11 is the isentropic value of T[11] at gas turbine exit" 
Eta_gas_turb = w_gas_turb /w_gas_turb_isen "gas turbine adiabatic efficiency, w_gas_turb_isen 
> w_gas_turb" 
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h[10] = w_gas_turb_isen + hs11"SSSF conservation of energy for the isentropic gas turbine, 
assuming: adiabatic, ke=pe=0" 
hs11=ENTHALPY(Air,T=Ts11) 
h[10] = w_gas_turb + h[11]"SSSF conservation of energy for the actual gas turbine, assuming: 
adiabatic, ke=pe=0" 
T[11]=temperature(Air,h=h[11]) 
s[11]=ENTROPY(Air,T=T[11],P=P[11]) 
 
"Gas-to-Steam Heat Exchanger" 
"SSSF conservation of energy for the gas-to-steam heat exchanger, assuming: adiabatic,  
W=0, ke=pe=0"  
m_dot_gas*h[11] + m_dot_steam*h[4] = m_dot_gas*h[12] + m_dot_steam*h[5] 
h[12]=ENTHALPY(Air, T=T[12]) 
s[12]=ENTROPY(Air,T=T[12],P=P[12]) 
 
"STEAM CYCLE ANALYSIS" 
"Steam Condenser exit pump  or Pump 1 analysis" 
Fluid$='Steam_IAPWS' 
P[1] = P[7] 
P[2]=P[6]  
h[1]=enthalpy(Fluid$,P=P[1],x=0) {Saturated liquid} 
v1=volume(Fluid$,P=P[1],x=0) 
s[1]=entropy(Fluid$,P=P[1],x=0) 
T[1]=temperature(Fluid$,P=P[1],x=0) 
w_pump1_s=v1*(P[2]-P[1])"SSSF isentropic pump work assuming constant specific volume" 
w_pump1=w_pump1_s/Eta_pump "Definition of pump efficiency" 
h[1]+w_pump1= h[2]  "Steady-flow conservation of energy" 
s[2]=entropy(Fluid$,P=P[2],h=h[2]) 
T[2]=temperature(Fluid$,P=P[2],h=h[2]) 
"Open Feedwater Heater analysis" 
y*h[6] + (1-y)*h[2] = 1*h[3] "Steady-flow conservation of energy" 
P[3]=P[6] 
h[3]=enthalpy(Fluid$,P=P[3],x=0) "Condensate leaves heater as sat. liquid at P[3]" 
T[3]=temperature(Fluid$,P=P[3],x=0)  
s[3]=entropy(Fluid$,P=P[3],x=0) 
"Boiler condensate pump  or Pump 2 analysis" 
P[4] = P[5] 
v3=volume(Fluid$,P=P[3],x=0) 
w_pump2_s=v3*(P[4]-P[3])"SSSF isentropic pump work assuming constant specific volume" 
w_pump2=w_pump2_s/Eta_pump "Definition of pump efficiency" 
h[3]+w_pump2= h[4]  "Steady-flow conservation of energy" 
s[4]=entropy(Fluid$,P=P[4],h=h[4]) 
T[4]=temperature(Fluid$,P=P[4],h=h[4]) 
w_steam_pumps = (1-y)*w_pump1+ w_pump2 "Total steam pump work input/ mass steam" 
"Steam Turbine analysis" 
h[5]=enthalpy(Fluid$,T=T[5],P=P[5])  
s[5]=entropy(Fluid$,P=P[5],T=T[5]) 
ss6=s[5] 
hs6=enthalpy(Fluid$,s=ss6,P=P[6]) 
Ts6=temperature(Fluid$,s=ss6,P=P[6]) 
h[6]=h[5]-Eta_steam_turb*(h[5]-hs6)"Definition of steam turbine efficiency" 
T[6]=temperature(Fluid$,P=P[6],h=h[6]) 
s[6]=entropy(Fluid$,P=P[6],h=h[6]) 
ss7=s[5] 
hs7=enthalpy(Fluid$,s=ss7,P=P[7]) 
Ts7=temperature(Fluid$,s=ss7,P=P[7]) 
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h[7]=h[5]-Eta_steam_turb*(h[5]-hs7)"Definition of steam turbine efficiency" 
T[7]=temperature(Fluid$,P=P[7],h=h[7]) 
s[7]=entropy(Fluid$,P=P[7],h=h[7]) 
"SSSF conservation of energy for the steam turbine: adiabatic, neglect ke and pe" 
h[5] = w_steam_turb + y*h[6] +(1-y)*h[7] 
"Steam Condenser analysis" 
(1-y)*h[7]=q_out+(1-y)*h[1]"SSSF conservation of energy for the Condenser per unit mass" 
Q_dot_out*Convert(MW, kW)=m_dot_steam*q_out 
"Cycle Statistics" 
MassRatio_gastosteam =m_dot_gas/m_dot_steam 
W_dot_net*Convert(MW, kW)=m_dot_gas*(w_gas_turb-w_gas_comp)+ 
m_dot_steam*(w_steam_turb - w_steam_pumps)"definition of the net cycle work" 
Eta_th=W_dot_net/Q_dot_in*Convert(, %) "Cycle thermal efficiency, in percent" 
Bwr=(m_dot_gas*w_gas_comp + m_dot_steam*w_steam_pumps)/(m_dot_gas*w_gas_turb + 
m_dot_steam*w_steam_turb)  "Back work ratio" 
W_dot_net_steam = m_dot_steam*(w_steam_turb - w_steam_pumps)  
W_dot_net_gas = m_dot_gas*(w_gas_turb - w_gas_comp) 
NetWorkRatio_gastosteam = W_dot_net_gas/W_dot_net_steam 
 
 

Pratio MassRatio 
gastosteam 

Wnetgas 
[kW] 

Wnetsteam 
[kW] 

ηth 
[%] 

NetWorkRatio 
gastosteam 

6 4.463 262595 187405 45.29 1.401 
8 5.024 279178 170822 46.66 1.634 

10 5.528 289639 160361 47.42 1.806 
12 5.994 296760 153240 47.82 1.937 
14 6.433 301809 148191 47.99 2.037 
15 6.644 303780 146220 48.01 2.078 
16 6.851 305457 144543 47.99 2.113 
18 7.253 308093 141907 47.87 2.171 
20 7.642 309960 140040 47.64 2.213 
22 8.021 311216 138784 47.34 2.242 
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10-91  A combined gas-steam power plant is considered. The topping cycle is a gas-turbine cycle and 
the bottoming cycle is a nonideal reheat Rankine cycle. The moisture percentage at the exit of the low-
pressure turbine, the steam temperature at the inlet of the high-pressure turbine, and the thermal 
efficiency of the combined cycle are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 3 
Air is an ideal gas with variable specific heats.  

Analysis (a) We obtain the air properties from 
EES. The analysis of gas cycle is as follows 

( )
( ) ( )

( )
( )( )

kJ/kg 62.475C200

kJ/kg 98.871
79.7638.130480.08.1304
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From the steam tables (Tables A-4, A-5, 
and A-6 or from EES), 

( )
( )( )

kJ/kg 37.19965.781.191
kJ/kg .567

80.0/
mkPa 1

kJ 1kPa 106000/kgm  0.00101

/

/kgm  00101.0
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( )
( )( )

1.6%==−=−=

=
⎭
⎬
⎫

=
=

=
−−=

−−=⎯→⎯
−
−

=

0158.09842.011Percentage Moisture

9842.0kJ/kg 5.2546
kPa 10

kJ/kg 0.2546
4.23665.326480.05.3264

6

6
6

6

6556
65

65

x

xh
P

hhhh
hh
hh

sT
s

T ηη

  

(b) Noting that 0ΔpeΔke ≅≅≅≅WQ && for the heat exchanger, the steady-flow energy balance equation 
yields 

 
( ) ( ) ( )
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The temperature at the inlet of the high-pressure turbine may be obtained by a trial-error approach or using 
EES from the above relations. The answer is T3 = 468.0ºC. Then, the enthalpy at state 3 becomes: h3 = 
3346.5 kJ/kg 

(c) ( ) ( )( ) kW 4328kJ/kg 98.8718.1304kg/s 10109airgasT, =−=−= hhmW &&  

 ( ) ( )( ) kW 2687kJ/kg 50.28821.557kg/s 1078airgasC, =−=−= hhmW &&  

 kW 164126874328gasC,gasT,gasnet, =−=−= WWW &&&  

( ) ( )( ) kW 1265kJ/kg 0.25465.32640.29655.3346kg/s 1.156543ssteamT, =−+−=−+−= hhhhmW &&  

 ( )( ) kW 7.8kJ/kg 564.7kg/s 1.15ssteamP, === pumpwmW &&  

 kW 12567.81265steamP,steamT,steamnet, =−=−= WWW &&&  

 kW 2897=+=+= 12561641steamnet,gasnet,plantnet, WWW &&&  

(d)  ( ) ( )( ) kW 7476kJ/kg 21.5578.1304kg/s 1089airin =−=−= hhmQ &&  

38.8%==== 0.388
kW 7476
kW 2897

in

plantnet,
th Q

W
&

&
η  
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Special Topic: Binary Vapor Cycles 

 

10-92C  Binary power cycle is a cycle which is actually a combination of two cycles; one in the high 
temperature region, and the other in the low temperature region. Its purpose is to increase thermal 
efficiency. 

 

10-93C  Consider the heat exchanger of a binary power cycle.  The working fluid of the topping cycle 
(cycle A) enters the heat exchanger at state 1 and leaves at state 2.  The working fluid of the bottoming 
cycle (cycle B) enters at state 3 and leaves at state 4. Neglecting any changes in kinetic and potential 
energies, and assuming the heat exchanger is well-insulated, the steady-flow energy balance relation yields 

 

( ) ( )43123142
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10-94C  Steam is not an ideal fluid for vapor power cycles because its critical temperature is low, its 
saturation dome resembles an inverted V, and its condenser pressure is too low. 

 

10-95C  Because mercury has a high critical temperature, relatively low critical pressure, but a very low 
condenser pressure.  It is also toxic, expensive, and has a low enthalpy of vaporization. 

 

10-96C  In binary vapor power cycles, both cycles are vapor cycles.  In the combined gas-steam power 
cycle, one of the cycles is a gas cycle. 
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Review Problems 

 

10-97 It is to be demonstrated that the thermal efficiency of a combined gas-steam power plant ηcc can be 
expressed as  η η η η ηcc g s g s= + −  where ηg g in=W Q/  and ηs s g,out=W Q/  are the thermal efficiencies of 
the gas and steam cycles, respectively, and the efficiency of a combined cycle is to be obtained. 

Analysis  The thermal efficiencies of gas, steam, and combined cycles can be expressed as 
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where Qin is the heat supplied to the gas cycle, where Qout is the heat rejected by the steam cycle, and where 
Qg,out is the heat rejected from the gas cycle and supplied to the steam cycle. 

Using the relations above, the expression η η η ηg s g s+ −  can be expressed as  
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Therefore, the proof is complete. Using the relation above, the thermal efficiency of the given combined 
cycle is determined to be 

η η η η ηcc g s g s= + − = + − × =0 4 0 30 0 40 0 30. . . . 0.58  
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10-98 The thermal efficiency of a combined gas-steam power plant ηcc can be expressed in terms of the 
thermal efficiencies of the gas and the steam turbine cycles as η η η η ηcc g s g s= + − . It is to be shown that 

the value of ηcc  is greater than either of η ηg s or .  

Analysis By factoring out terms, the relation η η η η ηcc g s g s= + −  can be expressed as 

η η η η η η η η η

η

cc g s g s g s g

Positive since
 <1 

g

g

= + − = + − >( )1
1 24 34

 

or η η η η η η η η η

η

cc g s g s s g s

Positive since
 <1 

s

s

= + − = + − >( )1
1 24 34

 

Thus we conclude that the combined cycle is more efficient than either of the gas turbine or steam turbine 
cycles alone.  

 

 

 

10-99  A steam power plant operating on the ideal Rankine cycle with reheating is considered. The reheat 
pressures of the cycle are to be determined for the cases of single and double reheat. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible.  

Analysis (a)  Single Reheat:  From the steam tables (Tables A-4, A-5, and A-6), 
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(b)  Double Reheat : 
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Any pressure Px selected between the limits of 25 MPa and 2.78 MPa will satisfy the requirements, and can 
be used for the double reheat pressure. 
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10-100E  A geothermal power plant operating on the simple Rankine cycle using an organic fluid as the 
working fluid is considered. The exit temperature of the geothermal water from the vaporizer, the rate of 
heat rejection from the working fluid in the condenser, the mass flow rate of geothermal water at the 
preheater, and the thermal efficiency of the Level I cycle of this plant are to be determined.  

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible.  

Analysis (a)  The exit temperature of geothermal water from the vaporizer is determined from the steady-
flow energy balance on the geothermal water (brine), 

( )
( )( )( )

F267.4°=
°−°⋅=−

−=

2

2

12brinebrine

F325FBtu/lbm 1.03lbm/h  384,286Btu/h 000,790,22
T

T

TTcmQ p&&

 

(b)  The rate of heat rejection from the working fluid to the air in the condenser is determined from the 
steady-flow energy balance on air, 

 

( )
( )( )( )

MBtu/h 29.7=
°−°⋅=

−=

F555.84FBtu/lbm 0.24lbm/h  4,195,100
89airair TTcmQ p&&

 

(c)  The mass flow rate of geothermal water at the preheater is determined from the steady-flow energy 
balance on the geothermal water, 

 

( )
( )( )

lbm/h  187,120=

°−°⋅=−

−=

geo

geo

inoutgeogeo

F8.2110.154FBtu/lbm 1.03Btu/h 000,140,11

m

m

TTcmQ p

&

&

&&

 

(d)  The rate of heat input is 

and 

& & & , , , ,

, ,

&

Q Q Q

W

in vaporizer reheater

net

Btu / h

kW

= + = +

=

= − =

22 790 000 11140 000

33 930 000

1271 200 1071

 

Then, 

 10.8%=⎟⎟
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⎞
⎜⎜
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⎛
==

kWh 1
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10-101  A steam power plant operating on an ideal Rankine cycle with two stages of reheat is considered. 
The thermal efficiency of the cycle and the mass flow rate of the steam are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible.  

Analysis (a)  From the steam tables (Tables A-4, A-5, and A-6), 

        
( )

( )( )
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mkPa 1
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Then, 

 

( ) ( ) ( )

kJ/kg 9.18622.22301.4093
kJ/kg 2.223075.1379.2367

kJ/kg 1.40933.29711.34794.30077.343482.1528.3310

outinnet

18out

674523in

=−=−=
=−=−=

=−+−+−=
−+−+−=

qqw
hhq

hhhhhhq

 

Thus, 

 45.5%===
kJ/kg 4093.1
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w
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10-102 A simple ideal Rankine cycle with water as the working fluid operates between the specified 
pressure limits. The thermal efficiency of the cycle is to be compared when it is operated so that the liquid 
enters the pump as a saturated liquid against that when the liquid enters as a subcooled liquid. 

determined  power produced by the turbine and consumed by the pump are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

Analysis  From the steam tables (Tables A-4, A-5, and A-6), 

 

kJ/kg 67.34613.654.340
kJ/kg 13.6 mkPa 1

kJ 1 kPa)506000)(/kgm 001030.0(
)(
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Thus, 

 
kJ/kg 5.215454.3400.2495
kJ/kg 1.331267.3468.3658

14out

23in

=−=−=
=−=−=

hhq
hhq

 

and the thermal efficiency of the cycle is 

 0.3495=−=−=
1.3312
5.215411

in

out
th q

q
η  

When the liquid enters the pump 11.3°C cooler than a saturated liquid at the condenser pressure, the 
enthalpies become 

 
/kgm 001023.0

kJ/kg 07.293
    

C703.113.813.11
kPa 50

3
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C70 @ 1

kPa 50 @sat 1

1
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 kJ/kg 16.29909.607.293inp,12 =+=+= whh  

Then, 

 
kJ/kg 9.220109.2930.2495
kJ/kg 6.335916.2998.3658

14out

23in

=−=−=
=−=−=

hhq
hhq

 

 0.3446=−=−=
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q
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The thermal efficiency slightly decreases as a result of subcooling at the pump inlet. 
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10-103  An 150-MW steam power plant operating on a regenerative Rankine cycle with an open feedwater 
heater is considered. The mass flow rate of steam through the boiler, the thermal efficiency of the cycle, 
and the irreversibility associated with the regeneration process are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible.  

Analysis  

 

 

 

 

 

 

 

 

 

 

 

(a)  From the steam tables (Tables A-4, A-5, and A-6), 

( )
( )( ) ( )

/kgm  001093.0
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( )
( )( )
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1.26541.337580.01.3375
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The fraction of steam extracted is determined from the steady-flow energy balance equation applied to the 
feedwater heaters. Noting that & &Q W ke pe≅ ≅ ≅ ≅Δ Δ 0 , 

 

( ) ( )326332266

outin

(steady) 0
systemoutin

11

0

hhyyhhmhmhmhmhm

EE

EEE

eeii =−+⎯→⎯=+⎯→⎯=

=

=Δ=−

∑∑ &&&&&

&&

&&&

 

where y is the fraction of steam extracted from the turbine ( = & / &m m6 3 ).  Solving for y, 

 1718.0
33.1923.2798
33.19209.640

26

23 =
−
−

=
−
−

=
hh
hh

y  

Then, 
( )( ) ( )( )

kJ/kg 4.9397.17841.2724
kJ/kg 7.178481.1918.23461718.011

kJ/kg 1.272402.6511.3375

outinnet

17out

45in
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qqw
hhyq

hhq  
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 skg 7159 /.
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kJ/s 150,000
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net ===
w
W

m
&

&  

(b)  The thermal efficiency is determined from 

 34.5%=−=−=
kJ/kg 2724.1
kJ/kg 1784.7
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q
η  

Also, 

 
KkJ/kg 6492.0
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Then the irreversibility (or exergy destruction) associated with this regeneration process is 
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10-104  An 150-MW steam power plant operating on an ideal regenerative Rankine cycle with an open 
feedwater heater is considered. The mass flow rate of steam through the boiler, the thermal efficiency of the 
cycle, and the irreversibility associated with the regeneration process are to be determined. 
Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible.  

Analysis  

 

 

 

 

 

 

 

 

 

 

(a)  From the steam tables (Tables A-4, A-5, and A-6), 

( )
( )( )

/kgm  001093.0
kJ/kg 09.640

liquidsat.
MPa 5.0
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The fraction of steam extracted is determined from the steady-flow energy equation applied to the 
feedwater heaters. Noting that 0ΔpeΔke ≅≅≅≅WQ && , 
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where y is the fraction of steam extracted from the turbine ( = & / &m m6 3 ).  Solving for y, 
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(b)  The thermal efficiency is determined from 
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Then the irreversibility (or exergy destruction) associated with this regeneration process is 
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10-105 An ideal reheat-regenerative Rankine cycle with one open feedwater heater is considered. The 
fraction of steam extracted for regeneration and the thermal efficiency of the cycle are to be determined. 
Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible.  
Analysis (a)  From the steam tables (Tables A-4, A-5, and A-6), 
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The fraction of steam extracted is determined from the steady-flow energy balance equation applied to the 
feedwater heaters. Noting that 0ΔpeΔke ≅≅≅≅WQ && , 
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where y is the fraction of steam extracted from the turbine ( = & / &m m8 3 ).  Solving for y, 
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10-106  A nonideal reheat-regenerative Rankine cycle with one open feedwater heater is considered. The 
fraction of steam extracted for regeneration and the thermal efficiency of the cycle are to be determined. 
Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible.  

Analysis  

 

 

 

 

 

 

 

 

 

 

 

(a)  From the steam tables (Tables A-4, A-5, and A-6), 
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The fraction of steam extracted is determined from the steady-flow energy balance equation applied to the 
feedwater heaters. Noting that 0ΔpeΔke ≅≅≅≅WQ && , 

 

( ) ( )328332288

outin

(steady) 0
systemoutin

11

0

hhyyhhmhmhmhmhm

EE

EEE

eeii =−+⎯→⎯=+⎯→⎯=

=

=Δ=−

∑∑ &&&&&

&&

&&&

 

where y is the fraction of steam extracted from the turbine ( = & / &m m8 3 ).  Solving for y, 
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(b)  The thermal efficiency is determined from 
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10-107 A steam power plant operating on the ideal reheat-regenerative Rankine cycle with three feedwater 
heaters is considered. Various items for this system per unit of mass flow rate through the boiler are to be 
determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis The compression processes in the pumps and the expansion processes in the turbines are 
isentropic. Also, the state of water at the inlet of pumps is saturated liquid. Then, from the steam tables 
(Tables A-4, A-5, and A-6), 
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For an ideal closed feedwater heater, the feedwater is heated to the exit temperature of the extracted steam, 
which ideally leaves the heater as a saturated liquid at the extraction pressure. Then, 
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Enthalpies at other states and the fractions of steam extracted from the turbines can be determined from 
mass and energy balances on cycle components as follows: 

Mass Balances: 
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Open feedwater heater: 

 3218 zhnhmh =+  

Closed feedwater heater-II:  

 57154 yhzhyhzh +=+  

Closed feedwater heater-I: 

 911148 )()( xhhzyxhhzy ++=++  

Mixing chamber after closed feedwater heater II: 

 867 )( hzyyhzh +=+  

Mixing chamber after closed feedwater heater I: 

 121110 1)( hhzyxh =++  

Substituting the values and solving the above equations simultaneously using EES, we obtain 
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Note that these values may also be obtained by a hand solution by using the equations above with some 
rearrangements and substitutions. Other results of the cycle are  

 

0.3986

kJ/kg 1492
kJ/kg 2481

kJ/kg 477.8
kJ/kg 514.9

=−=−=

=−=
=−+−=

=−+−=

=−+−+−=

2481
149211

)(
)(

)()(
)()()(

in

out
th

119out

16171213in

19171817LPout,T,

161315131413HPout,T,

q
q

hhnq
hhzhhq

hhnhhmw
hhzhhyhhxw

η

 

 

 



 

PROPRIETARY MATERIAL. © 2008 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to teachers and 
educators for course preparation.  If you are a student using this Manual, you are using it without permission. 

116

 

10-108 EES The optimum bleed pressure for the open feedwater heater that maximizes the thermal 
efficiency of the cycle is to be determined using EES. 

Analysis The EES program used to solve this problem as well as the solutions are given below. 

 
"Given" 
P_boiler=8000 [kPa] 
P_cfwh1=6000 [kPa] 
P_cfwh2=3500 [kPa] 
P_reheat=300 [kPa] 
P_ofwh=100 [kPa] 
P_condenser=10 [kPa] 
T_turbine=400 [C] 
 
"Analysis" 
Fluid$='steam_iapws' 
 
"turbines" 
h[13]=enthalpy(Fluid$, P=P_boiler, T=T_turbine)   
s[13]=entropy(Fluid$, P=P_boiler, T=T_turbine) 
h[14]=enthalpy(Fluid$, P=P_cfwh1, s=s[13])   
h[15]=enthalpy(Fluid$, P=P_cfwh2, s=s[13])   
h[16]=enthalpy(Fluid$, P=P_reheat, s=s[13])   
h[17]=enthalpy(Fluid$, P=P_reheat, T=T_turbine)   
s[17]=entropy(Fluid$, P=P_reheat, T=T_turbine)   
h[18]=enthalpy(Fluid$, P=P_ofwh, s=s[17])   
h[19]=enthalpy(Fluid$, P=P_condenser, s=s[17])   
 
"pump I" 
h[1]=enthalpy(Fluid$, P=P_condenser, x=0) 
v[1]=volume(Fluid$, P=P_condenser, x=0) 
w_pI_in=v[1]*(P_ofwh-P_condenser) 
h[2]=h[1]+w_pI_in  
 
"pump II" 
h[3]=enthalpy(Fluid$, P=P_ofwh, x=0) 
v[3]=volume(Fluid$, P=P_ofwh, x=0) 
w_pII_in=v[3]*(P_cfwh2-P_ofwh) 
h[4]=h[3]+w_pII_in  
 
"pump III" 
h[5]=enthalpy(Fluid$, P=P_cfwh2, x=0) 
T[5]=temperature(Fluid$, P=P_cfwh2, x=0) 
v[5]=volume(Fluid$, P=P_cfwh2, x=0) 
w_pIII_in=v[5]*(P_cfwh1-P_cfwh2) 
h[6]=h[5]+w_pIII_in  
 
"pump IV" 
h[9]=enthalpy(Fluid$, P=P_cfwh1, x=0) 
T[9]=temperature(Fluid$, P=P_cfwh1, x=0) 
v[9]=volume(Fluid$, P=P_cfwh1, x=0) 
w_p4_in=v[5]*(P_boiler-P_cfwh1) 
h[10]=h[9]+w_p4_in  
 
"Mass balances" 
x+y+z=1 
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m+n=z 
"Open feedwater heater" 
m*h[18]+n*h[2]=z*h[3] 
"closed feedwater heater 2" 
T[7]=T[5] 
h[7]=enthalpy(Fluid$, P=P_cfwh1, T=T[7]) 
z*h[4]+y*h[15]=z*h[7]+y*h[5] 
"closed feedwater heater 1" 
T[11]=T[9] 
h[11]=enthalpy(Fluid$, P=P_boiler, T=T[11]) 
(y+z)*h[8]+x*h[14]=(y+z)*h[11]+x*h[9] 
"Mixing chamber after closed feedwater heater 2" 
z*h[7]+y*h[6]=(y+z)*h[8] 
"Mixing chamber after closed feedwater heater 1" 
x*h[10]+(y+z)*h[11]=1*h[12] 
 
"cycle" 
w_T_out_high=x*(h[13]-h[14])+y*(h[13]-h[15])+z*(h[13]-h[16]) 
w_T_out_low=m*(h[17]-h[18])+n*(h[17]-h[19]) 
q_in=h[13]-h[12]+z*(h[17]-h[16]) 
q_out=n*(h[19]-h[1]) 
Eta_th=1-q_out/q_in 
 
 
 

P open fwh 

[kPa] 
ηth 

10 0.388371 
20 0.392729 
30 0.394888 
40 0.396199 
50 0.397068 
60 0.397671 
70 0.398099 
80 0.398406 
90 0.398624 

100 0.398774 
110 0.398872 
120 0.398930 
130 0.398954 
140 0.398952 
150 0.398927 
160 0.398883 
170 0.398825 
180 0.398752 
190 0.398669 
200 0.398576 
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10-109E A combined gas-steam power cycle uses a simple gas turbine for the topping cycle and simple 
Rankine cycle for the bottoming cycle. The thermal efficiency of the cycle is to be determined. 

Assumptions 1 Steady operating conditions exist. 2 The air-standard assumptions are applicable for 
Brayton cycle. 3 Kinetic and potential energy changes are negligible. 4 Air is an ideal gas with constant 
specific heats. 

Properties The properties of air at room temperature are cp = 0.240 Btu/lbm·R  and  k = 1.4  (Table A-2Ea). 

Analysis  Working around the topping cycle 
gives the following results: 
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Fixing the states around the bottom steam cycle yields (Tables A-4E, A-5E, A-6E): 
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The net work outputs from each cycle are 
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An energy balance on the heat exchanger gives 
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That is, 1 lbm of exhaust gases can heat only 0.08876 lbm of water. Then the heat input, the heat output and 
the thermal efficiency are 
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10-110E A combined gas-steam power cycle uses a simple gas turbine for the topping cycle and simple 
Rankine cycle for the bottoming cycle. The thermal efficiency of the cycle is to be determined. 

Assumptions 1 Steady operating conditions exist. 2 The air-standard assumptions are applicable fo Brayton 
cycle. 3 Kinetic and potential energy changes are negligible. 4 Air is an ideal gas with constant specific 
heats. 

Properties The properties of air at room 
temperature are cp  = 0.240 Btu/lbm·R  and  
k = 1.4  (Table A-2Ea). 

Analysis  Working around the topping cycle 
gives the following results: 
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Fixing the states around the bottom steam cycle yields (Tables A-4E, A-5E, A-6E): 
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The net work outputs from each cycle are 
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An energy balance on the heat exchanger gives 
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That is, 1 lbm of exhaust gases can heat only 0.09126 lbm of water. Then the heat input, the heat output and 
the thermal efficiency are 
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When the condenser pressure is increased from 5 psia to 10 psia, the thermal efficiency is decreased from 
0.4643 to 0.4573.  
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10-111E A combined gas-steam power cycle uses a simple gas turbine for the topping cycle and simple 
Rankine cycle for the bottoming cycle. The cycle supplies a specified rate of heat to the buildings during 
winter. The mass flow rate of air and the net power output from the cycle are to be determined. 

Assumptions 1 Steady operating conditions exist. 
2 The air-standard assumptions are applicable to 
Brayton cycle. 3 Kinetic and potential energy 
changes are negligible. 4 Air is an ideal gas with 
constant specific heats. 

Properties The properties of air at room 
temperature are cp  = 0.240 Btu/lbm·R  and  
k = 1.4  (Table A-2Ea). 

Analysis  The mass flow rate of water is 

 lbm/h 2495
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=
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Q
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The mass flow rate of air is then 
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The power outputs from each cycle are 
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The net electricity production by this cycle is then 

 kW 1286=+= 2241062netW&  
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10-112  A combined gas-steam power plant is considered. The topping cycle is an ideal gas-turbine cycle 
and the bottoming cycle is an ideal reheat Rankine cycle. The mass flow rate of air in the gas-turbine cycle, 
the rate of total heat input, and the thermal efficiency of the combined cycle are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 3 
Air is an ideal gas with variable specific heats.  

Analysis (a)  The analysis of gas cycle yields 
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From the steam tables (Tables A-4, A-5, and A-6), 
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Noting that 0ΔpeΔke ≅≅≅≅WQ && for the heat exchanger, the steady-flow energy balance equation yields 
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(b) ( ) ( )
( )( ) ( )( )
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10-113  A combined gas-steam power plant is considered. The topping cycle is a gas-turbine cycle and the 
bottoming cycle is a nonideal reheat Rankine cycle. The mass flow rate of air in the gas-turbine cycle, the 
rate of total heat input, and the thermal efficiency of the combined cycle are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 3 
Air is an ideal gas with variable specific heats.  

Analysis (a) The analysis of gas cycle yields (Table A-17) 
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From the steam tables (Tables A-4, A-5, and A-6), 
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Noting that 0ΔpeΔke ≅≅≅≅WQ && for the heat exchanger, the steady-flow energy balance equation yields 
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10-114  It is to be shown that the exergy destruction associated with a simple ideal Rankine cycle can be 
expressed as ( )thinqx ηη −= Carnotth,destroyed , where ηth is efficiency of the Rankine cycle and ηth, Carnot is 
the efficiency of the Carnot cycle operating between the same temperature limits. 

Analysis  The exergy destruction associated with a cycle is given on a unit mass basis as 

  ∑=
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R

T
q

Tx 0destroyed  

where the direction of qin is determined with respect to the reservoir (positive if to the reservoir and 
negative if from the reservoir).  For a cycle that involves heat transfer only with a source at TH and a sink at 
T0, the irreversibility becomes 
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10-115  A cogeneration plant is to produce power and process heat. There are two turbines in the cycle: a 
high-pressure turbine and a low-pressure turbine. The temperature, pressure, and mass flow rate of steam at 
the inlet of high-pressure turbine are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible.  

Analysis   From the steam tables (Tables A-4, A-5, and A-6), 
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Then from the tables or the software, the turbine inlet temperature and pressure becomes 
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10-116 A cogeneration plant is to generate power and process heat. Part of the steam extracted from the 
turbine at a relatively high pressure is used for process heating. The rate of process heat, the net power 
produced, and the utilization factor of the plant are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 

 

 

 

 

 

 

 

 

 

 

Analysis  From the steam tables (Tables A-4, A-5, and A-6), 
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10-117 A Rankine steam cycle modified for reheat, a closed feedwater heater, and an open feedwater heater 
is considered. The T-s diagram for the ideal cycle is to be sketched. The net power output of the cycle and 
the minimum flow rate of the cooling water required are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible.  

Analysis (b) Using the data from the problem statement, the enthalpies at various states are 
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Also, 
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An energy balance on the open feedwater heater gives 
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where y is the fraction of steam extracted from the high-pressure turbine.  Solving for y, 
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An energy balance on the closed feedwater heater gives 
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where z is the fraction of steam extracted from the low-pressure turbine. Solving for z,  
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The heat input in the boiler is 
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The net work output from the cycle is 
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The net power output is 
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(c) The heat rejected from the condenser is 
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The mass flow rate of cooling water will be minimum when the cooling water exit temperature is a 
maximum. That is, 
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Then an energy balance on the condenser gives 
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10-118 A Rankine steam cycle modified for reheat and three closed feedwater heaters is considered. The T-
s diagram for the ideal cycle is to be sketched. The net power output of the cycle and the flow rate of the 
cooling water required are to be determined. 

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible.  

Analysis (b) Using the data from the problem statement, the enthalpies at various states are 
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Also, 
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Energy balances on three closed feedwater heaters give 
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The enthalpies are known, and thus there are three unknowns (y, z, w) and three equations. Solving these 
equations using EES, we obtain 
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The enthalpy at state 6 may be determined from an energy balance on mixing chamber: 
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The work output from the turbines is 
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The net work output from the cycle is 
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The net power output is 
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(c) The heat rejected from the condenser is 
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Then an energy balance on the condenser gives 
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10-119 EES The effect of the condenser pressure on the performance a simple ideal Rankine cycle is to be 
investigated.  

Analysis The problem is solved using EES, and the solution is given below.   

 
function x4$(x4) "this function returns a string to indicate the state of steam at point 4" 
 x4$='' 
 if (x4>1) then x4$='(superheated)' 
 if (x4<0) then x4$='(compressed)' 
end 
 
P[3] = 5000 [kPa] 
T[3] = 500 [C] 
"P[4] = 5 [kPa]" 
Eta_t = 1.0 "Turbine isentropic efficiency" 
Eta_p = 1.0 "Pump isentropic efficiency" 
 
"Pump analysis" 
Fluid$='Steam_IAPWS' 
P[1] = P[4] 
P[2]=P[3] 
x[1]=0  "Sat'd liquid" 
h[1]=enthalpy(Fluid$,P=P[1],x=x[1]) 
v[1]=volume(Fluid$,P=P[1],x=x[1]) 
s[1]=entropy(Fluid$,P=P[1],x=x[1]) 
T[1]=temperature(Fluid$,P=P[1],x=x[1]) 
W_p_s=v[1]*(P[2]-P[1])"SSSF isentropic pump work assuming constant specific volume" 
W_p=W_p_s/Eta_p   
h[2]=h[1]+W_p   "SSSF First Law for the pump" 
s[2]=entropy(Fluid$,P=P[2],h=h[2]) 
T[2]=temperature(Fluid$,P=P[2],h=h[2]) 
 
"Turbine analysis" 
h[3]=enthalpy(Fluid$,T=T[3],P=P[3]) 
s[3]=entropy(Fluid$,T=T[3],P=P[3]) 
s_s[4]=s[3] 
hs[4]=enthalpy(Fluid$,s=s_s[4],P=P[4]) 
Ts[4]=temperature(Fluid$,s=s_s[4],P=P[4]) 
Eta_t=(h[3]-h[4])/(h[3]-hs[4])"Definition of turbine efficiency" 
T[4]=temperature(Fluid$,P=P[4],h=h[4]) 
s[4]=entropy(Fluid$,h=h[4],P=P[4]) 
x[4]=quality(Fluid$,h=h[4],P=P[4]) 
h[3] =W_t+h[4]"SSSF First Law for the turbine" 
x4s$=x4$(x[4]) 
 
"Boiler analysis" 
Q_in + h[2]=h[3]"SSSF First Law for the Boiler" 
 
"Condenser analysis" 
h[4]=Q_out+h[1]"SSSF First Law for the Condenser" 
 
"Cycle Statistics" 
W_net=W_t-W_p 
Eta_th=W_net/Q_in 
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ηth P4 

[kPa] 
Wnet 

[kJ/kg] 
x4 Qin 

[kJ/kg] 
Qout 

[kJ/kg] 
0.3956 5 1302 0.8212 3292 1990 
0.3646 15 1168 0.8581 3204 2036 
0.3484 25 1100 0.8772 3158 2057 
0.3371 35 1054 0.8905 3125 2072 
0.3283 45 1018 0.9009 3100 2082 
0.321 55 988.3 0.9096 3079 2091 

0.3147 65 963.2 0.917 3061 2098 
0.3092 75 941.5 0.9235 3045 2104 
0.3042 85 922.1 0.9293 3031 2109 
0.2976 100 896.5 0.9371 3012 2116 
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10-120 EES The effect of superheating the steam on the performance a simple ideal Rankine cycle is to be 
investigated.  

Analysis The problem is solved using EES, and the solution is given below.   

 
function x4$(x4) "this function returns a string to indicate the state of steam at point 4" 
 x4$='' 
 if (x4>1) then x4$='(superheated)' 
 if (x4<0) then x4$='(compressed)' 
end 
 
P[3] = 3000 [kPa] 
{T[3] = 600 [C]} 
P[4] = 10 [kPa] 
Eta_t = 1.0 "Turbine isentropic efficiency" 
Eta_p = 1.0 "Pump isentropic efficiency" 
 
"Pump analysis" 
Fluid$='Steam_IAPWS' 
P[1] = P[4] 
P[2]=P[3] 
x[1]=0 "Sat'd liquid" 
h[1]=enthalpy(Fluid$,P=P[1],x=x[1]) 
v[1]=volume(Fluid$,P=P[1],x=x[1]) 
s[1]=entropy(Fluid$,P=P[1],x=x[1]) 
T[1]=temperature(Fluid$,P=P[1],x=x[1]) 
W_p_s=v[1]*(P[2]-P[1])"SSSF isentropic pump work assuming constant specific volume" 
W_p=W_p_s/Eta_p   
h[2]=h[1]+W_p   "SSSF First Law for the pump" 
s[2]=entropy(Fluid$,P=P[2],h=h[2]) 
T[2]=temperature(Fluid$,P=P[2],h=h[2]) 
 
"Turbine analysis" 
h[3]=enthalpy(Fluid$,T=T[3],P=P[3]) 
s[3]=entropy(Fluid$,T=T[3],P=P[3]) 
s_s[4]=s[3] 
hs[4]=enthalpy(Fluid$,s=s_s[4],P=P[4]) 
Ts[4]=temperature(Fluid$,s=s_s[4],P=P[4]) 
Eta_t=(h[3]-h[4])/(h[3]-hs[4])"Definition of turbine efficiency" 
T[4]=temperature(Fluid$,P=P[4],h=h[4]) 
s[4]=entropy(Fluid$,h=h[4],P=P[4]) 
x[4]=quality(Fluid$,h=h[4],P=P[4]) 
h[3] =W_t+h[4]"SSSF First Law for the turbine" 
x4s$=x4$(x[4]) 
 
"Boiler analysis" 
Q_in + h[2]=h[3]"SSSF First Law for the Boiler" 
 
"Condenser analysis" 
h[4]=Q_out+h[1]"SSSF First Law for the Condenser" 
 
"Cycle Statistics" 
W_net=W_t-W_p 
Eta_th=W_net/Q_in 
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T3 
[C] 

ηth Wnet 
[kJ/kg] 

x4 

250 0.3241 862.8 0.752 
344.4 0.3338 970.6 0.81 
438.9 0.3466 1083 0.8536
533.3 0.3614 1206 0.8909
627.8 0.3774 1340 0.9244
722.2 0.3939 1485 0.955 
816.7 0.4106 1639 0.9835
911.1 0.4272 1803 100 
1006 0.4424 1970 100 
1100 0.456 2139 100 
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10-121 EES The effect of number of reheat stages on the performance an ideal Rankine cycle is to be 
investigated.  

Analysis The problem is solved using EES, and the solution is given below.   

 
function x6$(x6) "this function returns a string to indicate the state of steam at point 6" 
 x6$='' 
 if (x6>1) then x6$='(superheated)' 
 if (x6<0) then x6$='(subcooled)' 
end 
 
Procedure Reheat(P[3],T[3],T[5],h[4],NoRHStages,Pratio,Eta_t:Q_in_reheat,W_t_lp,h6) 
P3=P[3] 
T5=T[5] 
h4=h[4] 
Q_in_reheat =0 
W_t_lp = 0 
R_P=(1/Pratio)^(1/(NoRHStages+1)) 
 
 imax:=NoRHStages - 1 
 i:=0 
          
REPEAT 
i:=i+1 
 
P4 = P3*R_P 
 
P5=P4 
P6=P5*R_P 
 
Fluid$='Steam_IAPWS' 
s5=entropy(Fluid$,T=T5,P=P5) 
h5=enthalpy(Fluid$,T=T5,P=P5) 
s_s6=s5 
hs6=enthalpy(Fluid$,s=s_s6,P=P6) 
Ts6=temperature(Fluid$,s=s_s6,P=P6) 
vs6=volume(Fluid$,s=s_s6,P=P6) 
"Eta_t=(h5-h6)/(h5-hs6)""Definition of turbine efficiency" 
h6=h5-Eta_t*(h5-hs6) 
W_t_lp=W_t_lp+h5-h6"SSSF First Law for the low pressure turbine" 
x6=QUALITY(Fluid$,h=h6,P=P6) 
Q_in_reheat =Q_in_reheat + (h5 - h4) 
P3=P4 
 
UNTIL (i>imax) 
 
END 
 
"NoRHStages = 2" 
P[6] = 10"kPa" 
P[3] = 15000"kPa" 
P_extract = P[6]  "Select a lower limit on the reheat pressure" 
T[3] = 500"C" 
T[5] = 500"C" 
Eta_t = 1.0 "Turbine isentropic efficiency" 
Eta_p = 1.0 "Pump isentropic efficiency" 
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Pratio = P[3]/P_extract 
P[4] = P[3]*(1/Pratio)^(1/(NoRHStages+1))"kPa" 
 
Fluid$='Steam_IAPWS' 
 
"Pump analysis" 
P[1] = P[6] 
P[2]=P[3] 
x[1]=0  "Sat'd liquid" 
h[1]=enthalpy(Fluid$,P=P[1],x=x[1]) 
v[1]=volume(Fluid$,P=P[1],x=x[1]) 
s[1]=entropy(Fluid$,P=P[1],x=x[1]) 
T[1]=temperature(Fluid$,P=P[1],x=x[1]) 
W_p_s=v[1]*(P[2]-P[1])"SSSF isentropic pump work assuming constant specific volume" 
W_p=W_p_s/Eta_p   
h[2]=h[1]+W_p   "SSSF First Law for the pump" 
v[2]=volume(Fluid$,P=P[2],h=h[2]) 
s[2]=entropy(Fluid$,P=P[2],h=h[2]) 
T[2]=temperature(Fluid$,P=P[2],h=h[2]) 
 
"High Pressure Turbine analysis" 
h[3]=enthalpy(Fluid$,T=T[3],P=P[3]) 
s[3]=entropy(Fluid$,T=T[3],P=P[3]) 
v[3]=volume(Fluid$,T=T[3],P=P[3]) 
s_s[4]=s[3] 
hs[4]=enthalpy(Fluid$,s=s_s[4],P=P[4]) 
Ts[4]=temperature(Fluid$,s=s_s[4],P=P[4]) 
Eta_t=(h[3]-h[4])/(h[3]-hs[4])"Definition of turbine efficiency" 
T[4]=temperature(Fluid$,P=P[4],h=h[4]) 
s[4]=entropy(Fluid$,h=h[4],P=P[4]) 
v[4]=volume(Fluid$,s=s[4],P=P[4]) 
h[3] =W_t_hp+h[4]"SSSF First Law for the high pressure turbine" 
 
"Low Pressure Turbine analysis" 
Call Reheat(P[3],T[3],T[5],h[4],NoRHStages,Pratio,Eta_t:Q_in_reheat,W_t_lp,h6) 
h[6]=h6 
 
{P[5]=P[4] 
s[5]=entropy(Fluid$,T=T[5],P=P[5]) 
h[5]=enthalpy(Fluid$,T=T[5],P=P[5]) 
s_s[6]=s[5] 
hs[6]=enthalpy(Fluid$,s=s_s[6],P=P[6]) 
Ts[6]=temperature(Fluid$,s=s_s[6],P=P[6]) 
vs[6]=volume(Fluid$,s=s_s[6],P=P[6]) 
Eta_t=(h[5]-h[6])/(h[5]-hs[6])"Definition of turbine efficiency" 
h[5]=W_t_lp+h[6]"SSSF First Law for the low pressure turbine" 
x[6]=QUALITY(Fluid$,h=h[6],P=P[6]) 
W_t_lp_total = NoRHStages*W_t_lp 
Q_in_reheat = NoRHStages*(h[5] - h[4])} 
 
"Boiler analysis" 
Q_in_boiler + h[2]=h[3]"SSSF First Law for the Boiler" 
Q_in = Q_in_boiler+Q_in_reheat 
"Condenser analysis" 
h[6]=Q_out+h[1]"SSSF First Law for the Condenser" 
T[6]=temperature(Fluid$,h=h[6],P=P[6]) 
s[6]=entropy(Fluid$,h=h[6],P=P[6]) 
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x[6]=QUALITY(Fluid$,h=h[6],P=P[6]) 
x6s$=x6$(x[6]) 
"Cycle Statistics" 
W_net=W_t_hp+W_t_lp - W_p 
Eta_th=W_net/Q_in 
 
 

ηth NoRH 
Stages 

Qin 
[kJ/kg] 

Wnet 
[kJ/kg] 

0.4097 1 4085 1674 
0.4122 2 4628 1908 
0.4085 3 5020 2051 
0.4018 4 5333 2143 
0.3941 5 5600 2207 
0.386 6 5838 2253 

0.3779 7 6058 2289 
0.3699 8 6264 2317 
0.3621 9 6461 2340 
0.3546 10 6651 2358 
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10-122 EES The effect of number of regeneration stages on the performance an ideal regenerative Rankine 
cycle with one open feedwater heater is to be investigated.  

Analysis The problem is solved using EES, and the solution is given below.   

 
Procedure Reheat(NoFwh,T[5],P[5],P_cond,Eta_turb,Eta_pump:q_in,w_net) 
 
Fluid$='Steam_IAPWS' 
Tcond = temperature(Fluid$,P=P_cond,x=0)  
Tboiler = temperature(Fluid$,P=P[5],x=0) 
P[7] = P_cond 
s[5]=entropy(Fluid$, T=T[5], P=P[5]) 
h[5]=enthalpy(Fluid$, T=T[5], P=P[5]) 
h[1]=enthalpy(Fluid$, P=P[7],x=0) 
 
P4[1] = P[5]  "NOTICE THIS IS P4[i] WITH i = 1" 
 
DELTAT_cond_boiler = Tboiler - Tcond 
 
If NoFWH = 0 Then 
 
 "the following are h7, h2, w_net, and q_in for zero feedwater heaters, NoFWH = 0" 
 h7=enthalpy(Fluid$, s=s[5],P=P[7])   
 h2=h[1]+volume(Fluid$, P=P[7],x=0)*(P[5] - P[7])/Eta_pump 
 w_net = Eta_turb*(h[5]-h7)-(h2-h[1]) 
 q_in = h[5] - h2 
 
else 
 
i=0 
REPEAT 
i=i+1 
"The following maintains the same temperature difference between any two regeneration stages." 
T_FWH[i] = (NoFWH +1 - i)*DELTAT_cond_boiler/(NoFWH + 1)+Tcond"[C]" 
P_extract[i] = pressure(Fluid$,T=T_FWH[i],x=0)"[kPa]" 
P3[i]=P_extract[i] 
P6[i]=P_extract[i] 
If i > 1 then P4[i] = P6[i - 1] 
 
UNTIL i=NoFWH 
 
P4[NoFWH+1]=P6[NoFWH] 
h4[NoFWH+1]=h[1]+volume(Fluid$, P=P[7],x=0)*(P4[NoFWH+1] - P[7])/Eta_pump 
 
i=0 
REPEAT 
i=i+1 
 
"Boiler condensate pump  or the Pumps 2 between feedwater heaters analysis" 
h3[i]=enthalpy(Fluid$,P=P3[i],x=0) 
v3[i]=volume(Fluid$,P=P3[i],x=0) 
w_pump2_s=v3[i]*(P4[i]-P3[i])"SSSF isentropic pump work assuming constant specific volume" 
w_pump2[i]=w_pump2_s/Eta_pump "Definition of pump efficiency" 
h4[i]= w_pump2[i] +h3[i]  "Steady-flow conservation of energy" 
s4[i]=entropy(Fluid$,P=P4[i],h=h4[i]) 
T4[i]=temperature(Fluid$,P=P4[i],h=h4[i]) 
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Until i = NoFWH 
i=0 
REPEAT 
i=i+1 
"Open Feedwater Heater analysis:" 
{h2[i] = h6[i]} 
s5[i] = s[5] 
ss6[i]=s5[i] 
hs6[i]=enthalpy(Fluid$,s=ss6[i],P=P6[i]) 
Ts6[i]=temperature(Fluid$,s=ss6[i],P=P6[i]) 
h6[i]=h[5]-Eta_turb*(h[5]-hs6[i])"Definition of turbine efficiency for high pressure stages" 
If i=1 then y[1]=(h3[1] - h4[2])/(h6[1]  - h4[2])  "Steady-flow conservation of energy for the FWH" 
If i > 1 then 
   js = i -1 
   j = 0 
   sumyj = 0 
   REPEAT 
   j = j+1 
   sumyj = sumyj + y[ j ] 
   UNTIL j = js 
y[i] =(1- sumyj)*(h3[i] - h4[i+1])/(h6[i]  - h4[i+1]) 
 
ENDIF 
T3[i]=temperature(Fluid$,P=P3[i],x=0) "Condensate leaves heater as sat. liquid at P[3]" 
s3[i]=entropy(Fluid$,P=P3[i],x=0) 
 
"Turbine analysis" 
T6[i]=temperature(Fluid$,P=P6[i],h=h6[i]) 
s6[i]=entropy(Fluid$,P=P6[i],h=h6[i]) 
yh6[i] = y[i]*h6[i] 
UNTIL i=NoFWH 
ss[7]=s6[i] 
hs[7]=enthalpy(Fluid$,s=ss[7],P=P[7]) 
Ts[7]=temperature(Fluid$,s=ss[7],P=P[7]) 
h[7]=h6[i]-Eta_turb*(h6[i]-hs[7])"Definition of turbine efficiency for low pressure stages" 
T[7]=temperature(Fluid$,P=P[7],h=h[7]) 
s[7]=entropy(Fluid$,P=P[7],h=h[7]) 
 
sumyi = 0 
sumyh6i = 0 
wp2i =  W_pump2[1] 
i=0 
REPEAT 
i=i+1 
sumyi = sumyi + y[i] 
sumyh6i = sumyh6i + yh6[i] 
If NoFWH > 1 then wp2i = wp2i + (1- sumyi)*W_pump2[i] 
UNTIL i = NoFWH 
 
"Condenser Pump---Pump_1 Analysis:" 
P[2] = P6 [ NoFWH] 
P[1] = P_cond 
h[1]=enthalpy(Fluid$,P=P[1],x=0) {Sat'd liquid} 
v1=volume(Fluid$,P=P[1],x=0) 
s[1]=entropy(Fluid$,P=P[1],x=0) 
T[1]=temperature(Fluid$,P=P[1],x=0) 
w_pump1_s=v1*(P[2]-P[1])"SSSF isentropic pump work assuming constant specific volume" 
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w_pump1=w_pump1_s/Eta_pump "Definition of pump efficiency" 
h[2]=w_pump1+ h[1]  "Steady-flow conservation of energy" 
s[2]=entropy(Fluid$,P=P[2],h=h[2]) 
T[2]=temperature(Fluid$,P=P[2],h=h[2]) 
 
"Boiler analysis" 
q_in = h[5] - h4[1]"SSSF conservation of energy for the Boiler" 
w_turb = h[5] - sumyh6i - (1- sumyi)*h[7]  "SSSF conservation of energy for turbine" 
 
"Condenser analysis" 
q_out=(1- sumyi)*(h[7] - h[1])"SSSF First Law for the Condenser" 
 
"Cycle Statistics" 
w_net=w_turb - ((1- sumyi)*w_pump1+ wp2i) 
 
endif 
END 
 
"Input Data" 
NoFWH = 2 
P[5] = 15000 [kPa] 
T[5] = 600 [C] 
P_cond=5 [kPa] 
Eta_turb= 1.0  "Turbine isentropic efficiency" 
Eta_pump = 1.0 "Pump isentropic efficiency" 
P[1] = P_cond  
P[4] = P[5] 
 
"Condenser exit pump  or Pump 1 analysis" 
Call Reheat(NoFwh,T[5],P[5],P_cond,Eta_turb,Eta_pump:q_in,w_net) 
Eta_th=w_net/q_in 
 
 
 

No 
FWH 

ηth wnet 
[kJ/kg] 

qin 
[kJ/kg] 

0 0.4466 1532 3430 
1 0.4806 1332 2771 
2 0.4902 1243 2536 
3 0.4983 1202 2411 
4 0.5036 1175 2333 
5 0.5073 1157 2280 
6 0.5101 1143 2240 
7 0.5123 1132 2210 
8 0.5141 1124 2186 
9 0.5155 1117 2167 

10 0.5167 1111 2151 
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Fundamentals of Engineering (FE) Exam Problems 
 
 
10-123 Consider a steady-flow Carnot cycle with water as the working fluid executed under the saturation 
dome between the pressure limits of 8 MPa and 20 kPa. Water changes from saturated liquid to saturated 
vapor during the heat addition process. The net work output of this cycle is     
 
(a) 494 kJ/kg (b)  975 kJ/kg (c) 596 kJ/kg (d) 845 kJ/kg  (e) 1148 kJ/kg 
 
Answer  (c) 596 kJ/kg 
 
Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on 
a blank EES screen. (Similar problems and their solutions can be obtained easily by modifying numerical 
values). 
 
P1=8000 "kPa" 
P2=20 "kPa" 
h_fg=ENTHALPY(Steam_IAPWS,x=1,P=P1)-ENTHALPY(Steam_IAPWS,x=0,P=P1) 
T1=TEMPERATURE(Steam_IAPWS,x=0,P=P1)+273 
T2=TEMPERATURE(Steam_IAPWS,x=0,P=P2)+273 
q_in=h_fg 
Eta_Carnot=1-T2/T1 
w_net=Eta_Carnot*q_in 
 
"Some Wrong Solutions with Common Mistakes:" 
W1_work = Eta1*q_in; Eta1=T2/T1 "Taking Carnot efficiency to be T2/T1" 
W2_work = Eta2*q_in; Eta2=1-(T2-273)/(T1-273)  "Using C instead of K" 
W3_work = Eta_Carnot*ENTHALPY(Steam_IAPWS,x=1,P=P1)  "Using h_g instead of h_fg" 
W4_work = Eta_Carnot*q2; q2=ENTHALPY(Steam_IAPWS,x=1,P=P2)-
ENTHALPY(Steam_IAPWS,x=0,P=P2) "Using h_fg at P2" 
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10-124 A simple ideal Rankine cycle operates between the pressure limits of 10 kPa and 3 MPa, with a 
turbine inlet temperature of 600°C. Disregarding the pump work, the cycle efficiency is  
 
(a) 24% (b) 37% (c) 52% (d) 63%  (e) 71% 
 
Answer  (b) 37% 
 
Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on 
a blank EES screen. (Similar problems and their solutions can be obtained easily by modifying numerical 
values). 
 
P1=10 "kPa" 
P2=3000 "kPa" 
P3=P2 
P4=P1 
T3=600 "C" 
s4=s3 
h1=ENTHALPY(Steam_IAPWS,x=0,P=P1) 
v1=VOLUME(Steam_IAPWS,x=0,P=P1) 
w_pump=v1*(P2-P1) "kJ/kg" 
h2=h1+w_pump 
h3=ENTHALPY(Steam_IAPWS,T=T3,P=P3) 
s3=ENTROPY(Steam_IAPWS,T=T3,P=P3) 
h4=ENTHALPY(Steam_IAPWS,s=s4,P=P4) 
q_in=h3-h2 
q_out=h4-h1 
Eta_th=1-q_out/q_in 
 
"Some Wrong Solutions with Common Mistakes:" 
W1_Eff = q_out/q_in "Using wrong relation" 
W2_Eff = 1-(h44-h1)/(h3-h2); h44 = ENTHALPY(Steam_IAPWS,x=1,P=P4) "Using h_g for h4" 
W3_Eff = 1-(T1+273)/(T3+273); T1=TEMPERATURE(Steam_IAPWS,x=0,P=P1) "Using Carnot 
efficiency" 
W4_Eff = (h3-h4)/q_in  "Disregarding pump work" 
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10-125 A simple ideal Rankine cycle operates between the pressure limits of 10 kPa and 5 MPa, with a 
turbine inlet temperature of 600°C. The mass fraction of steam that condenses at the turbine exit is   
 
(a) 6% (b) 9% (c) 12% (d) 15%  (e) 18% 
 
Answer  (c) 12%  
 
Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on 
a blank EES screen. (Similar problems and their solutions can be obtained easily by modifying numerical 
values). 
 
P1=10 "kPa" 
P2=5000 "kPa" 
P3=P2 
P4=P1 
T3=600 "C" 
s4=s3 
h3=ENTHALPY(Steam_IAPWS,T=T3,P=P3) 
s3=ENTROPY(Steam_IAPWS,T=T3,P=P3) 
h4=ENTHALPY(Steam_IAPWS,s=s4,P=P4) 
x4=QUALITY(Steam_IAPWS,s=s4,P=P4) 
moisture=1-x4 
 
"Some Wrong Solutions with Common Mistakes:" 
W1_moisture = x4 "Taking quality as moisture" 
W2_moisture = 0 "Assuming superheated vapor" 
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10-126 A steam power plant operates on the simple ideal Rankine cycle between the pressure limits of 10 
kPa and 10 MPa, with a turbine inlet temperature of 600°C. The rate of heat transfer in the boiler is 800 
kJ/s. Disregarding the pump work, the power output of this plant is 
 
(a) 243 kW (b) 284 kW (c) 508 kW (d) 335 kW  (e) 800 kW 
 
Answer  (d) 335 kW 
 
Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on 
a blank EES screen. (Similar problems and their solutions can be obtained easily by modifying numerical 
values). 
 
P1=10 "kPa" 
P2=10000 "kPa" 
P3=P2 
P4=P1 
T3=600 "C" 
s4=s3 
Q_rate=800 "kJ/s" 
m=Q_rate/q_in 
h1=ENTHALPY(Steam_IAPWS,x=0,P=P1) 
h2=h1  "pump work is neglected" 
"v1=VOLUME(Steam_IAPWS,x=0,P=P1) 
w_pump=v1*(P2-P1) 
h2=h1+w_pump" 
h3=ENTHALPY(Steam_IAPWS,T=T3,P=P3) 
s3=ENTROPY(Steam_IAPWS,T=T3,P=P3) 
h4=ENTHALPY(Steam_IAPWS,s=s4,P=P4) 
q_in=h3-h2 
W_turb=m*(h3-h4) 
 
"Some Wrong Solutions with Common Mistakes:" 
W1_power = Q_rate "Assuming all heat is converted to power" 
W3_power = Q_rate*Carnot; Carnot = 1-(T1+273)/(T3+273); 
T1=TEMPERATURE(Steam_IAPWS,x=0,P=P1) "Using Carnot efficiency" 
W4_power = m*(h3-h44); h44 = ENTHALPY(Steam_IAPWS,x=1,P=P4) "Taking h4=h_g" 
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10-127 Consider a combined gas-steam power plant. Water for the steam cycle is heated in a well-insulated 
heat exchanger by the exhaust gases that enter at 800 K at a rate of 60 kg/s and leave at 400 K. Water enters 
the heat exchanger at 200°C and 8 MPa and leaves at 350°C and 8 MPa.  If the exhaust gases are treated as 
air with constant specific heats at room temperature, the mass flow rate of water through the heat exchanger 
becomes 
 
(a) 11 kg/s (b) 24 kg/s (c) 46 kg/s (d) 53 kg/s  (e) 60 kg/s 
 
Answer  (a) 11 kg/s 
 
Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on 
a blank EES screen. (Similar problems and their solutions can be obtained easily by modifying numerical 
values). 
 
m_gas=60 "kg/s" 
Cp=1.005 "kJ/kg.K" 
T3=800 "K" 
T4=400 "K" 
Q_gas=m_gas*Cp*(T3-T4) 
P1=8000 "kPa" 
T1=200 "C" 
P2=8000 "kPa" 
T2=350 "C" 
h1=ENTHALPY(Steam_IAPWS,T=T1,P=P1) 
h2=ENTHALPY(Steam_IAPWS,T=T2,P=P2) 
Q_steam=m_steam*(h2-h1) 
Q_gas=Q_steam 
 
"Some Wrong Solutions with Common Mistakes:" 
m_gas*Cp*(T3 -T4)=W1_msteam*4.18*(T2-T1) "Assuming no evaporation of liquid water" 
m_gas*Cv*(T3 -T4)=W2_msteam*(h2-h1); Cv=0.718 "Using Cv for air instead of Cp" 
W3_msteam = m_gas "Taking the mass flow rates of two fluids to be equal" 
m_gas*Cp*(T3 -T4)=W4_msteam*(h2-h11); h11=ENTHALPY(Steam_IAPWS,x=0,P=P1) "Taking 
h1=hf@P1" 
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10-128 An ideal reheat Rankine cycle operates between the pressure limits of 10 kPa and 8 MPa, with 
reheat occurring at 4 MPa. The temperature of steam at the inlets of both turbines is 500°C, and the 
enthalpy of steam is 3185 kJ/kg at the exit of the high-pressure turbine, and 2247 kJ/kg at the exit of the 
low-pressure turbine. Disregarding the pump work, the cycle efficiency is  
 
(a) 29% (b) 32% (c) 36% (d) 41%  (e) 49% 
 
Answer  (d) 41% 
 
Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on 
a blank EES screen. (Similar problems and their solutions can be obtained easily by modifying numerical 
values). 
 
P1=10 "kPa" 
P2=8000 "kPa" 
P3=P2 
P4=4000 "kPa" 
P5=P4 
P6=P1 
T3=500 "C" 
T5=500 "C" 
s4=s3 
s6=s5 
h1=ENTHALPY(Steam_IAPWS,x=0,P=P1) 
h2=h1 
h44=3185 "kJ/kg - for checking given data" 
h66=2247 "kJ/kg - for checking given data" 
h3=ENTHALPY(Steam_IAPWS,T=T3,P=P3) 
s3=ENTROPY(Steam_IAPWS,T=T3,P=P3) 
h4=ENTHALPY(Steam_IAPWS,s=s4,P=P4) 
h5=ENTHALPY(Steam_IAPWS,T=T5,P=P5) 
s5=ENTROPY(Steam_IAPWS,T=T5,P=P5) 
h6=ENTHALPY(Steam_IAPWS,s=s6,P=P6) 
q_in=(h3-h2)+(h5-h4) 
q_out=h6-h1 
Eta_th=1-q_out/q_in 
 
"Some Wrong Solutions with Common Mistakes:" 
W1_Eff = q_out/q_in "Using wrong relation" 
W2_Eff = 1-q_out/(h3-h2) "Disregarding heat input during reheat" 
W3_Eff = 1-(T1+273)/(T3+273); T1=TEMPERATURE(Steam_IAPWS,x=0,P=P1) "Using Carnot 
efficiency" 
W4_Eff = 1-q_out/(h5-h2)  "Using wrong relation for q_in"  
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10-129 Pressurized feedwater in a steam power plant is to be heated in an ideal open feedwater heater that 
operates at a pressure of 0.5 MPa with steam extracted from the turbine. If the enthalpy of feedwater is 252 
kJ/kg and the enthalpy of extracted steam is 2665 kJ/kg, the mass fraction of steam extracted from the 
turbine is  
 
 (a) 4% (b) 10% (c) 16% (d) 27%  (e) 12% 
 
Answer  (c) 16% 
 
Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on 
a blank EES screen. (Similar problems and their solutions can be obtained easily by modifying numerical 
values). 
 
h_feed=252 "kJ/kg" 
h_extracted=2665 "kJ/kg" 
P3=500 "kPa" 
h3=ENTHALPY(Steam_IAPWS,x=0,P=P3) 
"Energy balance on the FWH" 
h3=x_ext*h_extracted+(1-x_ext)*h_feed 
 
"Some Wrong Solutions with Common Mistakes:" 
W1_ext = h_feed/h_extracted "Using wrong relation" 
W2_ext = h3/(h_extracted-h_feed) "Using wrong relation" 
W3_ext = h_feed/(h_extracted-h_feed) "Using wrong relation"  
 
 
 
10-130 Consider a steam power plant that operates on the regenerative Rankine cycle with one open 
feedwater heater. The enthalpy of the steam is 3374 kJ/kg at the turbine inlet, 2797 kJ/kg at the location of 
bleeding, and 2346 kJ/kg at the turbine exit. The net power output of the plant is 120 MW, and the fraction 
of steam bled off the turbine for regeneration is 0.172.  If the pump work is negligible, the mass flow rate of 
steam at the turbine inlet is  
 
(a) 117 kg/s (b) 126 kg/s (c) 219 kg/s (d) 288 kg/s  (e) 679 kg/s 
 
Answer  (b) 126 kg/s 
 
Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on 
a blank EES screen. (Similar problems and their solutions can be obtained easily by modifying numerical 
values). 
 
h_in=3374 "kJ/kg" 
h_out=2346 "kJ/kg" 
h_extracted=2797 "kJ/kg" 
Wnet_out=120000 "kW" 
x_bleed=0.172 
w_turb=(h_in-h_extracted)+(1-x_bleed)*(h_extracted-h_out) 
m=Wnet_out/w_turb 
"Some Wrong Solutions with Common Mistakes:" 
W1_mass = Wnet_out/(h_in-h_out) "Disregarding extraction of steam" 
W2_mass = Wnet_out/(x_bleed*(h_in-h_out)) "Assuming steam is extracted at trubine inlet" 
W3_mass = Wnet_out/(h_in-h_out-x_bleed*h_extracted) "Using wrong relation" 
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10-131  Consider a simple ideal Rankine cycle. If the condenser pressure is lowered while keeping turbine 
inlet state the same, (select the correct statement) 
 
(a) the turbine work output will decrease. 
(b) the amount of heat rejected will decrease. 
(c) the cycle efficiency will decrease. 
(d) the moisture content at turbine exit will decrease. 
(e) the pump work input will decrease.  
 
Answer  (b) the amount of heat rejected will decrease. 
 
 
 
10-132 Consider a simple ideal Rankine cycle with fixed boiler and condenser pressures. If the steam is 
superheated to a higher temperature, (select the correct statement)  
 
(a) the turbine work output will decrease. 
(b) the amount of heat rejected will decrease. 
(c) the cycle efficiency will decrease. 
(d) the moisture content at turbine exit will decrease. 
(e) the amount of heat input will decrease.  
 
Answer  (d) the moisture content at turbine exit will decrease. 
 
 
 
10-133 Consider a simple ideal Rankine cycle with fixed boiler and condenser pressures . If the cycle is 
modified with reheating, (select the correct statement)  
 
(a) the turbine work output will decrease. 
(b) the amount of heat rejected will decrease. 
(c) the pump work input will decrease. 
(d) the moisture content at turbine exit will decrease. 
(e) the amount of heat input will decrease.  
 
Answer  (d) the moisture content at turbine exit will decrease. 
 
 
 
10-134 Consider a simple ideal Rankine cycle with fixed boiler and condenser pressures . If the cycle is 
modified with regeneration that involves one open feed water heater, (select the correct statement per unit 
mass of steam flowing through the boiler)  
 
(a) the turbine work output will decrease. 
(b) the amount of heat rejected will increase. 
(c) the cycle thermal efficiency will decrease. 
(d) the quality of steam at turbine exit will decrease. 
(e) the amount of heat input will increase.  
 
Answer  (a) the turbine work output will decrease. 
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10-135 Consider a cogeneration power plant modified with regeneration. Steam enters the turbine at 6 MPa 
and 450°C at a rate of 20 kg/s and expands to a pressure of 0.4 MPa. At this pressure, 60% of the steam is 
extracted from the turbine, and the remainder expands to a pressure of 10 kPa. Part of the extracted steam is 
used to heat feedwater in an open feedwater heater. The rest of the extracted steam is used for process 
heating and leaves the process heater as a saturated liquid at 0.4 MPa. It is subsequently mixed with the 
feedwater leaving the feedwater heater, and the mixture is pumped to the boiler pressure. The steam in the 
condenser is cooled and condensed by the cooling water from a nearby river, which enters the adiabatic 
condenser at a rate of 463 kg/s.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. The total power output of the turbine is   
 
(a) 17.0 MW (b) 8.4 MW (c) 12.2 MW (d) 20.0 MW (e) 3.4 MW 
 
Answer  (a) 17.0 MW  
 
 
2. The temperature rise of the cooling water from the river in the condenser is   
 
(a) 8.0°C (b) 5.2°C (c) 9.6°C (d) 12.9°C (e) 16.2°C 
 
Answer  (a) 8.0°C  
 
 
3. The mass flow rate of steam through the process heater is   
 
(a) 1.6 kg/s (b) 3.8 kg/s (c) 5.2 kg/s (d) 7.6 kg/s (e) 10.4 kg/s 
 
Answer  (e) 10.4 kg/s 
 
 
4. The rate of heat supply from the process heater per unit mass of steam passing through it is 
 
(a) 246 kJ/kg (b) 893 kJ/kg (c) 1344 kJ/kg (d) 1891 kJ/kg (e) 2060 kJ/kg 
 
Answer  (e) 2060 kJ/kg 
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h1 = 191.81 
h2 = 192.20 
h3 = h4 = h9 = 604.66 
h5 = 610.73 
h6 = 3302.9 
h7 = h8 = h10 = 2665.6 
h11 = 2128.8 
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5. The rate of heat transfer to the steam in the boiler is 
 
(a) 26.0 MJ/s (b) 53.8 MJ/s (c) 39.5 MJ/s (d) 62.8 MJ/s (e) 125.4 MJ/s 
 
Answer  (b) 53.8 MJ/s 
 
 
Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on 
a blank EES screen. (Similar problems and their solutions can be obtained easily by modifying numerical 
values). 
 
Note: The solution given below also evaluates all enthalpies given on the figure. 
 
P1=10 "kPa" 
P11=P1 
P2=400 "kPa" 
P3=P2; P4=P2; P7=P2; P8=P2; P9=P2; P10=P2 
P5=6000 "kPa" 
P6=P5 
T6=450 "C" 
m_total=20 "kg/s" 
m7=0.6*m_total 
m_cond=0.4*m_total 
C=4.18 "kJ/kg.K" 
m_cooling=463 "kg/s" 
s7=s6 
s11=s6 
h1=ENTHALPY(Steam_IAPWS,x=0,P=P1) 
v1=VOLUME(Steam_IAPWS,x=0,P=P1) 
w_pump=v1*(P2-P1) 
h2=h1+w_pump 
h3=ENTHALPY(Steam_IAPWS,x=0,P=P3) 
h4=h3; h9=h3 
v4=VOLUME(Steam_IAPWS,x=0,P=P4) 
w_pump2=v4*(P5-P4) 
h5=h4+w_pump2 
h6=ENTHALPY(Steam_IAPWS,T=T6,P=P6) 
s6=ENTROPY(Steam_IAPWS,T=T6,P=P6) 
h7=ENTHALPY(Steam_IAPWS,s=s7,P=P7) 
h8=h7; h10=h7 
h11=ENTHALPY(Steam_IAPWS,s=s11,P=P11) 
W_turb=m_total*(h6-h7)+m_cond*(h7-h11) 
m_cooling*C*T_rise=m_cond*(h11-h1) 
m_cond*h2+m_feed*h10=(m_cond+m_feed)*h3 
m_process=m7-m_feed 
q_process=h8-h9 
Q_in=m_total*(h6-h5) 
 
 
10-136 ··· 10-143  Design and Essay Problems 
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