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CHAPTER 32:  Light: Reflection and Refraction 
 
Responses to Questions 
 
1.  (a) The Moon would look just like it does now, since the surface is rough. Reflected sunlight is  

scattered by the surface of the Moon in many directions, making the surface appear white. 
(b) With a polished, mirror-like surface, the Moon would reflect an image of the Sun, the stars, and  

the Earth. The appearance of the Moon would be different as seen from different locations on 
the Earth. 

 
2. Yes, it would have been possible, although certainly difficult. Several attempts have been made to 

reenact the event in order to test its feasibility. Two of the successful attempts include a 1975 
experiment directed by Greek scientist Dr. Ioannis Sakkas and a 2005 experiment performed by a 
group of engineering students at MIT. (See www.mit.edu for links to both these and other similar 
experiments.)  In both these cases, several individual mirrors operating together simulated a large 
spherical mirror and were used to ignite a wooden boat. If in fact the story is true, Archimedes 
would have needed good weather and an enemy fleet that cooperated by staying relatively still while 
the focused sunlight heated the wood.  

 
3.  The focal length of a plane mirror is infinite. The magnification of a plane mirror is 1. 
 
4.  The image is real and inverted, because the magnification is negative. The mirror is concave, 

because convex mirrors can only form virtual images. The image is on the same side of the mirror as 
the object; real images are formed by converging light rays and light rays cannot actually pass 
through a mirror.  

 
5.  Ray 2 is directed as if it were going through the focal 

point and is reflected from the convex mirror parallel 
to the principal axis.   

       
 
 
 
 
 
6.  Yes. For a plane mirror, o i ,d d   since the object and image are equidistant from the mirror and the 

image is virtual, or behind the mirror. The focal length of a plane mirror is infinite, so the result of 

the mirror equation, Eq. 32-2, is 
o i

1 1
0

d d
  , or o i ,d d   as expected. 

 
7. Yes. When a concave mirror produces a real image of a real object, both do and di are positive. The 

magnification equation, i

o

,
d

m
d

   results in a negative magnification, which indicates that the 

image is inverted. 
 
 
 
 
 

2 
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air 

eye 

Apparent depth

air 
 
 
water 

8. A light ray entering the solid rectangular object will exit the other side 
following a path that is parallel to its original path but displaced slightly 
from it. The angle of refraction in the glass can be determined 
geometrically from this displacement and the thickness of the object. The 
index of refraction can then be determined using Snell’s Law with this 
angle of refraction and the original angle of incidence. The speed of light 
in the material follows from the definition of the index of refraction:  

.n c v   
 
9.  This effect is similar to diffuse reflection off of a rough surface. A ripply sea has multiple surfaces 

which are at an angle to reflect the image of the Moon into your eyes. This makes the image of the 
Moon appear elongated. 

 
10. A negative object distance corresponds to a virtual object. This could occur if converging rays from 

another mirror or lens were intercepted by the mirror before actually forming an image. This image 
would be the object for the mirror.  

 
11. The angle of refraction and the angle of incidence are both zero in this case. 
 
12.  Underestimate. The light rays leaving the bottom of 

the pool bend away from the normal as they enter 
the air, so their source appears to be more shallow 
than it actually is. The greater the viewing angle, the 
more the bending of the light and therefore the less 
the apparent depth. 

 
 
13. Your brain interprets the refracted rays as if the part of 

the stick that is under water is closer to the surface than it 
actually is, so the stick appears bent. 

 
 
 
 

 
14.  Because the broad beam hits the surface of the water at an 

angle, it illuminates an area of the surface that is wider 
than the beam width. Light from the beam bends towards 
the normal. The refracted beam is wider than the incident 
beam because one edge of the beam strikes the surface 
first, while the other edge travels farther in the air. (See the 
adjacent diagram.)  

 
 
15. The light rays from the fish are bent away from the normal as they 

leave the tank. The fish will appear closer to the side of the tank than 
it really is. 

 
 
 
 
 

fish 

air

n
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16.  The water drop acts like a lens, and refracts light as the light passes through it. Also, some of the 
light incident on the air/water boundary is reflected at the surface, so the drop can be seen in 
reflected light. 

 
17. When the light ray passes from the blue material to the green material, the ray bends toward the 

normal. This indicates that the index of refraction of the blue material is less than that of the green 
material.  When the light ray passes from the green material to the yellow material, the ray bends 
away from the normal, but not far enough to make the ray parallel to the initial ray, indicating that 
the index of refraction of the yellow material is less than that of the green material but larger than the 
index of refraction of the blue material.  The ranking of the indices of refraction is, least to greatest, 
blue, yellow, and green. 

 
18.  No. Total internal reflection can only occur when light travels from a medium of higher index of 

refraction to a medium of lower index of refraction.  
 
19. No. The refraction of light as it enters the pool will make the object look smaller. See Figure 32-32 

and Conceptual Example 32-11. 
 
20. The mirror is concave, and the person is standing inside the focal point so that a virtual, upright 

image is formed. (A convex mirror would also form a virtual, upright image but the image would be 
smaller than the object.) In addition, an image is also present at the far right edge of the mirror, 
which is only possible if the mirror is concave.  

 
21. (a) Since the light is coming from a vacuum into the atmosphere, which has a larger index of 

refraction, the light rays should bend toward the normal (toward the vertical direction). 
(b) The stars are closer to the horizon than they appear to be from the surface of the Earth. 

 
 

Solutions to Problems 
 
1. Because the angle of incidence must equal the angle of reflection, we  
 see from the ray diagrams that the ray that reflects to your eye must  
 be as far below the horizontal line to the reflection point on the mirror  
 as the top is above the line, regardless of your position. 
 
 
 
 
2. For a flat mirror the image is as far behind the mirror as the object is in front, so the distance from 

object to image is twice the distance from the object to the mirror, or 5.6m .  

 
3. The law of reflection can be applied twice.  At the first reflection, 

the angle is ,  and at the second reflection, the angle is .   
Consider the triangle formed by the mirrors and the first reflected 
ray. 

  180     38 135 180     7                   

 
 
 
 

  
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4. The angle of incidence is the angle of reflection.  See the diagram for the 
appropriate lengths.  

   
 

( )
tan   

1.64m 0.38m (0.38m)
    0.69m

2.30m

H h h

x

x
x

 
  


  

l
 

 
5. The incoming ray is represented by line segment DA.  For the 

first reflection at A the angles of incidence and reflection are 1.   
For the second reflection at B the angles of incidence and 
reflection are 2.   We relate 1  and 2  to the angle at which the 

mirrors meet, ,  by using the sum of the angles of the triangle 
ABC. 

     1 2 1 290 90 180                      

 Do the same for triangle ABD. 
   1 2 1 22 2 180     180 2 180 2                   

 At point D we see that the deflection is as follows. 

   180 180 180 2 2             

 
6.  The rays entering your eye are diverging from the virtual 

image position behind the mirror.  Thus the diameter of the 
area on the mirror and the diameter of your pupil must 
subtend the same angle from the image. 

   

 

pupilmirror i 1
mirror pupil pupil2

i o i o i

22 2 31 1 1
mirror mirror pupil4 4 4

6 2

    

4.5 10 m
16

4.0 10 m

DD d
D D D

d d d d d

A D D
  



   
 

   

 

 
7. See the “top view” ray diagram. 
 
 
 
 
 
8. (a) The velocity of the incoming light wave is in the direction of the initial light wave.  We can  

write this velocity in component form, where the three axes of our coordinate system are chosen 
to be perpendicular to the plane of each of the three mirrors.  As the light reflects off any of the 
three mirrors, the component of the velocity perpendicular to that mirror reverses direction.  The 
other two velocity components will remain unchanged.  After the light has reflected off of each 
of the three mirrors, each of the three velocity components will be reversed and the light will be 
traveling directly back from where it came. 

 (b) If the mirrors are assumed to be large enough, the light can only reflect off two of the mirrors if  
the velocity component perpendicular to the third mirror is zero.  Therefore, in this case the 
light is still reflected back directly to where it came. 

 
 

Mirror

H 

h
x

l 

 



   


 

 

 

A 

B

C

D

od id
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9. The rays from the Sun will be parallel, so the image will be at the focal point, which is half the radius 
of curvature. 

  2 2(18.8cm) 37.6cmr f    

 
10. To produce an image at infinity, the object must be at the focal point, which is half the radius of 

curvature. 

   1 1
o 2 2 24.0cm 12.0cmd f r     

 
11. The image flips at the focal point, which is half the radius of curvature.  Thus the radius is 1.0 m. 
 

12. (a) The focal length is half the radius of curvature, so  1 1
2 2 24cm 12cm .f r    

(b) Use Eq. 32-2. 
  o

i
o i o

35cm 24cm1 1 1
    76cm

35cm 24cm

d f
d

d d f d f
     

 
 

 (c) The image is inverted, since the magnification is negative. 
 
13. The ball is a convex mirror with a focal length  1 1

2 2 4.6cm 2.3cm.f r       Use Eq. 32-3 to 

locate the image. 
   

  
  

 
o

i
o i o

25.0cm 2.3cm1 1 1
    2.106cm 2.1cm

25.0cm 2.3cm

d f
d

d d f d f


        

  
 

 The image is 2.1 cm behind the surface of the ball, virtual, and upright.  Note that the magnification  

is 
 
 

i

o

2.106cm
0.084.

25.0cm

d
m

d

 
      

 
14. The image distance can be found from the object distance of 1.7 m and the magnification of +3.  

With the image distance and object distance, the focal length and radius of curvature can be found. 

  
   

 

i
i o

o

o oo i o

o i o i o o

    

3 1.7m1 1 1
    2.55m

1 3 1

2 2 2.55m 5.1m

d
m d md

d

d mdd d md
f

d d f d d d md m

r f


   


       

   

  

 

 
15. The object distance of 2.00 cm and the magnification of +4.0 are used to find the image distance.  

The focal length and radius of curvature can then be found. 

  
   

 

i
i o

o

o oo i o

o i o i o o

    

4 2.00cm1 1 1
    2.677cm

1 4 1

2 2 2.667cm 5.3cm

d
m d md

d

d mdd d md
f

d d f d d d md m

r f


   


       

   

  

 

 Because the focal length is positive, the mirror is  concave . 
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16. The mirror must be convex.  Only convex mirrors produce images that are upright and smaller than 
the object.  The object distance of 18.0 m and the magnification of +0.33 are used to find the image 
distance.  The focal length and radius of curvature can then be found. 

  
   

 

i
i o

o

o oo i o

o i o i o o

    

0.33 18.0m1 1 1
    8.866m

1 0.33 1

2 2 8.866m 17.7m

d
m d md

d

d mdd d md
f

d d f d d d md m

r f


   


        

   

    

 

 
17. The object distance of 3.0 m and the magnification of +0.5 are used to find the image distance.  The 

focal length and radius of curvature can then be found. 

  
   

 

i
i o

o

o oo i o

o i o i o o

    

0.5 3.0m1 1 1
    3.0m

1 0.5 1

2 2 3.0m 6.0m

d
m d md

d

d mdd d md
f

d d f d d d md m

r f


   


        

   

    

 

 
18. (a) From the ray diagram it is seen that  
  the image is virtual.  We estimate the  

  image distance as 6cm.  

 (b) Use a focal length of 9.0cm  with  

  the object distance of 18.0cm.   

     
 

o i

o
i

o

1 1 1
  

18.0cm 9.0cm
6.0cm

18.0cm 9.0cm

d d f

d f
d

d f

  


   

  

 

 (c) We find the image size from the magnification: 

    i i i
i o

o o o

6.0cm
    3.0mm 1.0mm

18.0cm

h d d
m h h

h d d

    
        

  
 

 
19. Take the object distance to be ∞, and use Eq. 32-3.  Note that the image distance is negative since the 

image is behind the mirror. 

  i
o i i

1 1 1 1 1 1
        16.0cm    2 32.0cmf d r f

d d f d f
            


 

 Because the focal length is negative, the mirror is  convex.  
 
20. (a)  
 
 
 
 
 
  
  i o o ; 1 ; h h m d r   i o o ; 1 ; h h m d r  
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 (b) Apply Eq. 32-3 and Eq. 32-4.  

   
   

o i
i

o i o o o

1 1 1 2
      ;  

2 2

rd d r
d m

d d f r d r d d r

 
      

 
 

  If o ,d r  then  o2 ,d r r   so 
   o

1.
2

r r
m

d r r
  

 
 

  If o ,d r  then  o2 ,d r r   so 
   o

1.
2

r r
m

d r r
  

 
 

 
21. Consider the ray that reflects from the center of 

the mirror, and note that i 0.d   

  

o i i i

o i o o

i i

o o

tan     
h h d h

d d d h

h d
m

h d

 
   



  
 

 
 
22. From the ray diagram, we see that with a 

negative image distance, we have the 
following. 

  o i

o i

tan
h h

d d
  


 

  
   

o i

o i

tan
h h

d r r d
  

 
 

 When we divide the two equations, we get 

  
   o i

o i o i o i o i

1 1 2
    1 1     2    

d r r d r r r r

d d d d d d d d r

 
                

If we define 
2

r
f   and consider the radius of curvature and focal length to be negative, then we 

have Eq. 32-2, 
o i

1 1 1
.

d d f
  . 

 
23. Use Eq. 32-2 and 32-3. 

  
    

i
i o

o

o oo i o

o i o i o o

    

0.55 3.2m1 1 1
    3.9 m

1 0.55 1

d
m d md

d

d mdd d md
f

d d f d d d md m


   


        

   

 

 
24. (a) We are given that i o.d d   Use Eq. 32-3. 

   o
o i o

1 1 1 2 1
        2d f r

d d f d f
        

  The object should be placed at the  center of curvature.  
 (b) Because the image is in front of the mirror, i 0,d   it is  real.  
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 (c) The magnification is oi

o o

1.
dd

m
d d


      Because the magnification is negative, the image is   

inverted.  

 (d) As found in part (c),  1.m    

 
25. (a) To produce a smaller image located behind the surface of the mirror requires a  convex mirror.  
 (b) Find the image distance from the magnification. 

   
  

 
i i o i

i
o o o

26cm 3.5cm
    20.2cm 20cm

4.5cm

h d d h
m d

h d h


            (2 sig. fig.) 

  As expected, i 0.d    The image is located  20 cm behind the surface.  
 (c) Find the focal length from Eq. 32.3. 

   
  
   

o i

o i o i

26cm 20.2cm1 1 1
    90.55cm 91cm

26cm 20.2cm

d d
f

d d f d d


        

  
 

 (d) The radius of curvature is twice the focal length. 

    2 2 90.55cm 181.1cm 180cmr f        

 
26. (a) To produce a larger upright image requires a  concave mirror.  
 (b) The image will be  upright and virtual.  
 (c) We find the image distance from the magnification: 

   
 

  

i i
i o

o o

o oo i o

o i o i o o

o

    

1 1 1
      

1

2 1.35 20.0cm2
2 154cm

1 1.35 1

h d
m d md

h d

d mdd d md
f

d d f d d d md m

md
r f

m


    


      

  

   
 

 

 
27. (a) We use the magnification equation, Eq. 32-3, to write the image distance in terms of the  

magnification and object distance.   We then replace the image distance in the mirror equation, 
Eq. 32-2, and solve for the magnification in terms of the object distance and the focal length. 

i o i o    m d d d md      

o i

o o

o

1 1 1
    

1 1 1
    

f d d

f d md

f
m

f d

  

  





 

 (b) We set 0.45 mf   and 
draw a graph of the 
magnification as a function 
of the object distance.  The 
spreadsheet used for this 
problem can be found on the 
Media Manager, with 
filename “PSE4_ISM_CH32.XLS,” on tab “Problem 32.27b.” 
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 (c) The image and object will have the same lateral size when the magnification is equal to negative  
one.   Setting the magnification equal to negative one, we solve the equation found in part (a) 
for the object distance. 

o
o

1    2 0.90m
f

m d f
f d

     


 

 (d) From the graph we see that for the image to be much larger than the object, the object should be  
placed at a point  just beyond the focal point. 

 
28. We use the magnification equation, Eq. 32-3, to write the image distance in terms of the  

magnification and object distance.   We then replace the image distance in the mirror equation, Eq. 
32-2, and solve for the magnification in terms of the object distance and the focal length, with the 
focal length given as f f  . 

i
i o

o o i o o

1 1 1 1 1 1
        

o

fd
m d md m

d f d d f d md f d
            

  
 

From this relation, the closer the object is to the mirror (i.e., smaller object distance) the greater the 
magnification.  Since a person’s nose is closer to the mirror than the rest of the face, its image 
appears larger. 

 
29. (a) We use the magnification equation, Eq. 32-3, to write the image distance in terms of the  

magnification and object distance.   We then replace the image distance in the mirror equation, 
Eq. 32-2, and solve for the object distance in terms of the magnification and the focal length. 

i
i o

o

o
o i o o o

1 1 1 1 1 1 1 1 1
1 1

d
m d md

d

d f
f d d f d md d m m

    

                   

 

 (b) We set the object distance equal to the range of all positive numbers.  Since the focal length of  
a convex lens is negative, the term in parentheses in the above equation must be the range of all 
negative numbers for the object distance to include the range of all positive numbers.  We solve 
the resulting equation for all possible values of the magnification. 

1 1
1 0 1 0 1m

m m
        
 

 

 
30. The distance between the mirror and the wall is equal to 

the image distance, which we can calculate using Eq. 32-2. 
The object is located a distance r from the wall, so the 
object distance will be r less than the image distance.  The 
focal length is given by Eq. 32-1.  For the object distance 
to be real, the image distance must be greater than r. 

2 2
i i

o i i i

2 2

i

1 1 1 2 1 1
2 4 0

4 16 8 2
1 0.292  or 1.71

4 2

d d r r
f d d r d r d

r r r
d r r r

        


  
    

 

 

 Use Eq. 32-3 to calculate the magnification:  i

o

1.71
2.41

1.71

d r
m

d r r
    


 

od

id
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31.   The lateral magnification of an image equals the 
height of the image divided by the height of the 
object.  This can be written in terms of the image 
distance and focal length with Eqs. 32-2 and 32-3.  

o
i

i o o

i

o o

1 1 1
    

fd
d

f d d d f

d f
m

d d f

 
      


  


 

The longitudinal magnification will be the difference in image distances of the two ends of the object 
divided by the length of the image.  Call the far tip of the wire object 1 with object distance o.d   The 

close end of the wire will be object 2 with object distance o .d  l   Using Eq. 32-2 we can find the 
image distances for both ends. 

  
 oo

i1 i2
o i1 o o i2 o

1 1 1 1 1 1
      ;      

d fd f
d d

f d d d f f d d d f


       

   
l

l l
 

Taking the difference in image distances and dividing by the object length gives the longitudinal 
magnification. 

  

      
  

  

o o o o oi1 i2 o

o o o o

2

o o

1 d f d f d f d f d fd d d f
m

d f d f d f d f

f

d f d f

      
          




  

l l l

l l l l

l

 
 

Set o ,dl  so that the l  drops out of the second factor of the denominator.  Then rewrite the 
equation in terms of the lateral magnification, using the expression derived at the beginning of the 
problem. 

   
   

2
2

2
2

oo

f f
m m

d fd f

 
       

  

 The negative sign indicates that the image is reversed front to back, as shown in the diagram. 
 
32. We find the index of refraction from Eq. 32-1. 

  
8

8

3.00 10 m s
1.31

2.29 10 m s

c
n

v


  


 

 
33. In each case, the speed is found from Eq. 32-1 and the index of refraction. 

 (a) Ethyl alcohol: 
8

83.00 10 m s
2.21 10 m s

1.36

c
v

n


     

 (b) Lucite:  
8

83.00 10 m s
1.99 10 m s

1.51

c
v

n


     

 (c) Crown glass: 
8

83.00 10 m s
1.97 10 m s

1.52

c
v

n


     

 
34. Find the distance traveled by light in 4.2 years. 

     8 7 163.00 10 m s 4.2 yr 3.16 10 s yr 4.0 10 md c t        

 
 
 

do di1 

¬ ¬
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35. The time for light to travel from the Sun to the Earth is found from the distance between them and  
 the speed of light. 

  
11

2
8

1.50 10 m
5.00 10 s 8.33min

3.00 10 m s

d
t

c


     


 

 
36. We find the index of refraction from Eq. 32-1. 

  water

water

water

1.33
1.51

0.88 0.88 0.88
0.88

c c c n
n

v v c
n

     
 
 
 

 

 
37. The length in space of a burst is the speed of light times the elapsed time. 

    8 83.00 10 m s 10 s 3md ct      

 
38. Find the angle of refraction from Snell’s law. 

  1 11
1 1 2 2 2

2

1.33
sin sin     sin sin sin sin38.5 55.9

1.00

n
n n

n
    



            
  

 

 
39. Find the angle of refraction from Snell’s law. 

  1 11
1 1 2 2 2

2

1.00
sin sin     sin sin sin sin63 35

1.56

n
n n

n
    



            
  

 

 
40. We find the incident angle in the air (relative to the normal) from Snell’s law. 

  1 12
1 1 2 2 1 2

1

1.33
sin sin     sin sin sin sin33.0 46.4

1.00

n
n n

n
                

  
 

Since this is the angle relative to the horizontal, the angle as measured from the horizon is 

90.0 46.4 43.6 .      
  
41. We find the incident angle in the water from Snell’s law. 

  1 12
1 1 2 2 1 2

1

1.00
sin sin     sin sin sin sin56.0 38.6

1.33

n
n n

n
                

  
 

 
42. The angle of reflection is equal to the angle of incidence: ref1 1 22 .      Use Snell’s law 

  

   
 

air 1 glass 2 2 2

2 2 2 2 2 2

1 2

sin sin     1.00 sin2 1.56 sin

sin 2 2sin cos 1.56 sin     cos 0.780    38.74

2 77.5

n n   

     

 

  

      

  

 

 
43. The beam forms the hypotenuse of two right triangles as it passes 

through the plastic and then the glass.  The upper angle of the 
triangle is the angle of refraction in that medium.  Note that the 
sum of the opposite sides is equal to the displacement D.  First, we 
calculate the angles of refraction in each medium using Snell’s 
Law (Eq. 32-5).  

D
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1 1 2 2

1 1
1

1

1 1
2

2

sin 45 sin sin

sin 45 sin 45
sin sin 25.88

1.62

sin 45 sin 45
sin sin 28.75

1.47

n n

n

n

 





 

 

 

         
  

         
  

 

We then use the trigonometric identity for tangent to calculate the two opposite sides, and sum to get 
the  displacement. 

   1 2 1 1 1 1tan tan 2.0cm tan25.88 3.0cm tan 28.75 2.6cmD D D h h           

 
44. (a) We use Eq. 32-5 to calculate the refracted angle as the light enters the glass (n=1.56) from the  

air (n=1.00).  

1 11
1 1 2 2 2 1

2

1.00
sin sin sin sin sin sin  43.5 26.18 26.2

1.56

n
n n

n
                    

 

 (b) We again use Eq. 32-5 using the refracted angle in the glass and the indices of refraction of the  
glass and water. 

1 12
3 2

3

1.56
sin sin sin sin  26.18 31.17 31.2

1.33

n

n
                

 

 (c) We repeat the same calculation as in part (a), but using the index of refraction of water. 

1 11
3 1

3

1.00
sin sin sin sin  43.5 31.17 31.2

1.33

n

n
                

 

As expected the refracted angle in the water is the same whether the light beam first passes 
through the glass, or passes directly into the water.  

 
45. We find the angle of incidence from the distances. 

  
 
 

1
1 1

1

2.5m
tan 1.9231    62.526

1.3mh
      
l

 

 For the refraction from air into water, we have 
  air 1 water 2sin sin ;n n   

      2 21.00 sin62.526 sin     41.842        

 We find the horizontal distance from the edge of the pool from 

  
 

1 2 1 2 2tan

2.5m 2.1m tan 41.842 m .4m

h    

      

l l l l
 

    
46. Since the light ray travels parallel to the base when it exits the 

glass, and the back edge of the glass makes a 45 angle to the 
horizontal, the exiting angle of refraction is 45.  We use 
Snell’s law, Eq. 32-5, to calculate the incident angle at the 
back pane.   

1 14
3 4

3

1.0
sin sin sin sin  45 28.13

1.5

n

n
              

 

We calculate the refracted angle at the front edge of the glass by noting that the angles 2  and 3  in 
the figure form two angles of a triangle.  The third angle, as determined by the perpendiculars to the 
surface, is 135.   

 1 

 2 
nwater

nairh1

h2 l 1 

l 2
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2 3 2 3135 180 45 45 28.13 16.87                  
 Finally, we use Snell’s law at the front face of the glass to calculate the incident angle. 

1 12
1 2

1

1.5
sin sin sin sin  16.87 25.81 26

1.0

n

n
                

 

 
47. As the light ray passes from air into glass with an angle of incidence of 25, the beam will refract.  
 Determine the angle of refraction by applying Snell’s law. 

1 1 2 2

1 11
2 1

2

sin sin     

1.00
sin sin sin sin  25 16.36

1.5

n n

n

n

 

  

 

            

  

We now consider the two right triangles created by the 
diameters of the incident and refracted beams with the 
air–glass interface, as shown in the figure.  The diameters 
form right angles with the ray direction and using 
complementary angles we see that the angle between the 
diameter and the interface is equal to the incident and refracted angles.  Since the air–glass interface 
creates the hypotenuse for both triangles we use the definition of the cosine to solve for this length in 
each triangle and set the lengths equal.  The resulting equation is solved for the diameter of the 
refracted ray. 

 1 2 2
2 1

1 2 1

cos cos16.36
    3.0mm 3.2mm

cos cos cos cos25

d d
D d d


  


     


  

 
48. Find the angle 2  for the refraction at the first surface. 

  
   

air 1 2

2 2

sin sin

1.00 sin45.0 sin     27.33

n n 
 



     
 

Find the angle of incidence at the second surface from the 
triangle formed by the two sides of the prism and the light 
path. 

     2 390 90 180   A           

  3 2 60 27.33 32.67A          

 Use refraction at the second surface to find 4.  

     3 air 4 4 4sin sin     1.54 sin32.67 sin     56.2  from the normaln n            

 
49. Since the angle of incidence at the base of the prism is o0 , 

the rays are undeflected there. The angle of incidence at the 
upper face of the prism is o30 .  Use Snell’s law to calculate 
the angle of refraction as the light exits the prism. 

 1
1 1 r rsin sin sin 1.52sin30 49.46n           

From the diagram, note that a normal to either top surface 
makes a 30 angle from the vertical.  Subtracting 30 from 
the refracted angle will give the angle of the beam with 
respect to the vertical.  By symmetry, the angle   is twice the angle of the refracted beam from the 
vertical. 

   r2 30 2 49.46 30 38.9           

 

1

2 3 4

n

A
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50. Because the surfaces are parallel, the angle of refraction from the first 
surface is the angle of incidence at the second.  Thus for the two refractions, 
we have the following. 

  1 1 2 2 2 2 1 3sin sin   ;  sin sinn n n n      
 Substitute the second equation into the first. 

  1 1 1 3 3 1sin sin     n n       

 Because the ray emerges in the same index of refraction, it is undeviated. 
 
51. Because the glass surfaces are parallel, the exit beam will be  
 traveling in the same direction as the original beam.  
 Find the angle inside the glass from Snell’s law, 

air sin sin .n n    Since the angles are small, cos 1  and 

sin ,   where   is in radians. 

   1.00     n
n

      

 Find the distance along the ray in the glass from  

 ,
cos

t
L t


   and then find the perpendicular displacement 

 from the original direction. 

       1
sin

t n
d L t t

n n

    
            

 

 
52. We find the speed of light from the speed of light in a vacuum divided by the index of refraction.  

Examining the graph we estimate that the index of refraction of 450 nm light in silicate flint glass is 
1.643 and of 680 nm light is 1.613.  There will be some variation in the answers due to estimation 
from the graph. 

red blue 680 450

red 680

1 1.613 1 1.643
0.01826 1.8%

1 1.613

v v c n c n

v c n

  
       

 
53. We find the angles of refraction in the glass from Snell’s law, Eq. 32-5. 
      2,blue 2,blue1.00 sin60.00 1.4831 sin     35.727       

      2,red 2,red1.00 sin60.00 1.4754 sin     35.943       which gives 2,700 35.943 .    

 Thus the angle between the refracted beams is 

  2,red 2,blue 35.943 35.727 0.216 0.22 .           

 
54. The indices of refraction are estimated from Figure 32-28 as 

1.642 for 465 nm and 1.619 for 652 nm.  Consider the  
refraction at the first surface. 

  
   

air a b

b1 b1

sin sin   

1.00 sin45 1.642 sin     25.51

n n 
 

 

    
 

      b2 b21.00 sin 45 1.619 sin     25.90       

We find the angle of incidence at the second surface from 
the upper triangle. 

     b c90 90 180   A           

 

1

2
2

3

n1 n2 n1



 

 

n 



t 

d

nair = 1.00 

 L

 – 

nair = 1.00

a

n

A 

b c  
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 c1 b1 c2 b260.00 25.51 34.49   ;  60.00 25.90 34.10A A                    
 Apply Snell’s law at the second surface. 
  c air dsin sinn n   

      d1 d11.642 sin34.49 1.00 sin     68.4 from the normal       

      d2 d21.619 sin34.10 1.00 sin     65.2 from the normal       

 
55.   At the first surface, the angle of incidence o

1 60   

from air  1 1.000n   and the angle of refraction 2  into 

water  2n n  is found using Snell’s law. 

     
1 1 2 2

2

1
2

sin sin   

1.000 sin60 sin     

sin60
sin

n n

n

n

 


 

 

  

   
 

   

 Note that at this surface the ray has been deflected from its initial direction by angle 1 260 .    
From the figure we see that the triangle that is interior to the drop is an isosceles triangle, so the 
angle of incidence from water  2n n at the second surface is 2  and angle of refraction is 3  into 

air  3 1.000n  .  This relationship is identical to the relationship at the first surface, showing that the 

refracted angle as the light exits the drop is again 60. 

  

   2 2 3 3 2 3 3 2

o
o o

3 3

sin sin     sin 1.000 sin     sin sin   

sin60
sin sin60     60

n n n n

n
n

     

 

     

 
    

 

 

Note that at this surface the ray has been deflected from its initial direction by the angle 
o

2 3 2 260 .         The total deflection of the ray is equal to the sum of the deflections at each 
surface. 

      
o

o o o o 1
1 2 2 2 2

sin 60
60 60 120 2 120 2sin

n
        
           

 
  

Inserting the indices of refraction for the two colors and subtracting the angles gives the difference in 
total deflection. 

  

o o
o –1 o –1

violet red
violet red

o o o o
–1 –1 –1 –1

red violet

sin60 sin60
120 2sin 120 2sin

sin60 sin60 sin60 sin60
2 sin sin 2 sin sin

1.330 1.341

n n

n n

  
                     
         

                     
         

0.80
    

  

 

 
56. (a) We solve Snell’s law for the refracted angle.  Then, since the index varies by only about 1%, we  

differentiate the angle with respect to the index of refraction to determine the spread in angle. 

1 1
1 2 2

2 2 1 1
22 2 2

2 1 1
2

sin
sin sin     sin   

sin sin

sin sin
1

n
n

d n

n dn n n
n

n

  

   
 

      
 

 
    

 


 

  
60o

 

 

R  
R   

2
 

1 2 
2 3 
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 (b) We set 1.5n   and 1 0 0rad     and solve for the spread in refracted angle. 

    1
2 2 2 2 2

1

sin sin  0
0.01 0

sin 1.5 sin 0

n

n n





   

 
 

 (c) We set 1.5n   and 1 90    and solve for the spread in refracted angle.  We must convert the  
spread from radians back to degrees. 

    2 2 2

sin  90 180
0.01 0.0089 rad 0.5

 rad1.5 sin 90



       

  
 

 
57. When the light in the material with a higher index is incident at the critical angle, the refracted  
 angle is 90°.  Use Snell’s law. 

  1 1water
diamond 1 water 2 1

diamond

1.33
sin sin     sin sin 33.3

2.42

n
n n

n
     
      

 
 

 Because diamond has the higher index, the light must start in  diamond.  
 
58. When the light in the liquid is incident at the critical angle, the refracted angle is 90°.  Use Snell’s 

law. 

   2
liquid 1 air 2 liquid air

1

sin 1
sin sin     1.00 1.31

sin sin 49.6
n n n n

 


    


 

 
59. We find the critical angle for light leaving the water: 

  
water 1 air 2

1 1air
1

water

sin sin   

1.00
sin sin 48.75

1.33

n n

n

n

 

  

 

 
    

 

 

 If the light is incident at a greater angle than this, it will  
 totally reflect.  Find R from the diagram.  

   1tan 72.0cm tan 48.75 82.1cmR H      

 
60. The ray reflects at the same angle, so each segment makes 

a 14.5° angle with the side.  We find the distance l 
between reflections from the definition of the tangent 
function. 

4
41.40 10  m

tan 5.41 10  m
tan tan  14.5

d d





     


l
l

 

 
61. We find the angle of incidence from the distances. 

  
 
 1 1

7.6cm
tan 0.95    43.53

8.0cmh
      

l
 

 The relationship for the maximum incident angle for refraction from liquid into air gives this. 

   liquid 1 air 2 liquid 1max 1max
liquid

1
sin sin     sin 1.00 sin90     sinn n n

n
          

 Thus we have the following. 

1

n
1H

R air
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  1 1max liquid
liquid liquid

1 1
sin sin     sin 43.53 0.6887     1.5n

n n
          

62. For the device to work properly, the light should experience total internal 
reflection at the top surface of the prism when it is a prism to air interface, but 
not total internal reflection when the top surface is a prism to water interface.  
Since the incident ray is perpendicular to the lower surface of the prism, light 
does not experience refraction at that surface.   As shown in the diagram, the 
incident angle for the upper surface will be 45.  We then use Eq. 32-7 to determine the minimum 
index of refraction for total internal reflection with an air interface, and the maximum index of 
refraction for a water interface.  The usable indices of refraction will lie between these two values. 

2 air water
c 1,min 1,max

1 c c

1.00 1.33
sin     1.41    1.88

sin sin 45 sin sin 45

n n n
n n

n


 
        

 
 

 The index of refraction must fall within the range 1.41 1.88.n    A Lucite prism will work. 
 
63. (a) We calculate the critical angle using Eq. 32-7.  We calculate the time for each ray to pass  

through the fiber by dividing the length the ray travels by the speed of the ray in the fiber.  The 
length for ray A is the horizontal length of the fiber.  The length for ray B is equal to the length 
of the fiber divided by the critical angle, since ray B is always traveling along a diagonal line at 
the critical angle relative to the horizontal.  The speed of light in the fiber is the speed of light in 
a vacuum divided by the index of refraction in the fiber. 

  
 

2 B A A A A 1
c B A

1 c 1 2

6

5

sin   ;  1
sin

1.0km 1.465 1.465
                          1 2.3 10 s

1.0003.00 10 km/s

n n
t t t

n v v v v c n n






 
          

 

       

l l l l l

 

 (b) We now replace the index of refraction of air (n = 1.000) with the index of refraction of the  
glass “cladding” (n = 1.460). 

   8A 1 1
5

2

1.0km 1.465 1.465
1 1 1.7 10 s

3.00 10 km/s 1.460

n n
t

c n
               

l
 

 
64. (a) The ray enters normal to the first surface, so there is no deviation there.  The angle of incidence  

is 45° at the second surface.  When there is air outside the surface, we have the following. 
    1 1 2 2 1 2sin sin     sin 45 sinn n n        

  For total internal reflection to occur, 2sin 1,   and so 1

1
1.41.

sin 45
n  


 

 (b) When there is water outside the surface, we have the following. 
      1 1 2 2 2 2sin sin     1.58 sin 45 1.33 sin     sin 0.84n n          

  Because 2sin 1,    the prism will not be totally reflecting.  
 (c) For total reflection when there is water outside the surface, we have  the following. 
    1 1 2 2 1 2sin sin     sin 45 sinn n n        

    1 2sin 45 sin .n     

  For total internal reflection to occur, 2sin 1.   

   1

1.33
1.88

sin 45
n  


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65. For the refraction at the first surface, we have the following. 

  
 air 1 2 1 2

1
2

sin sin     1.00 sin sin   

sin sin .

n n n

n

   


   


 

 Find the angle of incidence at the second surface. 

  
   2 3

3 2 2

90 90 180   

60.0

A

A

 
  

        

    
  

 For the refraction at the second surface, we have this. 
   3 air 4 4sin sin 1.00 sinn n     

The maximum value of 4  before internal reflection takes place at the second surface is 90°.  For 
internal reflection to occur, we have the following. 

   3 2 2 2sin sin 1    sin cos cos sin 1n n A n A A            

 Use the result from the first surface to eliminate n. 

  

 
 

1 2 2
1

2 2

1

2

2 2

sin sin cos cos sin sin
sin 1  

sin tan cos

1 1cos cos60.0
sin sin 45.01

2.210  
tan sin sin60.0

tan 0.452    24.3

A A A

A

A

A

  


 



 

  
    

                     


   

 or 

 Use the result from the first surface. 

  1
min

2 max

sin sin 45.0
1.715    1.72

sin sin 24.3
n n





    


 

 
66. For the refraction at the side of the rod, we have 2 1sin sin .n n    

 The minimum angle for total reflection min  occurs when 90    

    2 min min
2

1
sin 1.00 1 1    sinn

n
      

 Find the maximum angle of refraction at the end of the rod. 
  max min90     

Because the sine function increases with angle, for the refraction at 
the end of the rod, we have the following. 

     1 max 2 max max 2 min 2 minsin sin     1.00 sin sin 90 cosn n n n           

If we want total internal reflection to occur for any incident angle at the end of the fiber, the 
maximum value of  is 90°, so 2 mincos 1.n      When we divide this by the result for the refraction 

at the side, we get min mintan 1  45 .       Thus we have the following. 

  2
min

1 1
1.414

sin sin 45
n


  


 

 
 
 

1

 2  3 4

n

A 



 
 

n 1 

n 2

90°
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67. We find the location of the image of a point on the bottom from the 

refraction from water to glass, using Eq. 32-8, with R   . 

  
 

1 2 2 1

o i

2 o
i

1

0    

1.58 12.0cm
14.26cm

1.33

n n n n

d d R

n d
d

n


   

     
 

Using this image distance from the top surface as the object for the refraction from glass to air gives 
the final image location, which is the apparent depth of the water. 

  
 2 3 3 2 3 o2

i2
o2 i2 2

1.00 13.0cm 14.26cm
0    17.25cm

1.58

n n n n n d
d

d d R n


           

 Thus the bottom appears to be 17.3 cm below the surface of the glass.  In reality it is 25 cm. 
 
68. (a) We use Eq. 32-8 to calculate the location of the image of the fish.  We  

assume that the observer is outside the circle in the diagram, to the 
right of the diagram.  The fish is located at the center of the sphere so 
the object distance is 28.0 cm.  Since the glass is thin we use the index 
of refraction of the water and of the air.  Index 1 refers to the water, 
and index 2 refers to the air.  The radius of curvature of the right side 
of the bowl is negative.   

1 2 2 1

o i

1 1

2 1 1
i 2

o

    

1.00 1.33 1.33
1.00 28.0cm

28.0cm 28.0cm

n n n n

d d R

n n n
d n

R d

 


  

    
          

The image is also at the center of the bowl.  When the fish is at the center of the bowl, all small-
angle light rays traveling outward from the fish are approximately perpendicular to the surface 
of the bowl, and therefore do not refract at the surface.  This causes the image of the fish to also 
be located at the center of the bowl. 

(b) We repeat the same calculation as above with the object distance 20.0 from the right side of the 
bowl, so o 20.0cm.d   

1 1

2 1 1
i 2

o

1.00 1.33 1.33
1.00 18.3cm

28.0cm 20.0cm

n n n
d n

R d

 
    

          
 

The fish appears closer to the center of the bowl than it actually is. 
 
69. (a) The accompanying figure shows a  

light ray originating at point O and 
entering the convex spherical surface 
at point P.  In this case 2 1n n .  The 
ray bends away from the normal and 
creates a virtual image at point I.  
From the image and supplementary 
angles we obtain the relationships 
between the angles. 

1 2                 

h1

I1

h2

I2 n1

n2

n 

O
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We then use Snell’s law to relate the incident and refracted angle.  For this derivation we 
assume these are small angles. 

1 1 2 2 1 1 2 2sin sin     n n n n       

From the diagram we can create three right triangles, each with height h and lengths o ,d  i ,d  
and R.  Again, using the small angle approximation we obtain a relationship between the angles 
and lengths.  Combining these definitions to eliminate the angles we obtain Eq. 32-8, noting that 
by our definition id  is a negative value. 

 o i

  ;    ;  
h h h

d R d
    


 

   

 

1 1 2 2 1 2 1 1 2 2

1 2 2 1
1 1 2 2

o i o i

      

    

n n n n n n n n

h h h h n n n n
n n n n

d R d R d d R

                  


     



 

 (b) This image shows a concave surface with  

2 1n n .  Again, we use the approximation 
of small angles and sign convention that 

0R   and i 0.d    We write relationships 
between the angles using supplementary 
angles, Snell’s law, and right triangles.  
Combining these equations to eliminate 
the angles we arrive at Eq. 32-8. 

   
   

     

1 2
o i

1 1 2 2 1 2 1 1 2 2

1 2 2 1
1 1 2 2

o i 0

  ;    ;    ;    ;  

      

    
i

h h h

d d R

n n n n n n n n

h h h h n n n n
n n n n

R d R d d d R

        

         

      
 

         


     

  

 

 (c) This image shows a concave surface with  

2 1n n .  Again, we use the approximation 
of small angles and sign convention that 

0R   and i 0.d    We write relationships 
between the angles using supplementary 
angles, Snell’s law, and right triangles.  
Combining these equations to eliminate the 
angles we arrive at Eq. 32-8. 

   
   

     

1 2
i o

1 1 2 2 1 2 1 1 2 2

1 2 2 1
1 1 2 2

o i o i

  ;    ;    ;    ;       

      

    

h h h

d d R

n n n n n n n n

h h h h n n n n
n n n n

R d R d d d R

        

         

      
 

         


     

  
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70. We consider two rays leaving the coin.  These rays refract 

upon leaving the surface and reach the observer’s eye with 
angles of refraction all very near 45 .     Let the origin of 
coordinates be at the actual location of the coin.  We will 
write straight-line equations for each of two refracted rays, 
one with a refraction angle of   and the other with a 
refraction angle of d  , and extrapolate them back to 
where they intersect to find the location of the image.  We  

utilize the relationship     .
df

f x dx f x dx
dx

     
 

  

 First, apply Snell’s law to both rays. 
Ray # 1, leaving the coin at angle .  
 sin sinn    
Ray # 2, leaving the coin at angle .d   

    sin sinn d d       

 Note the following relationship involving the differential angles. 

     sin
sin sin sin cos   ;  sin sin cos

d
d d d d d

d


           


         

 So for Ray # 2, we would have the following Snell’s law relationship. 

 
   sin cos sin cos     sin cos sin cos   

cos
cos cos     

cos

n d d n n d d

n d d d d
n

           
     


       

  
 

This relationship between d  and d  will be useful later in the solution. 

Ray # 1 leaves the water at coordinates 1 1tan ,x h y h   and has a slope after it leaves the water of  

 1 tan 90 cot .m        Thus a straight-line equation describing ray # 1 after it leaves the water is 

as follows. 
    1 1 1     tan coty y x x m y h x h          

Ray # 2 leaves the water at the following coordinates. 

    2
2 2

tan
tan tan tan sec ,  

d
x h d h d h d y h

d


      


 

          
 

 

 Ray # 2 has the following slope after it leaves the water. 

      2
2

cot
tan 90 cot cot cot csc

d
m d d d d

d


        


             

Thus a straight-line equation describing ray # 2 after it leaves the water is as follows. 

     2 2
2 2 2     tan sec cot cscy y x x m y h x h d d                     

To find where these rays intersect, which is the image location, set the two expressions for y equal to 
each other. 

     2 2tan cot tan sec cot csc   h x h h x h d d                      

 Expanding the terms and subtracting common terms gives us the following. 
  2 2 2 2 2csc tan csc sec cot sec cscx d h d h d h d d               

The first three terms each have a differential factor, but the last term has two differential factors.  



d


d 

ray1

ray 2

h
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That means the last term is much smaller than the other terms, and so can be ignored.  So we delete 
the last term, and use the relationship between the differentials derived earlier. 

2 2 2

2 2 2

2
2

2 3

cos
csc tan csc sec cot    ;     

cos

cos
csc tan csc sec cot

cos

cos cot cos sin
tan sec tan

cos csc cos

x d h d h d d d
n

x d h d h d
n

x h h
n n

         


       


     
  

   

 

  
     

   

 

Now we may substitute in values.  We know that 45   and 0.75m.h    We use the original 

relationship for ray # 1 to solve for .   And once we solve for x, we use the straight-line equation for 
ray # 1 to solve for y. 

 1 1 sin 45
sin sin     sin sin 32.12

1.33
n

n

     
       

  

   

2 2

3 3

cos sin cos 45sin 45
tan 0.75 tan32.12 0.1427m

cos 1.33cos 32.12

tan cot 0.75 0.1427 0.75tan32.12 cot 45 0.4264m

x h
n

y h x h

 


 

   
       

   
      

 

The image of the coin is located 0.14 m toward the viewer and 0.43 m above the actual coin. 
 
71. Use Eq. 32-2 to determine the location of the image from 

the right mirror, in terms of the focal length.  Since this 
distance is measured from the right mirror, we subtract 
that distance from the separation distance between the two 
mirrors to obtain the object distance for the left mirror.  
We then insert this object distance back into Eq. 32-2, 
with the known image distance and combine terms to 
write a quadratic equation for the focal length. 

 
 

1

o1
i1

o1 i1 o1 o1

o1 o1 o1
o2 i1

o1 o1

o1 i2 o1 i2 o1 o1

o2 i2 o1 o1 i2 i2 o1 o1

2 2
i2 o1 o1 i2 o1 i2 o1

1 1 1 1 1
    

1 1 1 1

fd
d

f d d f d d f

fd Dd fD fd
d D d D

d f d f

d f d d fd Dd fD fd

f d d Dd fD fd d d Dd fD fd

d Dd fD fd d d f f d fDd f D


 

        
 

    
 
    

    
   

      

   

2
o1

2
i2 o1 i2 o1 o1 i2 o1 i22 0

f d

f d D d f d d Dd Dd Dd d      

 

 We insert the values for the initial object distance, final image distance, and mirror separation 
distance and then solve the quadratic equation. 

         

   
    

 

2 22

2 2 3

22 2 3

0.50m 1.00m 0.50m 2 0.50m 2 1.00m 0.50m 1.00m 0.50m 0

2.00m 1.50m 0.25m 0

1.50m 1.50m 4 2.00m 0.25m
0.25m  or  0.50m

2 2.00m

f f

f f

f

       

  

 
 

 

 If the focal length is 0.25 m, the right mirror creates an image at the location of the object.  With the 
paper in place, this image would be blocked out.  With a focal length of 0.50 m, the light from the 
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right mirror comes out as parallel light.  No image is formed from the right mirror.  When this 
parallel light enters the second mirror it is imaged at the focal point (0.50 m) of the second mirror. 

72. (a) We use Snell’s law to calculate the refracted angle within the medium.   
Then using the right triangle formed by the ray within the medium, we can 
use the trigonometric identities to write equations for the horizontal 
displacement and path length. 

1
1 2 2

sin
sin sin     sinn

n

      

2 2 2 2
2 2 1

2 2 2
cos     

2 cos 1 sin sin

D D D nD

n


  
    

 
l

l
 

1 1
2 2 2 2 2 2

1 1

2 2 sin 2 sin
sin     sin

2 sin sin

d nD D
d

nn n

  
 

    
 

l
l

 

 (b) Evaluate the above expressions for 1 0 .    

   1
22 2 2 2 2

1 1

2 2 2 2 sin
2   ;  sin     0

2sin sin

nD nD d D
D d

n n n


 

      
 

l
l

 

  These are the expected values. 
 
73.  (a) The first image seen will be due to a single reflection off the front glass.  This image will be  

equally far behind the mirror as you are in front of the mirror.  

1 2 1.5 m= 3.0 mD    
The second image seen will be the image reflected once off the front mirror and once off the 
back mirror. As seen in the diagram, this image will appear to be twice the distance between the 
mirrors. 

2 1.5 m 2.2 m + (2.2 m 1.5 m)=2 2.2 m =  4.4 mD      
The third image seen will be the image reflected off the front mirror, the back mirror, and off 
the front mirror again.  As seen in the diagram this image distance will be the sum of twice your 
distance to the mirror and twice the distance between the mirrors. 

3 1.5 m 2.2 m + 2.2 m +1.5 m=2 1.5 m 2 2.2 m = 7.4 mD       
  The actual person is to the far right in the diagram.  

 
 
 
 
 
 
 
 
 (b) We see from the diagram that the first image is facing  toward you ; the second image is facing   

away from you ; and the third image is facing  toward you. 
 
74. Find the angle of incidence for refraction from water into air. 

  
     

water 1 air 2

1 1

sin sin   

1.33 sin 1.00 sin 90.0 13.0     47.11

n n 
 
 

      
 

       11.33 sin 1.00 sin 90.0 13.0 ,       

 We find the depth of the pool from 1tan .x h   

 1 

2

n w a t er 

n a ir

h

x 

D

1D

2D
3D
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   tan 47.11 5.50m     5.11mh h     

 
75. The apparent height of the image is related to the angle 

subtended by the image.  For small angles, this angle is the 
height of the image divided by the distance between the 
image and viewer.  Since both images are virtual, which 
gives a negative image distance, the image to viewer 
(object) distance will be the object distance minus the 
image distance.  For the plane mirror the object and image 
heights are the same, and the image distance is the 
negative of the object distance. 

i o
i o i o plane

o i o

  ;    ;  
2

h h
h h d d

d d d
    


 

 We use Eq. 32-2 and 32-3 to write the angle of the image in the convex mirror in terms of the object 
size and distance. 

2
o o o

i o i
o i o o

i i o i o
i

o o o o

i o o o
convex 2 2

o i o o o o o

1 1 1 2
        

    

2 2

d f d d f
d d d

f d d d f d f

h d h d h f
h

h d d d f

h h f d f h f

d d d f d d f d d f



      

 

      


   
          

 

 We now set the angle in the convex mirror equal to ½ of the angle in the plane mirror and solve for 
the focal length. 

2o o1 1
convex plane o o o o2 22

o o o

        4 2     
2 4

h f h
d f d d f f d

d d f d
  

         


 

We use Eq. 32-1 to calculate the radius of the mirror. 

 1
o o22 2 3.80mr f d d        

 
76. For the critical angle, the refracted angle is 90°.  For the refraction from plastic to air, we have the 

following. 
   plastic plastic air air plastic plasticsin sin     sin39.3 1.00 sin 90     1.5788n n n n         

 For the refraction from plastic to water, we have the following. 

     plastic plastic water water plastic plasticsin sin     1.5788 sin 1.33 sin90     57.4n n             

 
77. The two students  chose different signs for the magnification,  i.e., one upright and one inverted. 

The focal length of the concave mirror is  1 1
2 2 46cm 23cm.f R     We relate the object and 

image distances from the magnification. 

  i i
i o

o o

    3     3
d d

m d d
d d

          

 Use this result in the mirror equation. 

  
  o

o i o o

1 1 1 1 1 1 2 4
        , 15.3cm,30.7cm

3 3 3

f f
d

d d f d d f

     
            
      

 

So the object distances are  15 cm (produces virtual image) , and +31 cm (produces real image). 
 

O I2

do
I1

h
1

 plane 

h
2

 convex 

O

h



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

344 

 
 
 
78. The object “creates” the I1 images as reflections from the actual 

mirrors.  The I2 images can be considered as images of the I1 
“objects,” formed by the original mirrors.  A specific I2 image is the 
image of the I1 “object” that is diametrically opposite it.  Then the I3 
image can be considered as an image of the I2 “objects.”  Each I2 
“object” would make the I3 “image” at the same location.  We can 
consider the extension of the actual mirrors, shown as dashed lines, 
to help understand the image formation. 

 
 
79. The total deviation of the beam is the sum of the deviations at 

each surface.  The deviation at the first surface is the refracted 
angle 2  subtracted from the incident angle 1 .  The deviation 

at the second surface is the incident angle 3  subtracted from 

the refracted angle 4 .  This gives the total deviation. 

  1 2 1 2 4 3              

We will express all of the angles in terms of 2 .  To minimize 
the deviation, we will take the derivative of the deviation with 
respect to 2 , and then set that derivative equal to zero.  Use Snell’s law at the first surface to write 
the incident angle in terms of the refracted angle. 

   1
1 2 1 2sin sin     sin sinn n       

The angle of incidence at the second surface is found using complementary angles, such that the sum 
of the refracted angle from the first surface and the incident angle at the second surface must equal 
the apex angle. 

2 3 3 2               
The refracted angle from the second surface is again found using Snell’s law with the deviation in 
angle equal to the difference between the incident and refracted angles at the second surface. 

      1 1
3 4 4 3 2sin sin     sin sin sin sinn n n             

Inserting each of the angles into the deviation and setting the derivative equal to zero allows us to 
solve for the angle at which the deviation is a minimum. 

      
    

 
 

1 1
2 2 2 2

1 1
2 2

22 1
2 2 2 3 22 2 2 2

2 2 2

sin sin sin sin

  sin sin sin sin

coscos
0        

1 sin 1 sin

n n

n n

nd n

d n n

      

   

        
   

 

 

     

   


        

  

  

In order for 2 3,   the ray must pass through the prism horizontally, which is perpendicular to the 

bisector of the apex angle .  Set 1
2 2   in the deviation equation (for the minimum deviation, m ) 

and solve for the index of refraction. 

  

    
     

  

1 1
2 2

1 1 11 1 1
2 2 2

1
2

1
2

sin sin sin sin

sin sin sin sin 2sin sin

sin

sin

m

m

n n

n n n

n

    

    

 


 

  

   

    


 

 

1

  2   3 4

n

 
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80. For the refraction at the second surface, we have this. 
     3 air 4 3 4sin sin     1.58 sin 1.00 sinn n       

The maximum value of 4  before internal reflection takes place 
at the second surface is 90°.  Thus for internal reflection not to 
occur, we have 

    3 3 31.58 sin 1.00    sin 0.6329    39.27         

 We find the refraction angle at the second surface. 

  
   2 3

2 3 3

90 90 180   

72

A

A

 
  

        

    
 

 Thus 2 72 39.27 32.73 .        
 For the refraction at the first surface, we have the following. 
       air 1 2 1 2 1 2sin sin     1.00 sin 1.58 sin     sin 1.50 sinn n           

 Now apply the limiting condition. 

   1 1sin 1.58 sin32.73 0.754    58.69        

 
81. (a) Consider the light ray shown in the figure.  A ray of light  

starting at point A reflects off the surface at point P before 
arriving at point B, a horizontal distance l from point A.  We 
calculate the length of each path and divide the length by the 
speed of light to determine the time required for the light to 
travel between the two points. 

 2 22 2
21

x hx h
t

c c

 
 

l
 

To minimize the time we set the derivative of the time with respect to x equal to zero.  We also 
use the definition of the sine as opposite side over hypotenuse to relate the lengths to the angles 
of incidence and reflection. 

 
 

 
 

2 2 2 2
1 2

1 2 1 22 2 2 2
1 2

0   

    sin sin     

xdt x

dx c x h c x h

xx

x h x h
   

 
   

  


    

  

l

l

l

l

 

 (b) Now we consider a light ray traveling from point A to point B  
in media with different indices of refraction, as shown in the 
figure.  The time to travel between the two points is the 
distance in each medium divided by the speed of light in that 
medium. 

 2 22 2
21

1 2

x hx h
t

c n c n

 
 

l
 

To minimize the time we set the derivative of the time with 
respect to x equal to zero.  We also use the definition of the 
sine as opposite side over hypotenuse to relate the lengths to 
the angles of incidence and reflection. 

1

 2  3 4

n

A 

1h
2h

x xl
1 2

1n
1h

1

2n
2h

2

l

-xl
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 
 

 
 

2 21 1
1 1 2 22 2 2 2 2 22 2

1 12 2

0 sin sin
n x n xdt n x n x

n n
dx c x h x hc x h x h

 
  

      
    

l l
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82. We use Eq. 32-8 to calculate the location of the image and Eq. 32-3 to calculate the height of the 

image.   

 

1 1

1 2 2 1 2 1 1
i 2

o i o

i i i
i o

o o o

1.53 1.33 1.33
1.53 36.3cm

2.00cm 23cm
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2.0mm 3.2mm

23cm

n n n n n n n
d n

d d R R d

h d d
h h

h d d

 
     

          
  

       

 

 
83. A ray of light initially on the inside of the beam will strike the far surface at the 

smallest angle, as seen in the associated figure.   The angle is found using the 
triangle shown in the figure, with side r and hypotenuse r+d.  We set this angle 
equal to the critical angle, using Eq. 32-7, and solve for the minimum radius of 
curvature. 

2
C

1

1
sin

1

r n d
r

r d n n n
     

 
 

 
84. A relationship between the image and object distances can be obtained from the given information. 

  i 1
i o2

o

1
   7.5cm

2

d
m d d

d
        

Now we find the focal length and the radius of curvature. 

  
o i

1 1 1 1 1 1
        5.0cm    10cm

15cm 7.5cm
f r

d d f f
          

 
85. If total internal reflection fails at all, it fails for 90 .     Assume 

90    and use Snell’s law to determine the maximum . 

  1
2 1 1 1

2

sin sin sin90     sin
n

n n n n
n

         

Snell’s law can again be used to determine the angle   for which 
light (if not totally internally reflected) would exit the top surface, 
using the relationship 90    since they form two angles of a right triangle. 

     2
1 2 2 2

1

sin sin sin 90 cos     sin cos
n

n n n n
n

             

Using the trigonometric relationship 2cos 1 sin    we can solve for the exiting angle in terms 

of the indices of refraction.  
2

22 2 1

1 1 2

sin 1 sin 1
n n n

n n n
 

 
     

 
 

 Insert the values for the indices ( 1 1.00n   and 2 1.51n  ) to determine the sine of the exit angle.  
2

1.51 1.00
sin 1 1.13

1.00 1.51
     

 
 

Since the sine function has a maximum value of 1, the light totally internally reflects at the glass–air 
interface for any incident angle of light.   


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If the glass is immersed in water, then 1 1.33n   and 2 1.51n  . 
2

11.51 1.33
sin 1 0.538 sin 0.538 32.5

1.33 1.51
          

 
 

Light entering the glass from water at 90 can escape out the top at 32.5, therefore total internal 

reflection only occurs for incident angles 32.5 .   
 
86. The path of the ray in the sphere forms an isosceles triangle with 

two radii.  The two identical angles of the triangle are equal to the 
refracted angle.  Since the incoming ray is horizontal, the third 
angle is the supplementary angle of the incident angle.  We set the 
sum of these angles equal to 180 and solve for the ratio of the 
incident and refracted angles.  Finally we use Snell’s law in the 
small angle approximation to calculate the index of refraction. 

 r r

1 2 r r r

2 180 180     2

sin sin     2     2n n n n

   

    

      

     
 

 
87. The first graph is a graph of n vs. .  The second graph is a graph n vs. of 21 .   By fitting a line of  

the form 2 ,n A B    we have 1.50A   and  3 6 2 25.74 10 10 nm 5740nm .B       

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH32.XLS,” on tab “Problem 32.87.” 

   
88. (a) As the light ray enters the water drop, its path changes  

by the difference between the incident and refracted angles.  
We use Snell’s law to calculate the refracted angle.  The 
light ray then reflects off the back surface of the droplet.  
At this surface its path changes by r180 2  , as seen in 
the diagram.  As the light exits the droplet it refracts again, 
changing its path by the difference between the incident 
and refracted angles.  Summing these three angles gives the 
total path change. 
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                           
 
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(b) Here is the graph of  vs .   
The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH32.XLS,” on 
tab “Problem 32.88.” 

 
 (c) On the spreadsheet, the  

incident angles that give 
scattering angles from 138  to 
140  are approximately 
48.5 54.5     and 
64.5 69.5 .      This is 
11/90 of the possible incident 
angles, or about 12%. 
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