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CHAPTER 37:  Early Quantum Theory and Models of the Atom 
 
Responses to Questions 
 
1.  A reddish star is the coolest, followed by a whitish-yellow star. Bluish stars have the highest 

temperatures. The temperature of the star is related to the frequency of the emitted light. Since red 
light has a lower frequency than blue light, red stars have a lower temperature than blue stars. 

 
2. The energy radiated by an object may not be in the visible part of the electromagnetic spectrum. The 

spectrum of a blackbody with a temperature of 1000 K peaks in the IR and the object appears red, 
since it includes some radiation at the red end of the visible spectrum. Cooler objects will radiate 
less overall energy and peak at even longer wavelengths. Objects that are cool enough will not 
radiate any energy at visible wavelengths. 

 
3.  The lightbulb will not produce light as white as the Sun, since the peak of its emitted light is in the 

infrared. The lightbulb will appear more yellowish than the Sun, which has a spectrum that peaks in 
the visible range. 

 
4. A bulb which appears red would emit very little radiant energy at higher visible frequencies and 

therefore would not expose black and white photographic paper. This strategy would not work in a 
darkroom for developing color photographs since the photographic paper would be sensitive to light 
at all visible frequencies, including red.  

 
5.  If the threshold wavelength increases for the second metal, then it has a smaller work function than 

the first metal. Longer wavelength corresponds to lower energy. It will take less energy for the 
electron to escape the surface of the second metal. 

 
6. According to the wave theory, light of any frequency can cause electrons to be ejected as long as the 

light is intense enough. A higher intensity corresponds to a greater electric field magnitude and more 
energy. Therefore, there should be no frequency below which the photoelectric effect does not 
occur. According to the particle theory, however, each photon carries an amount of energy which 
depends upon its frequency. Increasing the intensity of the light increases the number of photons but 
does not increase the energy of the individual photons. The cutoff frequency is that frequency at 
which the energy of the photon equals the work function. If the frequency of the incoming light is 
below the cutoff, the electrons will not be ejected because no individual photon has enough energy 
to impart to an electron.  

 
7. Individual photons of ultraviolet light are more energetic than photons of visible light and will 

deliver more energy to the skin, causing burns. UV photons also can penetrate farther into the skin, 
and, once at the deeper level, can deposit a large amount of energy that can cause damage to cells. 

 
8. Cesium will give a higher maximum kinetic energy for the electrons. Cesium has a lower work 

function, so more energy is available for the kinetic energy of the electrons. 
 
9.  (a) No. The energy of a beam of photons depends not only on the energy of each individual photon  

but also on the total number of photons. If there are enough infrared photons, the infrared beam 
may have more energy than the ultraviolet beam. 

(b) Yes. The energy of a single photon depends on its frequency: E = hf. Since infrared light has a  
lower frequency than ultraviolet light, a single IR photon will always have less energy than a 
single UV photon.  
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10. Fewer electrons are emitted from the surface struck by the 400 nm photons. Each 400 nm photon has 
a higher energy than each 450 nm photon, so it will take fewer 400 nm photons to produce the same 
intensity (energy per unit area per unit time) as the 450 nm photon beam. The maximum kinetic 
energy of the electrons emitted from the surface struck by the 400 nm photons will be greater than 
the maximum kinetic energy of the electrons emitted from the surface struck by the 450 nm photons, 
again because each 400 nm photon has a higher energy.  

 
11. (a) In a burglar alarm, when the light beam is interrupted (by an intruder, or a door or window  

opening), the current stops flowing in the circuit. An alarm could be set to go off when the 
current stops. 

(b) In a smoke detector, when the light beam is obscured by smoke, the current in the circuit would  
decrease or stop. An alarm could be set to go off when the current decreased below a certain 
level.  

(c) The amount of current in the circuit depends on the intensity of the light, as long as the  
frequency of the light is above the threshold frequency. The ammeter in the circuit could be 
calibrated to reflect the light intensity. 

 
12.  Yes, the wavelength increases. In the scattering process, some of the energy of the incident photon is 

transferred to the electron, so the scattered photon has less energy, and therefore a lower frequency 
and longer wavelength, than the incident photon. (E = hf = hc/λ.) 

 
13. In the photoelectric effect the photon energy is completely absorbed by the electron. In the Compton 

effect, the photon is scattered from the electron and travels off at a lower energy. 
 
14.  According to both the wave theory and the particle theory the intensity of a point source of light 

decreases as the inverse square of the distance from the source. In the wave theory, the intensity of 
the waves obeys the inverse square law. In the particle theory, the surface area of a sphere increases 
with the square of the radius, and therefore the density of particles decreases with distance, obeying 
the inverse square law. The variation of intensity with distance cannot be used to help distinguish 
between the two theories.  

 
15. The proton will have the shorter wavelength, since it has a larger mass than the electron and 

therefore a larger momentum  .h p   

 
16. Light demonstrates characteristics of both waves and particles. Diffraction and interference are wave 

characteristics, and are demonstrated, for example, in Young’s double-slit experiment. The 
photoelectric effect and Compton scattering are examples of experiments in which light 
demonstrates particle characteristics. We can’t say that light IS a wave or a particle, but it has 
properties of each. 

 
17. Electrons demonstrate characteristics of both waves and particles. Electrons act like waves in 

electron diffraction and like particles in the Compton effect and other collisions. 
 
18.  Both a photon and an electron have properties of waves and properties of particles. They can both be 

associated with a wavelength and they can both undergo scattering. An electron has a negative 
charge and a rest mass, obeys the Pauli exclusion principle, and travels at less than the speed of 
light. A photon is not charged, has no rest mass, does not obey the Pauli exclusion principle, and 
travels at the speed of light. 

 
19.   Opposite charges attract, so the attractive Coulomb force between the positive nucleus and the 

negative electrons keeps the electrons from flying off into space.  
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20. Look at a solar absorption spectrum, measured above the Earth’s atmosphere. If there are dark 
(absorption) lines at the wavelengths corresponding to oxygen transitions, then there is oxygen near 
the surface of the Sun.  

 
21. At room temperature, nearly all the atoms in hydrogen gas will be in the ground state. When light 

passes through the gas, photons are absorbed, causing electrons to make transitions to higher states 
and creating absorption lines. These lines correspond to the Lyman series since that is the series of 
transitions involving the ground state or n = 1 level. Since there are virtually no atoms in higher 
energy states, photons corresponding to transitions from n > 2 to higher states will not be absorbed.  

 
22. The closeness of the spacing between energy levels near the top of Figure 37-26 indicates that the 

energy differences between these levels are small. Small energy differences correspond to small 
wavelength differences, leading to the closely spaced spectral lines in Figure 37-21. 

  
23. There is no direct connection between the size of a particle and its de Broglie wavelength. It is 

possible for the wavelength to be smaller or larger than the particle. 
 
24. On average the electrons of helium are closer to the nucleus than the electrons of hydrogen. The 

nucleus of helium contains two protons (positive charges), and so attracts each electron more 
strongly than the single proton in the nucleus of hydrogen. (There is some shielding of the nuclear 
charge by the second electron, but each electron still feels the attractive force of more than one 
proton’s worth of charge.) 

 
25. The lines in the spectrum of hydrogen correspond to all the possible transitions that the electron can 

make. The Balmer lines, for example, correspond to an electron moving from all higher energy 
levels to the n = 2 level. Although an individual hydrogen atom only contains one electron, a sample 
of hydrogen gas contains many atoms and all the different atoms will be undergoing different 
transitions. 

 
26. The Balmer series spectral lines are in the visible light range and could be seen by early 

experimenters without special detection equipment. 
 
27. The photon carries momentum, so according to conservation of momentum, the hydrogen atom will 

recoil as the photon is ejected. Some of the energy emitted in the transition of the atom to a lower 
energy state will be the kinetic energy of the recoiling atom, so the photon will have slightly less 
energy than predicted by the simple difference in energy levels. 

 
28. No. At room temperature, virtually all the atoms in a sample of hydrogen gas will be in the ground 

state. Thus, the absorption spectrum will contain primarily just the Lyman lines, as photons 
corresponding to transitions from the n = 1 level to higher levels are absorbed. Hydrogen at very 
high temperatures will have atoms in excited states. The electrons in the higher energy levels will 
fall to all lower energy levels, not just the n = 1 level. Therefore, emission lines corresponding to 
transitions to levels higher than n = 1 will be present as well as the Lyman lines. In general, you 
would expect to see only Lyman lines in the absorption spectrum of room temperature hydrogen, but 
you would find Lyman, Balmer, Paschen, and other lines in the emission spectrum of high-
temperature hydrogen. 
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Solutions to Problems 
 
In several problems, the value of hc is needed.  We often use the result of Problem 96, 1240eV nm.hc    
 
1. We use Wien’s law, Eq. 37-1. 

 (a) 
   

 

3 3

5
P

2.90 10 m K 2.90 10 m K
1.06 10 m 10.6 m

273KT
 

 


 
    

 
 

  This wavelength is in the  far infrared.  

 (b) 
   

 

3 3

7
P

2.90 10 m K 2.90 10 m K
8.29 10 m 829nm

3500KT


 


 
    

 
 

  This wavelength is in the  infrared.  

 (c) 
   

 

3 3

4
P

2.90 10 m K 2.90 10 m K
6.90 10 m 0.69 mm

4.2 KT


 


 
    

 
 

  This wavelength is in the  microwave  region. 

 (d) 
   

 

3 3

3
P

2.90 10 m K 2.90 10 m K
1.06 10 m 1.06mm

2.725KT


 


 
    

 
 

  This wavelength is in the  microwave  region. 
 
2. We use Wien’s law to find the temperature for a peak wavelength of 460 nm. 

  
   

 
3 3

9
P

2.90 10 m K 2.90 10 m K
6300K

460 10 m
T



 



 
  



 
 

 
3. Because the energy is quantized according to Eq. 37-2, the difference in energy between adjacent 

levels is simply E = nhf. 

    34 13 206.63 10 J s 8.1 10 Hz 5.4 10 J 0.34eVE hf           

 
4. We use Eq. 37-1 with a temperature of 98 F 37 C 310K.     

  
   

 

3 3

6
P

2.90 10 m K 2.90 10 m K
9.4 10 m 9.4 m

310KT
 

 


 
    

 
 

 
5. (a) Wien’s displacement law says that PT   constant.  We must find the wavelength at which  

 ,I T  is a maximum for a given temperature.  This can be found by setting 0.I     

   
  

 

 

2 5 5
2

/ /

/ 6 5 /
2

2
2/

2
/ /

26 /

2
2

1 1

1 5
    2

1

2
    5 5 0    5 5

1

hc kT hc kT

hc kT hc kT

hc kT

hc kT hc kT

hc kT

I hc
hc

e e

hc
e e

kThc
e

hc hc hc
e e

kT kTe

 

 



 



  
  

 





 

 

     
           

          
 
  

            
  


   
 
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    
P

5 5 ; x hc
e x x

kT
    

This transcendental equation will have some solution x = constant, and so 
P

hc

kT
 constant, and 

so P constant .T    The constant could be evaluated from solving the transcendental equation,  

 (b) To find the value of the constant, we solve  5 5,xe x   or 5 5 .xx e    This can be done  

graphically, by graphing both 5y x   and 5 xy e  on the same set of axes and finding the 

intersection point.  Or, the quantity 5 5 xx e   could be calculated, and find for what value of x 
that expression is 0.  The answer is x = 4.966.  We use this value to solve for h.  The spreadsheet 
used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH37.XLS,”  on tab “Problem 37.5.” 

     
P

3 23

34P
8

4.966  

2.90 10 m K 1.38 10 J K
4.966 4.966 6.62 10 J s

3.00 10 m s

hc

kT

Tk
h

c




 



 

 
   






 

 (c) We integrate Planck’s radiation formula over all wavelengths. 

   

 

 

2 5

/ 2
0 0

5
2

02 5 4 4 3

/ 2 3 2
0 0 0

2
,   ;  let   ;    ;  

1

2
2 2

,
1 1 1

hc kT

hc kT x x

hc hc hc hc
I T d d x d dx

e kT xkT x kT

hc
hc

hc hc k T xxkTI T d d dx dx
e e x kT h c e





     



    

  



  



 
      

  
                      
 
 

 

  

4 3
4 4

3 2
0

2

1x

k x
dx T T

h c e





  
     





 

Thus the total radiated power per unit area is proportional to 4.T   Everything else in the 
expression is constant with respect to temperature. 

 
6. We use Eq. 37-3. 

    34 6 266.626 10 J s 104.1 10 Hz 6.898 10 JE hf         

 
7. We use Eq. 37-3 along with the fact that f c   for light.  The longest wavelength will have the 

lowest energy. 

  
  

 
34 8

19
1 1 199

1

6.63 10 J s 3.00 10 m /s 1eV
4.85 10 J 3.03eV

1.60 10 J410 10 m

hc
E hf








           


 

  
  

 
34 8

19
2 2 199

2

6.63 10 J s 3.00 10 m /s 1eV
2.65 10 J 1.66eV

1.60 10 J750 10 m

hc
E hf








           


 

 Thus the range of energies is 19 192.7 10 J 4.9 10 JE      or 1.7eV 3.0eV .E   
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8. We use Eq. 37-3 with the fact that f c   for light. 

  
  
  

34 8

12 3

19 3

6.63 10 J s 3.00 10 m/s
3.27 10 m 3.3 10 nm

1.60 10 J/eV 380 10 eV

c hc

f E



 



 
      

 


 

Significant diffraction occurs when the opening is on the order of the wavelength.  Thus there would 
be  insignificant diffraction  through the doorway. 

 
9. We use Eq. 37-3 with the fact that f c   for light. 

  
  

 
19

13 13min
min min min 34

0.1eV 1.60 10 J eV
    2.41 10 Hz 2 10 Hz

6.63 10 J s

E
E hf f

h






       

 
 

  
 
 

8

5 5
max 13

min

3.00 10 m s
1.24 10 m 1 10 m

2.41 10 Hz

c

f
  


     


 

 
10. We use Eq. 37-5. 

  
 
 

34

27

7

6.63 10 J s
1.07 10 kg m s

6.20 10 m

h
p









   




  

 
11. At the minimum frequency, the kinetic energy of the ejected electrons is 0.  Use Eq. 37-4a. 

  
19

140
min 0 min 34

4.8 10 J
0    7.2 10 Hz

6.63 10 J s

W
K hf W f

h






       

 
 

 
12. The longest wavelength corresponds to the minimum frequency.  That occurs when the kinetic 

energy of the ejected electrons is 0.  Use Eq. 37-4a. 

    
  

0
min 0 min

max

8 34

7
max 19

0

0      

3.00 10 m s 6.63 10 J s
3.36 10 m 336nm

3.70eV 1.60 10 J eV

c W
K hf W f

h

ch

W









      

 
    



  

 
13. The energy of the photon will equal the kinetic energy of the baseball.  We use Eq. 37-3. 

  
  

34 8

2 271
2 22

2 6.63 10 J s 3.00 10 m s2
        3.05 10 m

0.145kg 30.0m s

c hc
K hf mv h

mv







 
       


 

 
14. We divide the minimum energy by the photon energy at 550 nm to find the number of photons. 

  
  

  
18 9

min min
min 34 8

10 J 550 10 m
    2.77 3 photons

6.63 10 J s 3.00 10 m s

E E
E nhf E n

hf hc


 




       

 
 

 
15. The photon of visible light with the maximum energy has the least wavelength.  We use 410 nm as 

the lowest wavelength of visible light. 

  
  
  

34 8

max 19 9
min

6.63 10 J s 3.00 10 m/s
3.03eV

1.60 10 J/eV 410 10 m

hc
hf





 

 
  

 


 

 Electrons will not be emitted if this energy is less than the work function.   
 The metals with work functions greater than 3.03 eV are  copper and iron.  
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16. (a) At the threshold wavelength, the kinetic energy of the photoelectrons is zero, so the work  
function is equal to the energy of the photon. 

   0 max

1240eV nm
2.4eV

520nm

hc
W hf K hf


     


 

 (b) The stopping voltage is the voltage that gives a potential energy change equal to the maximum  
  kinetic energy.  We use Eq. 37-4b to calculate the maximum kinetic energy. 

   
max 0 0

max
0

1240eV nm
2.38eV 0.25eV

470nm

0.25eV
0.25V

hc
K hf W W

K
V

e e


      

  



 

 
17. The photon of visible light with the maximum energy has the minimum wavelength.  We use Eq. 37-

4b to calculate the maximum kinetic energy. 

   max 0 0

1240 eV nm
2.48 eV 0.54 eV

410 nm

hc
K hf W W


      


 

 
18. We use Eq. 37-4b to calculate the maximum kinetic energy.  Since the kinetic energy is much less 

than the rest energy, we use the classical definition of kinetic energy to calculate the speed. 

  max 0 0

1240eV nm
2.48eV 0.92eV

365nm

hc
K hf W W


      


 

  
  19

2 5max1
max 2 31

2 0.92eV 1.60 10 J eV2
    5.7 10 m/s

9.11 10 kg

K
K mv v

m






     


 

 
19. We use Eq. 37-4b to calculate the work function. 

  0 max max

1240 eV nm
1.70 eV 2.65 eV

285 nm

hc
W hf K K


      


 

 
20. Electrons emitted from photons at the threshold wavelength have no kinetic energy.  We use Eq. 37-

4b with the threshold wavelength to determine the work function.   

  0 max
max

1240 eV nm
3.88 eV.

320 nm

hc hc
W K

 
    


 

 (a) We now use Eq. 36-4b with the work function determined above to calculate the kinetic energy  
of the photoelectrons emitted by 280 nm light. 

   max 0

1240 eV nm
3.88 eV 0.55 eV

280 nm

hc
K W


    


 

 (b) Because the wavelength is greater than the threshold wavelength, the photon energy is less than  
  the work function, so there will be  no ejected electrons.  
 
21. The stopping voltage is the voltage that gives a potential energy change equal to the maximum 

kinetic energy of the photoelectrons.  We use Eq. 37-4b to calculate the work function where the 
maximum kinetic energy is the product of the stopping voltage and electron charge. 

    0 max 0

1240 eV nm
1.84 V 3.55 eV

230 nm

hc hc
W K eV e

 
      


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22. The energy required for the chemical reaction is provided by the photon.  We use Eq. 37-3 for the 
energy of the photon, where / .f c   

  
1240 eV nm

2.0 eV
630 nm

hc
E hf


   


 

Each reaction takes place in a molecule, so we use the appropriate conversions to convert 
eV/molecule to kcal/mol. 

  
19 232.0 eV 1.60 10  J 6.02 10 molecules kcal

45 kcal/mole
molecule eV mol 4186 J

E
            

     
 

 
23. (a) Since f c  , the photon energy given by Eq. 37-3 can be written in terms of the wavelength  

as .E hc    This shows that the photon with the largest wavelength has the smallest energy.  
The 750-nm photon then delivers the minimum energy that will excite the retina. 

   
  

 
–34 8

–19–9

6.63 10 J s 3.00 10 m s 1 eV
1.66eV

1.60 10 J750 10 m

hc
E


        


 

 (b) The eye cannot see light with wavelengths less than 410 nm. Obviously, these wavelength  
photons have more energy than the minimum required to initiate vision, so they must not arrive 
at the retina. That is, wavelength less than 410 nm are absorbed near the front portion of the 
eye. The threshold photon energy is that of a 410-nm photon. 

   
  

 
–34 8

–19–9

6.63 10 J s 3.00 10 m s 1 eV
3.03eV

1.60 10 J410 10 m

hc
E


        


 

 
24. We plot the maximum (kinetic) energy  

of the emitted electrons vs. the 
frequency of the incident radiation.  
Eq. 37-4b says max 0.K hf W    The 
best-fit straight line is determined by 
linear regression in Excel.  The slope 
of the best-fit straight line to the data 
should give Planck’s constant, the x-
intercept is the cutoff frequency, and 
the y-intercept is the opposite of the 
work function.  The spreadsheet used 
for this problem can be found on the 
Media Manager, with filename “PSE4_ISM_CH37.XLS,” on tab “Problem 37.24.” 

 (a)   14 19 340.4157eV 10 Hz 1.60 10 J eV 6.7 10 J sh        

 (b)  
140

cutoff 0 cutoff 14

2.3042eV
    5.5 10 Hz

0.4157eV 10 Hz

W
hf W f

h
       

  (c) 0 2.3eVW   

 
25. (a) Since f c  , the photon energy is E hc   and the largest wavelength has the smallest  

energy.  In order to eject electrons for all possible incident visible light, the metal’s work 
function must be less than or equal to the energy of a 750-nm photon. Thus the maximum value 
for the metal’s work function oW  is found by setting the work function equal to the energy of 
the 750-nm photon.  

E  = 0.4157 f  - 2.3042

R
2
 = 0.9999

0.0

0.5

1.0

1.5

2.0

2.5

3.0

6.0 7.0 8.0 9.0 10.0 11.0 12.0

Frequency (1014 Hz)

E
ne

rg
y 

(e
V

)
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  
 
–34 8

o –19–9

6.63 10 J s 3.00 10 m s 1 eV
1.66 eV

1.60 10 J750 10 m

hc
W


        


 

 (b) If the photomultiplier is to function only for incident wavelengths less than 410-nm, then we set  
the work function equal to the energy of the 410-nm photon. 

  
 
–34 8

o –19–9

6.63 10 J s 3.00 10 m s 1 eV
3.03 eV

1.60 10 J410 10 m

hc
W


        


 

 
26. Since f c  , the energy of each emitted photon is E hc  .  We multiply the energy of each 

photon by 61.0 10 s  to determine the average power output of each atom.  At distance of 

25 cmr  , the light sensor measures an intensity of 21.6 nW 1.0 cmI  . Since light energy emitted 
from atoms radiates equally in all directions, the intensity varies with distance as a spherical wave. 
Thus, from Section 15–3 in the text, the average power emitted is 24P r I .  Dividing the total 
average power by the power from each atom gives the number of trapped atoms. 

   
     

2 9 22

6 34 8 9
atom

7

4 25cm 1.6 10 W/cm4

1.0 10 /s 6.63 10 J s 3.00 10 m/s / 780 10 m

4.9 10 atoms

P r I
N

P nhc






 


  

   

 

  

 
27. We set the kinetic energy in Eq. 37-4b equal to the stopping voltage, 0eV , and write the frequency 

of the incident light in terms of the wavelength, .f c    We differentiate the resulting equation 
and solve for the fractional change in wavelength, and we take the absolute value of the final 
expression. 

  
    

0
0 0 0 02

19 9

34 8

          

1.60 10 C 550 10 m
0.01V 0.004

6.63 10 J s 3.00 10 m s

hc hc d edV e
eV W edV d V

hc hc

   
   




 




          

 
 

 

 

 
28. We use Eq. 37-6b.  Note that the answer is correct to two significant figures. 

  

 

   
 

e

31 8 13

1 1e
34

1 cos   

9.11 10 kg 3.00 10 m s 1.5 10 m
cos 1 cos 1 20

6.63 10 J s

h

m c

m c

h

 


 

 


   

                 

 

 
29. The Compton wavelength for a particle of mass m is .h mc  

 (a) 
 

  
34

12

31 8
e

6.63 10 J s
2.43 10 m

9.11 10 kg 3.00 10 m s

h

m c







  

 


 

 (b) 
 

  
34

15

27 8
p

6.63 10 J s
1.32 10 m

1.67 10 kg 3.00 10 m s

h

m c







  

 


 

 (c) The energy of the photon is given by Eq. 37-3. 

   
 

2
photon rest energy

hc hc
E hf mc

h mc
      
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30. We find the Compton wavelength shift for a photon scattered from an electron, using Eq. 37-6b.  The 
Compton wavelength of a free electron is given in the text right after Eq. 37-6b. 

         3
C

e

1 cos 1 cos 2.43 10 nm 1 cos
h

m c
      
         

 
 

 (a)   3 32.43 10 nm 1 cos60 1.22 10 nma            

 (b)   3 32.43 10 nm 1 cos90 2.43 10 nmb            

 (c)   3 32.43 10 nm 1 cos180 4.86 10 nmc            

 
31. (a) In the Compton effect, the maximum change in the photon’s wavelength is when scattering  

angle o180  .  We use Eq. 37-6b to determine the maximum change in wavelength.  Dividing 
the maximum change by the initial wavelength gives the maximum fractional change. 

   

 

    
   

e

–34

6

–31 8 9
e

1– cos   

6.63 10 J s 1 cos180
1– cos 8.8 10

9.11 10 kg 3.00 10 m s 550 10 m

h

m c

h

m c

 

 
 




  

  
   

  

  

 (b) We replace the initial wavelength with 0.10 nm.   

       
   

–34

–31 8 9
e

6.63 10 J s 1 cos180
1– cos 0.049

9.11 10 kg 3.00 10 m s 0.10 10 m

h

m c

 
  

  
  

  


 

 
32. We find the change in wavelength for each scattering event using Eq. 37-6b, with a scattering angle 

of o0.50 .    To calculate the total change in wavelength, we subtract the initial wavelength, 
obtained from the initial energy, from the final wavelength.  We divide the change in wavelength by 
the wavelength change from each event to determine the number of scattering events. 

    
  

–34

o –17 8

–31 8
e

6.63 10 J s 1 cos0.5
1– cos0.5 9.24 10 m 9.24 10 nm

9.11 10 kg 3.00 10 m s

h

m c
 

   
      

 
 

  
  
  

–34 8

–12
0 6 –19

0

6.63 10 J s 3.00 10 m s
1.24 10 m 0.00124nm

1.0 10 eV 1.60 10 J eV

hc

E


  
    

 
. 

  
    90

–8

555 nm – 0.00124 nm 
6 10 events

 9.24 10 nm
n

 



   
 

 

 
33. (a) We use conservation of momentum to set the initial momentum of the photon equal to the sum  

of the final momentum of the photon and electron, where the momentum of the photon is given 
by Eq. 37-5 and the momentum of the electron is written in terms of the total energy (Eq. 36-
13).  We multiply this equation by the speed of light to simplify.   

   2 2
00     e

h h hc hc
p E E

   
                  

 

Using conservation of energy we set the initial energy of the photon and rest energy of the 
electron equal to the sum of the final energy of the photon and the total energy of the electron.   

   0

hc hc
E E

 
           
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By summing these two equations, we eliminate the final wavelength of the photon.  We then  
solve the resulting equation for the kinetic energy of the electron, which is the total energy less 
the rest energy. 

   

2

2 2 2 2
0 0 0 0

2

2
2 0 0

2 2 2
0 0 0

0

2

2
0 0

0

2  +     2

2

2 2 2     

2 2

2

2 2

hc hc
E E E E E E E E

hc
E E

hc hc
E E E E E E E

hc
E

hc
E E

K E E
hc

 


 







                   

                                         

         
 



2

0 0

0 0 0

2

5

2 2 2

2 2 2

1240 eV nm
2

0.160 nm   228eV
1240 eV nm

2 5.11 10 eV
0.160 nm

hc hcE E

hc hc
E E E

 

 

             
                            

 
 
  

       





 

 (b) We solve the energy equation for the final wavelength. 

   

0

11

0

1 1 228eV
0.165nm

0.160nm 1240eV nm

hc hc
E E

hc K
hc hcE E

 








           

                 
 



 

 
34.  First we use conservation of energy, where the energy of the photon is written in terms of the 

wavelength, to relate the initial and final energies.  Solve this equation for the electron’s final energy. 

2 2   
hc hc hc hc

mc E E mc
   

                            
 

Next, we define the x-direction as the direction of the initial motion of the photon.  We write 
equations for the conservation of momentum in the horizontal and vertical directions, where  is the 
angle the photon makes with the initial direction of the photon and  is the angle the electron makes. 

  :    cos cos              :    0 sin sinx e y e

h h h
p p p p   

  
   

 
 

To eliminate the variable  we solve the momentum equations for the electron’s momentum, square 
the resulting equations and add the two equations together using the identity 2 2cos sin 1.    

   

   

2 2
2 2

2 2
2 2

2 22
2

  cos  cos               sin sin

cos sin cos sin

2
cos

e e

e e

e

h h h
p p

h h h
p p

h h h
p

   
  

   
  


  

            

             

            
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We now apply the relativistic invariant equation, Eq. 36-13, to write the electron momentum in terms 
of the electron energy.  Then using the electron energy obtained from the conservation of energy 
equation, we eliminate the electron energy and solve for the change in wavelength. 

   

22 22 2 2 4
2 2

2

2 2 2
2 2 2 2

2 2

2
cos

1 1
= 2

2 1 1
cos 2

cos     1 cos

h h h E m c h h
mc m c

c

h h h
m c hmc m c

h h
hmc

h
h mc h

mc


    

    


   

     

                                 

                     

        

        

 

 
35. The photon energy must be equal to the kinetic energy of the products plus the mass energy of the 

products.  The mass of the positron is equal to the mass of the electron. 

  
 

2
photon products products

2 2
products photon products photon electron

  

2 2.67 MeV 2 0.511MeV 1.65MeV

E K m c

K E m c E m c

  

      
 

  
36. The photon with the longest wavelength has the minimum energy in order to create the masses with 

no additional kinetic energy.  Use Eq. 37-5. 

  
 

  
34

16
max 2 27 8

min

6.63 10 J s
6.62 10 m

2 2 2 1.67 10 kg 3.00 10 m s

hc hc h

E mc mc








     

 


 

 This must take place in the presence of some other object in order for momentum to be conserved. 
 
37. The minimum energy necessary is equal to the rest energy of the two muons. 

    2
min 2 2 207 0.511MeV 212 MeVE mc    

 The wavelength is given by Eq. 37-5. 

  
  
  

34 8

15

19 6

6.63 10 J s 3.00 10 m s
5.86 10 m

1.60 10 J eV 212 10 eV

hc

E







 
   

 


 

 
38. Since 0.001 ,v c  the total energy of the particles is essentially equal to their rest energy.  Both 

particles have the same rest energy of 0.511 MeV.  Since the total momentum is 0, each photon must 
have half the available energy and equal momenta. 

  photon2
photon electron photon0.511MeV     ;    0.511MeV

E
E m c p c

c
     

 
39. The energy of the photon is equal to the total energy of the two particles produced.  Both particles 

have the same kinetic energy and the same mass. 

     2
photon 2 2 0.375MeV 0.511MeV 1.772 MeVE K mc      

 The wavelength is found from Eq. 37-5. 

  
  
  

34 8

13

19 6

6.63 10 J s 3.00 10 m s
7.02 10 m

1.60 10 J eV 1.772 10 eV

hc

E







 
   

 


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40. We find the wavelength from Eq. 37-7. 

  
 

  

34

32
6.63 10 J s

2.9 10 m
0.23kg 0.10m s

h h

p mv






    


 

 
41. The neutron is not relativistic, so we can use .p mv   We also use Eq. 37-7. 

  
 

  
34

12

27 4

6.63 10 J s
4.7 10 m

1.67 10 kg 8.5 10 m s

h h

p mv








    

 


 

 
42. We assume the electron is non-relativistic, and check that with the final answer.  We use Eq. 37-7. 

  
 

  
34

6

31 9

6.63 10 J s
    3.466 10 m s 0.01155

9.11 10 kg 0.21 10 m

h h h
v c

p mv m






 


       

 


 

Our use of classical expressions is justified.  The kinetic energy is equal to the potential energy 
change. 

  
  

 

231 61
221

2 19

9.11 10 kg 3.466 10 m s
34.2eV

1.60 10 J eV
eV K mv





 
   


 

 Thus the required potential difference is  34 V.  
 
43. The theoretical resolution limit is the wavelength of the electron.  We find the wavelength from the 

momentum, and find the momentum from the kinetic energy and rest energy.  We use the result from 
Problem 94.  The kinetic energy of the electron is 85 keV. 

  

  
      

34 8

2 2 219 3 6 3

12

6.63 10 J s 3.00 10 m s

2 1.60 10 J eV 85 10 eV 2 0.511 10 eV 85 10 eV

4.1 10 m

hc

K mc K








 
 

     

 



 

 
44. We use the relativistic expression for momentum, Eq. 36-8. 

  
   

   

2 2 2 2

2342 2
13

31 8

  
1 1

6.63 10 J s 1 0.981
4.9 10 m

9.11 10 kg 0.98 3.00 10 m s

mv mv h
p

v c v c

h v c

mv









   
 

 
   

 


 

 
45. Since the particles are not relativistic, we may use 2 2 .K p m   We then form the ratio of the 

kinetic energies, using Eq. 37-7. 

  

2

2 2 272
pe e

22 31
p e

2
p

1.67 10 kg2
  ;  1840

2 2 9.11 10 kg
2

h
mp h m

K
hm m m

m

 
 








     


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46. We assume the neutron is not relativistic.  If the resulting velocity is small, our assumption will be 
valid. We use Eq. 37-7. 

 
  

34

27 9

6.63 10 J s
    1300m s 1000m s

1.67 10 kg 0.3 10 m

h h h
v

p mv m






 


      

 


 

This is not relativistic, so our assumption was valid. 
 
47. (a) We find the momentum from Eq. 37-7. 

   
34

24
10

6.63 10 J s
1.1 10 kg m s

6.0 10 m

h
p









   


   

 (b) We assume the speed is non-relativistic. 

     
34

6

31 10

6.63 10 J s
    1.2 10 m s

9.11 10 kg 6.0 10 m

h h h
v

p mv m






 


      

 


 

  Since 34.04 10 ,v c    our assumption is valid. 
 (c) We calculate the kinetic energy classically. 

        222 2 3 61 1 1
2 2 2 0.511MeV 4.04 10 4.17 10 MeV 4.17eVK mv mc v c          

  This is the energy gained by an electron if accelerated through a potential difference of 4.2 V. 
 
48. Because all of the energies to be considered are much less than the rest energy of an electron, we can 

use non-relativistic relationships.  We use Eq. 37-7 to calculate the wavelength. 

  
2

    2   ;  
2 2

p h h
K p mK

m p mK
      

 (a) 
   

34
10 10

31 19

6.63 10 J s
2.7 10 m 3 10 m

2 2 9.11 10 kg 20eV 1.60 10 J eV

h

mK



 

 


     

 


 

 (b) 
   

34
11 11

31 19

6.63 10 J s
8.7 10 m 9 10 m

2 2 9.11 10 kg 200eV 1.60 10 J eV

h

mK



 

 


     

 


 

 (c) 
   

34
11

31 3 19

6.63 10 J s
2.7 10 m

2 2 9.11 10 kg 2.0 10 eV 1.60 10 J eV

h

mK





 


   

  


 

 
49. Since the particles are not relativistic, we may use 2 2 .K p m   We then form the ratio of the 

wavelengths, using Eq. 37-7. 

  
pp e

e p

e

2
  ;  1

2
2

h

m Kh h m
hp mmK
m K





      

 Thus we see the proton has the shorter wavelength, since e p.m m  

 
50. The final kinetic energy of the electron is equal to the negative change in potential energy of the 

electron as it passes through the potential difference.  We compare this energy to the rest energy of 
the electron to determine if the electron is relativistic. 

    3 31e 33 10 V 33 10 eVK q V        

 Because this is greater than 1% of the electron rest energy, the electron is relativistic.  We use Eq. 
36-13 to determine the electron momentum and then Eq. 37-5 to determine the wavelength. 
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    

2 2
22 2 2 2 2 4

2 2 23 3 3

2
 

1240eV nm
0.0066nm

2 33 10 eV 2 33 10 eV 511 10 eV

K Kmc
E K mc p c m c p

c
h hc

p K Kmc


       

   
    

  

   Because  « 5 cm,   diffraction effects are negligible.  
 
51. We will assume that the electrons are non-relativistic, and then examine the result in light of that 

assumption.  The wavelength of the electron can be found from Eq. 34-2a.  The speed can then be 
found from Eq. 37-7. 

    
   

order
order

34

order
31 6

sin
sin       ;    

6.63 10 J s 2
590m s

sin 9.11 10 kg 3.0 10 m sin55

e

e

d h h
d m

m p m v

hm
v

m d

   





 

     


  

  

  

 This is far from being relativistic, so our original assumption was fine. 
 
52. We relate the kinetic energy to the momentum with a classical relationship, since the electrons are 

non-relativistic.  We also use Eq. 37-7.  We then assume that the kinetic energy was acquired by 
electrostatic potential energy. 

   
   

2 2

2

2342

22 31 19 9

  
2 2

6.63 10 J s
19V

2 2 9.11 10 kg 1.60 10 C 0.28 10 m

p h
K eV

m m

h
V

me







  

   


  

  

  

 
53. The kinetic energy is 3450 eV.  That is small enough compared to the rest energy of the electron for 

the electron to be non-relativistic.  We use Eq. 37-7. 

     
  

    

34 8

1/ 2 1/ 2 1/ 22 19 6

11

6.63 10 J s 3.00 10 m /s

2 2 1.60 10 J/eV 2 0.511 10 eV 3450 eV

2.09 10 m 20.9pm

h h hc

p mK mc K








 
   

   

  



 

 

54. The energy of a level is 
 

2

13.6 eV
.nE

n
   

 (a) The transition from n = 1 to n' = 3 is an  absorption,  because the  final state,  n' = 3, has a  
  higher energy.  The photon energy is the difference between the energies of the two states. 

     2 2

1 1
13.6 eV 12.1 eV

3 1n nhf E E
                 

 

 (b) The transition from n = 6 to n' = 2 is an  emission,  because the  initial state,  n' = 2, has a  
  higher energy.  The photon energy is the difference between the energies of the two states. 

       2 2

1 1
13.6 eV 3.0 eV

2 6n nhf E E
                 

 

 (c) The transition from n = 4 to n' = 5 is an  absorption,  because the  final state,  n' = 5, has a  
  higher energy.  The photon energy is the difference between the energies of the two states. 
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     2 2

1 1
13.6 eV 0.31 eV

5 4n nhf E E
                 

 

 The photon for the transition from  n = 1 to n' = 3  has the largest energy. 
 
55. To ionize the atom means removing the electron, or raising it to zero energy. 

  
   

ionization 2 2

13.6eV 13.6eV
0 0 1.51eV

3nE E
n


       

 
56. We use the equation that appears above Eq. 37-15 in the text. 

(a) The second Balmer line is the transition from n = 4 to n = 2. 

   
   4 2

1240eV nm
490nm

0.85eV 3.4eV

hc

E E
   

     


 

 (b) The third Lyman line is the transition from n = 4 to n = 1. 

   
   4 1

1240eV nm
97.3nm

0.85 eV 13.6 eV

hc

E E
   

     


 

 (c) The first Balmer line is the transition from n = 3 to n = 2. 
  For the jump from n = 5 to n = 2, we have 

   
   3 2

1240eV nm
650nm

1.5 eV 3.4 eV

hc

E E
   

     


 

 
57. Doubly ionized lithium is similar to hydrogen, except that there are three positive charges (Z = 3) in 

the nucleus.  The square of the product of the positive and negative charges appears in the energy 
term for the energy levels.  We can use the results for hydrogen, if we replace e2 by Ze2: 

  
     2 2

2 2 2

13.6eV 3 13.6eV 122eV
n

Z
E

n n n
       

  
 
 ionization 1 2

122eV
0 0 122eV

1
E E

 
      

  
 

 
58. We evaluate the Rydberg constant using Eq. 37-8 and 37-15.  We use hydrogen so Z = 1. 

  

       

     
     

2 4

2 2 2 22 3
0

42 19 312 4

2 32 3 12 2 2 34 8
0

4
7 7 1

4
3 3

2 4

1 1 1 1 1
  

8

1 1.602176 10 C 9.109382 10 kg

8 8 8.854188 10 C N m 6.626069 10 J s 2.997925 10 m s

C kg
1.0974 10 1.0974 10 m

C
J s m s

N m

Z e m
R

h cn n n n

Z e m
R

h c

 



 

 



   
              

 
 

  

   

 





 

 
59. The longest wavelength corresponds to the minimum energy, which is the ionization energy: 

  
  
  

34 8

8

19
ion

6.63 10 J s 3.00 10 m /s
9.14 10 m 91.4nm

1.60 10 J/eV 13.6eV

hc

E







 
    




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60. Singly ionized helium is like hydrogen, except that there are two positive charges (Z = 2) in the 
nucleus.  The square of the product of the positive and negative charges appears in the energy term 
for the energy levels.  We can use the results for hydrogen, if we replace e2 by Ze2. 

  
     2 2

2 2 2

13.6 eV 2 13.6 eV 54.4 eV
n

Z
E

n n n
       

 We find the energy of the photon from the n = 5 to n = 2 transition in singly-ionized helium. 

   5 2 2 2

1 1
54.4 eV 11.4 eV

5 2
E E E

                  
 

Because this is NOT the energy difference between any two specific energy levels for hydrogen, the 
photon CANNOT be absorbed by hydrogen. 

 
61. The energy of the photon is the sum of the ionization energy of 13.6 eV and the kinetic energy of 

20.0eV.  The wavelength is found from Eq. 37-3. 

  
  
  

34 8

8
total 19

total

6.63 10 J s 3.00 10 m /s
    3.70 10 m 37.0nm

1.60 10 J/eV 33.6 eV

hc hc
hf E

E









 
       




 

 
62. A collision is elastic if the kinetic energy before the collision is equal to the kinetic energy after the 

collision.  If the hydrogen atom is in the ground state, then the smallest amount of energy it can 
absorb is the difference in the n = 1 and n = 2 levels.  So as long as the kinetic energy of the 
incoming electron is less than that difference, the collision must be elastic. 

   2 1

13.6eV
13.6eV 10.2eV

4
K E E         

 
 

 
63. Singly ionized helium is like hydrogen, except that there are two 

positive charges (Z = 2) in the nucleus. The square of the product 
of the positive and negative charges appears in the energy term 
for the energy levels.  We can use the results for hydrogen, if we 
replace e2 by Ze2: 

  
     2 2

2 2 2

1 2 3 4

13.6eV 2 13.6eV 54.4eV

54.5eV,  13.6eV,  6.0eV,  3.4eV

n

Z
E

n n n
E E E E

     

       
 

 
 
 
 
64. Doubly ionized lithium is like hydrogen, except that there are  

three positive charges (Z = 3) in the nucleus.  The square of the 
product of the positive and negative charges appears in the 
energy term for the energy levels.  We can use the results for 
hydrogen, if we replace e2 by Ze2: 

  

     2 2

2 2 2

1 2 3

4

13.6eV 3 13.6eV 122.4eV

122eV,  30.6eV,  13.6eV,

7.65eV

n

Z
E

n n n
E E E

E

     

     
 

 

 
 
 

122

30.6

13.6
7.65
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65. The potential energy for the ground state is given by the charge of the electron times the electric 
potential caused by the proton.  

  
        

 

29 2 2 19 19

proton 10
0 1

9.00 10 N m C 1.60 10 C 1eV 1.60 10 J1

4 0.529 10 m

27.2eV

e
U e V e

r

 



  
     



 



 

The kinetic energy is the total energy minus the potential energy. 

   1 13.6eV 27.2eV 13.6eVK E U         

 
66. The value of n is found from 2

1,nr n r  and then find the energy from Eq. 37-14b. 

  

 

     

31
22

1 10
1

5
2 2 2

0.10 10 m
    972

0.529 10 m

13.6 eV 13.6 eV 13.6 eV
1.4 10 eV

972 1375

n
n

r
r n r n

r

E
n








    



        

 

 
67. The velocity is found from Eq. 37-10 evaluated for n = 1. 

   
  

34

6 3
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


 

 


     

 

  

 We see that ,v c  and so yes, non-relativistic formulas are justified. 
 The relativistic factor is as follows. 

  

1
22 2 62

51 1
2 2 8

2.190 10 m s
1 1 1 1 2.66 10 0.99997

3.00 10 m s

v v

c c


                            
 

We see that 2 21 v c  is essentially 1, and so again the answer is yes, non-relativistic formulas are 

justified. 
 
68. The angular momentum can be used to find the quantum number for the orbit, and then the energy 

can be found from the quantum number.  Use Eqs. 37-10 and 37-14b. 

  

 
 

 

34 2
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2

2
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    5.000 5
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13.6eV 0.544eV

25n

h L
L n n

h

Z
E

n









     



    




  

   
69. Hydrogen atoms start in the 1n   orbit (“ground state”). Using Eq. 37-9 and Eq. 37-14b, we 

determine the orbit to which the atom is excited when it absorbs a photon of 12.75 Ev via collision 
with an electron.  Then, using Eq. 37-15, we calculate all possible wavelengths that can be emitted as 
the electron cascades back to the ground state. 

2

13.6 eV
      

13.6 eV 13.6 eV
4

13.6 eV + 12.75 eV

U L U L

L

E E E E E E
n

n
E E

         

 
  

  
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Starting with the electron in the 4n   orbit, the following transitions are possible: 4n   to 3n  ; 
4n   to 2n  ; 4n   to 1n  ; 3n   to 2n  ; 3n   to 1n  ; 2n   to 1n  . 

   7 –1 5 –1
2 2

1 1 1
1.097 10 m – 5.333 10 m 1875 nm

3 4



       
   

 7 –1 6 –1
2 2

1 1 1
1.097 10 m – 2.057 10 m 486.2 nm

2 4



       
   

 7 –1 7 –1
2 2

1 1 1
1.097 10 m – 1.028 10 m 97.23 nm

1 4



       
   

 7 –1 6 –1
2 2
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


       
 

 

 7 –1 6 –1
2 2
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


       
 

 

 7 –1 6 –1
2 2

1 1 1
1.097 10 m – 8.228 10 m 121.5 nm

1 2



       
   

 
70. When we compare the gravitational and electric forces we see that we can use the same expression 

for the Bohr orbits, Eq. 37-11 and 37-14a, if we replace 2
04Ze   with .e pGm m    
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  
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 
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
 

   




 
       

 

  
    




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71. We know that the radii of the orbits are given by 2

1.nr n r   Find the difference in radius for adjacent 
orbits. 

       22 2 2
1 1 1 1 1 11 2 1 2 1n nr r r n r n r n r n n r n r              

If 1,n we have 1 2

2
2 2 .n nr r

r nr n
n n

     

In the classical limit, the separation of radii (and energies) should be very small.  We see that letting 
n   accomplishes this.  If we substitute the expression for 1r  from Eq. 37-11, we have this. 

2
0

1 2

2
2

nh
r nr

me




    

We see that 2 ,r h   and so letting 0h   is equivalent to considering .n   
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72. We calculate the energy from the light bulb that enters the eye by calculating the intensity of the  
light at a distance of 250 m by dividing the power in the visible spectrum by the area of a sphere of 
radius 250 m.  We multiply the intensity of the light by the area of the pupil to determine the energy 
entering the eye per second.  We divide this energy by the energy of a photon (Eq. 37-3) to calculate 
the number of photons entering the eye per second.  

 
  

  

2
2

2
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34 8
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       / 4
4 16
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hc hc
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




 



     
 

             

 

l l

l 
 

 
73. To produce a photoelectron, the hydrogen atom must be ionized, so the minimum energy of the 

photon is 13.6 eV.  We find the minimum frequency of the photon from Eq. 37-3. 

  
 

19

15min
min 34

13.6 eV 1.60 10 J eV
        3.28 10 Hz

6.63 10 J s

E E
E hf f f

h h






       

 
 

 
74. From Section 35-10, the spacing between planes, d, for the first-order peaks is given by Eq. 35-20, 

2 sin .d    The wavelength of the electrons can be found from their kinetic energy.  The electrons 
are not relativistic at the energy given. 
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75. The power rating is the amount of energy produced per second.  If this is divided by the energy per 

photon, then the result is the number of photons produced per second. 
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76. The intensity is the amount of energy per second per unit area reaching the Earth.  If that intensity is 

divided by the energy per photon, the result will be the photons per second per unit area reaching the 
Earth.  We use Eq. 37-3. 
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77. The impulse on the wall is due to the change in momentum of the photons.  Each photon is absorbed, 
and so its entire momentum is transferred to the wall. 

  

 
  

 

on wall wall photons photon photon

9 9
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34

0   
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
 
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 
   

  

 

 
78. We find the peak wavelength from Wien’s law, Eq. 37-1. 

  
   

 
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79. The total energy of the two photons must equal the total energy (kinetic energy plus mass energy) of 

the two particles.  The total momentum of the photons is 0, so the momentum of the particles must 
have been equal and opposite.  Since both particles have the same mass and the same momentum, 
they each have the same kinetic energy. 
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21
photons e2

2   

0.755MeV 0.511MeV 0.244 MeV
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K E m c

   
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80. We calculate the required momentum from de Broglie’s relation, Eq. 37-7.    

  
 
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  

 (a) For the proton, we use the classical definition of momentum to determine the speed of the  
electron, and then the kinetic energy.  We divide the kinetic energy by the charge of the proton 
to determine the required potential difference.  
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 (b) For the electron, if we divide the momentum by the electron mass we obtain a speed greater  
than 10% of the speed of light.  Therefore, we must use the relativistic invariant equation to 
determine the energy of the electron.  We then subtract the rest energy from the total energy to 
determine the kinetic energy of the electron.  Finally, we divide the kinetic energy by the 
electron charge to calculate the potential difference. 
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81. If we ignore the recoil motion, at the closest approach the kinetic energy of both particles is zero.  
The potential energy of the two charges must equal the initial kinetic energy of the   particle: 
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82. The electrostatic potential energy is given by Eq. 23-5.  The kinetic energy is given by the total 

energy, Eq. 37-14a, minus the potential energy.  The Bohr radius is given by Eq. 37-11. 
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83. We calculate the ratio of the forces. 
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
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  Yes,  the gravitational force may be safely ignored. 
 
84. The potential difference gives the electrons a kinetic energy of 12.3 eV, so it is possible to provide 

this much energy to the hydrogen atom through collisions.  From the ground state, the maximum 
energy of the atom is 13.6 eV 12.3 eV 1.3 eV.      From the energy level diagram, Figure 37-26, 
we see that this means the atom could be excited to the n = 3 state, so the possible transitions when 
the atom returns to the ground state are n = 3 to n = 2, n = 3 to n = 1, and n = 2 to n = 1.  We 
calculate the wavelengths from the equation above Eq. 37-15. 

  
   3 2

3 2

1240eV nm
650nm

1.5 eV 3.4 eV

hc

E E
    

     


 

  
   3 1

3 1

1240eV nm
102nm

1.5 eV 13.6 eV

hc

E E
    

     


 

  
   2 1

2 1

1240eV nm
122nm

3.4 eV 13.6 eV

hc

E E
    

     


 

 
85. The stopping potential is the voltage that gives a potential energy change equal to the maximum 

kinetic energy.  We use Eq. 37-4b to first find the work function, and then find the stopping potential 
for the higher wavelength. 

  max 0 0 0 0
0

    
hc hc

K eV W W eV
 
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 The potential difference needed to cancel an electron kinetic energy of 2.25 eV is  2.25 V.  
 
86. (a) The electron has a charge e, so the potential difference produces a kinetic energy of eV.  The  

shortest wavelength photon is produced when all the kinetic energy is lost and a photon is 
emitted. 

   max 0
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87. The average force on the sail is equal to the impulse on the sail divided by the time (Eq. 9-2).  Since 

the photons bounce off the mirror the impulse is equal to twice the incident momentum.  We use Eq. 
37-5 to write the momentum of the photon in terms of the photon energy.  The total photon energy is 
the intensity of the sunlight multiplied by the area of the sail 
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88. We first find the work function from the given data.  A photon energy of 9.0 eV corresponds with a 

stopping potential of 4.0 V. 
  0 0 0 0    9.0eV 4.0eV 5.0eVeV hf W W hf eV         

If the photons’ wavelength is doubled, the energy is halved, from 9.0 eV to 4.5 eV.  This is smaller 
than the work function, and so no current flows.  Thus the maximum kinetic energy is 0.  Likewise, 
if the photon’s wavelength is tripled, the energy is only 3.0 eV, which is still less than the work 
function, and so no current flows. 

 
89. The electrons will be non-relativistic at that low energy.  The maximum kinetic energy of the 

photoelectrons is given by Eq. 37-4b.  The kinetic energy determines the momentum, and the 
momentum determines the wavelength of the emitted electrons.  The shortest electron wavelength 
corresponds to the maximum kinetic energy. 
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90. The wavelength is found from Eq. 35-13.  The velocity of electrons with the same wavelength (and 
thus the same diffraction pattern) is found from their momentum, assuming they are not relativistic.  
We use Eq. 37-7 to relate the wavelength and momentum. 

    
   

34

31 3

sin
sin       

6.63 10 J s 1
990m s

sin 9.11 10 kg 0.012 10 m sin3.5

d h h
d n

n p mv

hn
v

md

  





 

     


  

  

  

 
91. (a) See the adjacent figure. 
 (b) Absorption of a 5.1 eV photon represents a transition  

from the  ground state  to the state 5.1 eV above that, 
the third excited state.  Possible photon emission 
energies are found by considering all the possible 
downward transitions that might occur as the electron 
makes its way back to the ground state. 

    6.4eV 6.8eV 0.4eV     

    6.4eV 9.0eV 2.6eV     

    6.4eV 11.5eV 5.1eV     

    6.8eV 9.0eV 2.2eV     

    6.8eV 11.5eV 4.7eV     

    9.0eV 11.5eV 2.5eV     

 
92. (a) We use Eq. 37-4b to calculate the maximum kinetic energy of the electron and set this equal to 

the product of the stopping voltage and the electron charge. 

   
   

0 0
max 0 0 0

0

/
    

1240eV nm 424nm 2.28eV
0.65V

e

hf W hc W
K hf W eV V

e e

V

 
     


 


 

 (b) We calculate the speed from the non-relativistic kinetic energy equation and the maximum 
kinetic energy found in part (a). 

   
  19

2 5max1
max max max2 31

2 0.65eV 1.60 10 J eV2
    4.8 10 m/s

9.11 10 kg

K
K mv v

m






     


 

 (c) We use Eq. 37-7 to calculate the de Broglie wavelength. 

     
34

9

31 5

6.63 10 J s
1.52 10 m 1.5nm

9.11 10 kg 4.8 10 m s

h h

p mv








     

 


 

 
93. (a) We use Bohr’s analysis of the hydrogen atom, where we replace the proton mass with Earth’s  

mass, the electron mass with the Moon’s mass, and the electrostatic force 
2

2e

ke
F

r
  with the 

gravitational force  
2

.E M
g

Gm m
F

r
   To account for the change in force, we replace 2ke  with 

.E MGm m   With these replacements, we write expressions similar to Eq. 37-11 and Eq. 37-14a 
for the Bohr radius and energy.   
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 

    
 

2 2

2 2

2342 2
2

22 2 2 11 2 2 22 24

2 129

  
4

6.626 10 J s

4 4 6.67 10 N m / kg 7.35 10 kg 5.98 10 kg

5.16 10 m

n

n
M E

h n
r

mke

h n
r n

Gm m

n



 







 


 

  

 




   

   
     

 

2 4 2

2 2

2 2 32 11 2 2 24 222 2 2 3

22 2 2 34

165

2

2
  

2 6.67 10 N m / kg 5.98 10 kg 7.35 10 kg2

6.626 10 J s

2.84 10 J

n

E M
n

e mk
E

n h

G m m
E

n h n

n








  

  
   




 




 

(b) We insert the known masses and Earth–Moon distance into the Bohr radius equation to  
determine the Bohr state. 

   
     

 

2 2

2

22 11 2 2 22 24 8

234

68

4
 

4 6.67 10  Nm / kg 7.35 10  kg 5.98 10  kg 3.84 10  m

6.626 10  Js

2.73 10

M E nGm m r
n

h



 





   




 

 

Since 6810 ,n   a value of  1n   is negligible compared to n.  Hence the quantization of 

energy and radius is  not apparent.  
 
94. We use Eqs. 36-13, 36-11, and 37-7 to derive the expression. 

  

 

 

22 2 2 4 2 2 2 2 2 4 2 2 2 2 4

2 2 2 2
2 2 2 2 2

2 2 2 2 2

  ;      2   

2         
2 2

p c m c E E K mc p c m c K mc K mc K m c

h c h c hc
K mc K p c

K mc K K mc K
 



           

      
 

  

 
95. As light leaves the flashlight it gains momentum.  This change in momentum is given by Eq. 31-20. 

Dividing the change in momentum by the elapsed time gives the force the flashlight must apply to 
the light to produce this momentum.  This is equal to the reaction force that light applies to the 
flashlight. 

8
8

3.0W
1.0 10 N

3.00 10 m s

p U P

t c t c
 

    
  

 

 
96. (a) Since f c  , the energy of each emitted photon is .E hc    We insert the values for h and  

c and convert the resulting units to eV nm.  

   
    

   

–34 8 –19

–9

6.626 10 J s 2.998 10 m s 1eV 1.602 10 J 1240 eV nm

in nm10 m 1nm

hc
E

  
  

  
 
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 (b) Insert 650 nm into the above equation. 

   
1240 eV nm

1.9 eV
650 nm

E  


 

 

97. (a) We write the Planck time as   P ,t G h c  and the units of Pt  must be  .T  

          
  

                   
     
            

3 2
2 2

P 2
    

L ML L
t G h c T L M T

T TMT
 

There are no mass units in  ,T  and so   ,  and            5 3
.T L T   There are no 

length units in  ,T  and so   5  and          3 5 2
.T T T   Thus   1

2
 and 

   5
2

.  

   1/ 2 1/ 2 5/ 2
P 5

Gh
t G h c

c
   

 (b) 
  

 

11 2 2 34

43
P 55 8

6.67 10 N m kg 6.63 10 J s
1.35 10 s

3.00 10 m s

Gh
t

c

 


  
   




  

 (c) We write the Planck length as    P ,G h c  and the units of P  must be  .L  

          
  

                   
     
            

3 2
2 2

P 2
    

L ML L
G h c L L M T

T TMT
 

There are no mass units in  ,L  and so   ,  and            5 3
.L L T   There are no 

time units in  ,L  and so   3  and         5 3 2
.L L L   Thus   1

2
 and 

   3
2

.  

   1/ 2 1/ 2 3/ 2
P 3

Gh
t G h c

c
   

 (d) 
  

 

11 2 2 34

35
P 53 8

6.67 10 N m kg 6.63 10 J s
4.05 10 m

3.00 10 m s

Gh

c


 


  
   




 

 
98. For standing matter waves, there are nodes at the two walls.  For the ground state (first harmonic), 

the wavelength is twice the distance between the walls, or 1
2 l (see Figure 15-26b).  We use Eq. 

37-7 to find the velocity and then the kinetic energy. 

  
22 2

1
2 2

1
    2  ;   ;  

2 2 2 2 8

h h p h h
p K

m m m
 


         
 

l l
l l l

  

 For the second harmonic, the distance between the walls is a full wavelength, and so .l  

  
22 2

2

1
     ;  

2 2 2

h h p h h
p K

m m m



        
 

l
l l l
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99. (a)  Apply conservation of momentum before and after the emission of the photon to determine the  
recoil speed of the atom, where the momentum of the photon is given by Eq. 37-7.   

     
 

  
–34

–3

–27 –9

6.63 10 J s
0     6.0 10 m s

85 1.66 10 kg 780 10 m

h h
mv v

m 


      
 


 

(b)  We solve Eq. 18-5 for the lowest achievable temperature, where the recoil speed is the rms 
speed of the rubidium gas.  

  
 

2–27 –32
–7

–23

85 1.66 10 kg 6.0 10 m s3
    1.2 10 K 0.12 K

3 3 1.38 10 J K

kT mv
v T

m k


 
      


 

 
100. Each time the rubidium atom absorbs a photon its momentum decreases by the momentum of the 

photon.  Dividing the initial momentum of the rubidium atom by the momentum of the photon, Eq. 
37-7, gives the number of collisions necessary to stop the atom.  Multiplying the number of 
collisions by the absorption time, 25 ns per absorption, provides the time to completely stop the 
atom. 

    

 

27 9

34

8u 1.66 10 kg/u 290m s 780 10 m
48,140

6.63 10 J s

48,140 25ns 1.2 ms

mv mv
n

h h

T




 



 
   



 

  

 
101. (a) See the adjacent graphs.   
 (b) To compare the intensities, the  

two graphs are numerically 
integrated from 400 nm to 760 
nm, which is approximately the 
range of wavelengths for visible 
light.  The result of those 
integrations is that the higher 
temperature bulb is about 4.8 
times more intense than the 
lower temperature bulb. 

 
The spreadsheet used for this 
problem can be found on the Media 
Manager, with filename “PSE4_ISM_CH37.XLS,” on tab “Problem 37.101.” 

 
102. Planck’s radiation formula  I T  was calculated for a temperature of 6000 K, for wavelengths 

from 20 nm to 2000 nm.  A plot of those calculations is in the spreadsheet for this problem.  To 
estimate the % of emitted sunlight that is in the visible, this ratio was calculated by numeric 
integration.  The details are in the spreadsheet. 

  

 

 

700 nm

400nm
2000 nm

20nm

,

% visible 0.42

,

I T d

I T d

 

 
 




 

So our estimate is that 42% of emitted sunlight is in the visible wavelengths.  The spreadsheet used 
for this problem can be found on the Media Manager, with filename “PSE4_ISM_CH37.XLS,” on 
tab “Problem 37.102.” 
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103. (a) For the photoelectric effect experiment, Eq. 37-4b can be expressed as max 0.K hf W    The  
maximum kinetic energy is equal to the potential energy associated with the stopping voltage, 
so max 0.K eV   We also have .f c    Combine those relationships as follows. 

   0
max 0 0 0 0

1
        

hc hc W
K hf W eV W V

e e 
         

A plot of 0V  vs. 
1


 should yield a straight line with a slope of 

hc

e
 and a y-intercept of 0 .

W

e
  

 
(b) The graph is shown, with a linear  

regression fit as given by Excel.  
 

 (c) The slope is 1.24V m,
hc

a
e

     

and the y-intercept is 2.31V.b    
 
The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH37.XLS,” on tab 
“Problem 37.103.” 
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