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CHAPTER 30:  Inductance, Electromagnetic Oscillations, and AC Circuits 
 
Responses to Questions 
 
1.  (a) For the maximum value of the mutual inductance, place the coils close together, face to face, on  

the same axis. 
(b) For the least possible mutual inductance, place the coils with their faces perpendicular to each  

other. 
 
2. The magnetic field near the end of the first solenoid is less than it is in the center.  Therefore the flux 

through the second coil would be less than that given by the formula, and the mutual inductance 
would be lower.  

 
3.  Yes. If two coils have mutual inductance, then they each have the capacity for self-inductance. Any 

coil that experiences a changing current will have a self-inductance. 
 
4.  The energy density is greater near the center of a solenoid, where the magnetic field is greater.  
 
5.  To create the greatest self-inductance, bend the wire into as many loops as possible. To create the 

least self-inductance, leave the wire as a straight piece of wire. 
 
6. (a) No. The time needed for the LR circuit to reach a given fraction of its maximum possible  

current depends on the time constant, τ = L/R, which is independent of the emf. 
(b) Yes. The emf determines the maximum value of the current (Imax = V0/R,) and therefore will  

affect the time it takes to reach a particular value of current.  
 
7. A circuit with a large inductive time constant is resistant to changes in the current. When a switch is 

opened, the inductor continues to force the current to flow. A large charge can build up on the 
switch, and may be able to ionize a path for itself across a small air gap, creating a spark. 

 
8. Although the current is zero at the instant the battery is connected, the rate at which the current is 

changing is a maximum and therefore the rate of change of flux through the inductor is a maximum. 
Since, by Faraday’s law, the induced emf depends on the rate of change of flux and not the flux 
itself, the emf in the inductor is a maximum at this instant. 

 
9.  When the capacitor has discharged completely, energy is stored in the magnetic field of the inductor. 

The inductor will resist a change in the current, so current will continue to flow and will charge the 
capacitor again, with the opposite polarity. 

 
10. Yes. The instantaneous voltages across the different elements in the circuit will be different, but the 

current through each element in the series circuit is the same. 
 
11. The energy comes from the generator. (A generator is a device that converts mechanical energy to 

electrical energy, so ultimately, the energy came from some mechanical source, such as falling 
water.) Some of the energy is dissipated in the resistor and some is stored in the fields of the 
capacitor and the inductor. An increase in R results in an increase in energy dissipated by the circuit. 
L, C, R, and the frequency determine the current flow in the circuit, which determines the power 
supplied by generator.  
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12.  XL = XC at the resonant frequency. If the circuit is predominantly inductive, such that XL > XC, then 
the frequency is greater than the resonant frequency and the voltage leads the current. If the circuit is 
predominantly capacitive, such that XC > XL, then the frequency is lower than the resonant frequency 
and the current leads the voltage. Values of L and C cannot be meaningfully compared, since they 
are in different units. Describing the circuit as “inductive” or “capacitive” relates to the values of XL 

and XC, which are both in ohms and which both depend on frequency.  
 
13. Yes. When ω approaches zero, XL approaches zero, and XC becomes infinitely large. This is 

consistent with what happens in an ac circuit connected to a dc power supply. For the dc case, ω is 
zero and XL will be zero because there is no changing current to cause an induced emf. XC will be 
infinitely large, because steady direct current cannot flow across a capacitor once it is charged. 

 
14.  The impedance in an LRC circuit will be a minimum at resonance, when XL = XC. At resonance, the 

impedance equals the resistance, so the smallest R possible will give the smallest impedance.  
  
15. Yes. The power output of the generator is P = IV. When either the instantaneous current or the 

instantaneous voltage in the circuit is negative, and the other variable is positive, the instantaneous 
power output can be negative. At this time either the inductor or the capacitor is discharging power 
back to the generator. 

 
16.  Yes, the power factor depends on frequency because XL and XC, and therefore the phase angle, 

depend on frequency. For example, at resonant frequency, XL = XC, the phase angle is 0º, and the 
power factor is one. The average power dissipated in an LRC circuit also depends on frequency, 
since it depends on the power factor: Pavg = Irms Vrms cosφ.  Maximum power is dissipated at the 
resonant frequency. The value of the power factor decreases as the frequency gets farther from the 
resonant frequency.  

 
17. (a) The impedance of a pure resistance is unaffected by the frequency of the source emf. 

(b) The impedance of a pure capacitance decreases with increasing frequency. 
(c) The impedance of a pure inductance increases with increasing frequency.  
(d) In an LRC circuit near resonance, small changes in the frequency will cause large changes in the  

impedance. 
(e) For frequencies far above the resonance frequency, the impedance of the LRC circuit is  

dominated by the inductive reactance and will increase with increasing frequency. For 
frequencies far below the resonance frequency, the impedance of the LRC circuit is dominated 
by the capacitive reactance and will decrease with increasing frequency. 

 
18.  In all three cases, the energy dissipated decreases as R approaches zero.  Energy oscillates between 

being stored in the field of the capacitor and being stored in the field of the inductor. 
(a) The energy stored in the fields (and oscillating between them) is a maximum at resonant  

frequency and approaches an infinite value as R approaches zero. 
(b) When the frequency is near resonance, a large amount of energy is stored in the fields but the  

value is less than the maximum value. 
(c) Far from resonance, a much lower amount of energy is stored in the fields.  

 
19. In an LRC circuit, the current and the voltage in the circuit both oscillate. The energy stored in the 

circuit also oscillates and is alternately stored in the magnetic field of the inductor and the electric 
field of the capacitor. 
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20. In an LRC circuit, energy oscillates between being stored in the magnetic field of the inductor and 
being stored in the electric field of the capacitor. This is analogous to a mass on a spring, with 
energy alternating between kinetic energy of the mass and spring potential energy as the spring 
compresses and extends.  The energy stored in the magnetic field is analogous to the kinetic energy 
of the moving mass, and L corresponds to the mass, m, on the spring. The energy stored in the 
electric field of the capacitor is analogous to the spring potential energy, and C corresponds to the 
reciprocal of the spring constant, 1/k. 

 
 

Solutions to Problems 
 
1. (a) The mutual inductance is found in Example 30-1. 

 
      27

21 2
1850 4 10 T m A 225 115 0.0200 m

3.10 10 H
2.44 m

N N A
M

 





   


l
 

 (b) The emf induced in the second coil can be found from Eq. 30-3b. 

      21 1
2

12.0A
3.10 10 H 3.79 V

0.0980 ms

dI I
M M

dt t
 

       


e  

 
2. If we assume the outer solenoid is carrying current 1,I  then the magnetic field inside the outer 

solenoid is 0 1 1.B n I   The flux in each turn of the inner solenoid is 2 2

21 2 0 1 1 2 .B r n I r       The 

mutual inductance is given by Eq. 30-1. 
2

22 21 2 0 1 1 2
0 1 2 2

1 1

    
N n n I r M

M n n r
I I

 
 


   

l

l
 

 
3. We find the mutual inductance of the inner loop.  If we assume the outer solenoid is carrying current 

1,I  then the magnetic field inside the outer solenoid is 1
0 1.

N
B I

l
  The magnetic flux through each 

loop of the small coil is the magnetic field times the area perpendicular to the field.  The mutual 
inductance is given by Eq. 30-1. 

1 1
2 0 2

1 1 2 21 0 1 2 2
21 2 0 2

1 1

sin sin
sin sin   ;  

N I
N AN I N N N A

BA A M
I I

   
  


     l

l l
 

 
4. We find the mutual inductance of the system using Eq. 30-1, with the flux equal to the integral of the 

magnetic field of the wire (Eq. 28-1) over the area of the loop. 

2

1

0 1 012 2

1 1 1

1
ln

2 2

I w
M wdr

I I r

 
 

 
    

 

l

l

l

l
 

 
5. Find the induced emf from Eq. 30-5. 

   10.0 A 25.0 A
0.28 H 12 V

0.36s

dI I
L L

dt t


      


e  
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6. Use the relationship for the inductance of a solenoid, as given in Example 30-3. 

  
   

   

2

0
27

0

0.13H 0.300 m
    4700 turns

4 10 T m A 0.021m

N A L
L N

A


  

    


l

l 
 

 
7. Because the current in increasing, the emf is negative.  We find the self-inductance from Eq. 30-5. 

 
  

0.0120s
    2.50 V 0.566 H

0.0250 A 0.0280 A

dI I t
L L L

dt t I

 
          

   
e e  

 
8. (a) The number of turns can be found from the inductance of a solenoid, which is derived in  

Example 30-3. 

    
 

2 272

0
4 10 T m A 2800 0.0125m

0.02229 H 0.022 H
0.217 m

N A
L

 


   
l


 

(b) Apply the same equation again, solving for the number of turns. 

   
    

2

0
27

0

0.02229 H 0.217 m
    81turns

1200 4 10 T m A 0.0125m

N A L
L N

A


  

    


l

l 
  

 
9. We draw the coil as two elements in series, and pure resistance and 

a pure inductance.  There is a voltage drop due to the resistance of 
the coil, given by Ohm’s law, and an induced emf due to the 
inductance of the coil, given by Eq. 30-5.  Since the current is 
increasing, the inductance will create a potential difference to 
oppose the increasing current, and so there is a drop in the potential 
due to the inductance.  The potential difference across the coil is the sum of the two potential drops. 

       3.00 A 3.25 0.44 H 3.60 A s 11.3Vab

dI
V IR L

dt
       

 
10. We use the result for inductance per unit length from Example 30-5. 

  

 
 

 
 

9

9
7

0

2 55 10 H m
2

55 10 H m
4 10 T m A90 2

1 2

1

1

ln 55 10 H m     0.0030 m 0.00228 m
2

0.0023m

L r
r r e e

r

r













 

      



l



 

 
11. The self-inductance of an air-filled solenoid was determined in Example 30-3.  We solve this 

equation for the length of the tube, using the diameter of the wire as the length per turn. 

   
   

2
2o o

0 2

232

2 27
0

1.0H 0.81 10 m
46.16 m 46 m

4 10 T m/A 0.060 m

N A A
L n A

d

Ld

r

 


   





  


   



l
l

l

l



 

 The length of the wire is equal to the number of turns (the length of the solenoid divided by the 
diameter of the wire) multiplied by the circumference of the turn. 

 3

46.16m
0.12m 21,490m 21km

0.81 10 m
L D

d
    


l

 

ab

increasingI

 
inducedE

R L
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The resistance is calculated from the resistivity, area, and length of the wire. 

  
 

8

23

1.68 10 m 21,490m
0.70k

0.405 10 m
R

A









 
   



l 
 

 

12. The inductance of the solenoid is given by 
2 2 2

0 0 .
4

N A N d
L

  
 

l l
  The (constant) length of the 

wire is given by wire solN dl , and so since sol 2 sol 12.5d d , we also know that 1 22.5N N .  The fact 

that the wire is tightly wound gives sol wireNdl .  Find the ratio of the two inductances. 

  

2 2 2 2
2 20 2 2 wire
sol 2 sol 2

2 sol 1 1 wire 1sol 2 sol 2 sol 2
2 2 2 2

2 20 1 1 wire1 sol 2 2 wire 2
sol 1 sol 1

sol 1 sol 1 sol 1

4
2.5

4

N N
d d

L N d N

N NL N d N
d d

  

  
      

l

ll l l

l l

l l l

 

 
13. We use Eq. 30-4 to calculate the self-inductance, where 

the flux is the integral of the magnetic field over a cross-
section of the toroid.  The magnetic field inside the toroid 
was calculated in Example 28-10. 

2

1

2
0 0 2

1

ln
2 2

r

B r

NI N h rN N
L hdr

I I r r

 
 

 
     

 
  

 
 
 
14. (a) When connected in series the voltage drops across each inductor will add, while the currents in  

each inductor are the same. 

 1 2 1 2 1 2 eq eq 1 2    
dI dI dI dI

L L L L L L L L
dt dt dt dt

            e e e  

 (b) When connected in parallel the currents in each inductor add to the equivalent current, while the  
voltage drop across each inductor is the same as the equivalent voltage drop. 

1 2

eq 1 2 eq 1 2

1 1 1
        

dI dI dI

dt dt dt L L L L L L
       

e e e
 

Therefore, inductors in series and parallel add the same as resistors in series and parallel. 
 
15. The magnetic energy in the field is derived from Eq. 30-7. 

  

   
     

2

1
2

0

22 2
221 1 1

2 2 2 7

0 0

Energy stored
  

Volume

0.600T
Energy Volume 0.0105m 0.380 m 18.9 J

4 10 T m A

B
u

B B
r



 
   

  

   


l


 

 
16. (a) We use Eq. 24-6 to calculate the energy density in an electric field and Eq. 30-7 to calculate the  

energy density in the magnetic field. 

  22 12 2 2 4 4 31 1
02 2 8.85 10  C /N m 1.0 10  N/C 4.4 10  J/mEu E         

1r

2r
r

dr

h
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 
 

22
6 3 6 3

7
0

2.0 T
1.592 10  J/m 1.6 10  J/m

2 2 4 10  T m/A
B

B
u

  
     

 
 

 (b) Use Eq. 24-6 to calculate the electric field from the energy density for the magnetic field given  
in part (a). 

 
 

6 3

2 81
02 12 2 2

0

2 1.592 10  J/m2
    6.0 10  N/C

8.85 10  C /N m
B

E B

u
u E u E

 


      

 
 

 
17. We use Eq. 30-7 to calculate the energy density with the magnetic field calculated in Example 28-12. 

  
 

2722 2
3 30 0

22
0 0

4 10 T m A 23.0A1
1.06 10 J m

2 2 2 8 8 0.280m
B

B I I
u

R R

 
 




       
 


 

 
18. We use Eq. 30-7 to calculate the magnetic energy density, with the magnetic field calculated using 

Eq. 28-1. 

  
 

272 22
30 0

22 2 2 3
0 0

4 10  T m/A 15 A1
1.6 J/m

2 2 2 8 8 1.5 10 m
B

I IB
u

R R

 
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



      
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
 

 To calculate the electric energy density with Eq. 24-6, we must first calculate the electric field at the 
surface of the wire.  The electric field will equal the voltage difference along the wire divided by the 
length of the wire.  We can calculate the voltage drop using Ohm’s law and the resistance from the 
resistivity and diameter of the wire. 

    
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 
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






   

              

 

l

l l l


  

 
19. We use Eq. 30-7 to calculate the energy density in the toroid, with the magnetic field calculated in 

Example 28-10.  We integrate the energy density over the volume of the toroid to obtain the total 
energy stored in the toroid.  Since the energy density is a function of radius only, we treat the toroid 
as cylindrical shells each with differential volume 2dV rhdr . 

2 2

1 1

2 2 22
0 0

2 2
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2 2 2 2 2 2
0 0 0 2

2 2
1

1

2 2 2 8

2 ln
8 4 4
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N I N I h N I h rdr
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 
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

  

    
 

 
     

 
  

 

 
20. The magnetic field between the cables is given in Example 30-5.  Since the magnetic field only 

depends on radius, we use Eq. 30-7 for the energy density in the differential volume 2dV r dr l  
and integrate over the radius between the two cables. 

2 2

1 1

2 2 2
0 0 0 2

0 1

1 1
2 ln

2 2 4 4

r r

B r r

I I I rU dr
u dV rdr

r r r

  


   
        

   
  

l l
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21. We create an Amperean loop of radius r to calculate the magnetic field within the wire using Eq. 28-
3.  Since the resulting magnetic field only depends on radius, we use Eq. 30-7 for the energy density 
in the differential volume 2dV r dr l  and integrate from zero to the radius of the wire. 

   2 0
0 0 2 2

2
2enc

IrI
d I B r r B

R R


   

 
      
  B


 l  

2 2 2
30 0 0

2 40 0
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1 1
2

2 2 4 16

R R
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Ir I IU
u dV rdr r dr

R R

  


   
     
   

l l
 

 

22. For an LR circuit, we have  max 1 tI I e   .  Solve for t . 

   max

max max

1     1     ln 1t t I I
I I e e t

I I
           

 
 
 

 

(a)  max

max

0.95     ln 1 ln 1 0.95 3.0
I

I I t
I

          
 
 
 

 

(b)  max

max

0.990 ln 1 ln 1 0.990 4.6    
I

I I t
I

         
 

  
 

 

(c)  max

max

0.9990 ln 1 ln 1 0.9990 6.9    
I

I I t
I

         
 

  
 

 

 
23. We set the current in Eq. 30-11 equal to 0.03I0 and solve for the time. 

 /
0 00.03 ln 0.03 3.5tI I I e t         

 
24. (a) We set I equal to 75% of the maximum value in Eq. 30-9 and solve for the time constant. 

   
 

 
/

0 0

2.56 ms
0.75 1 1.847 ms 1.85 ms

ln 0.25 ln 0.25
t t

I I I e             

 (b) The resistance can be calculated from the time constant using Eq. 30-10. 
31.0 mH

16.8 
1.847 ms

L
R


     

 
25. (a) We use Eq. 30-6 to determine the energy stored in the inductor, with the current given by Eq.  

Eq 30-9. 

 
2

22 /01
2 2

1
2

tLV
U LI e

R
    

 (b) Set the energy from part (a) equal to 99.9% of its maximum value and solve for the time. 

   
2 2

2/0 0
2 2

0.999 1 ln 1 0.999 7.6
2 2

tV V
U e t

R R
          

 
26. (a) At the moment the switch is closed, no current will flow through the inductor.  Therefore, the  

resistors R1 and R2 can be treated as in series. 

 1 2 1 2 3
1 2

,  0I R R I I I
R R

     

e

e  

(b) A long time after the switch is closed, there is no voltage drop across the inductor so resistors 
R2 and R3 can be treated as parallel resistors in series with R1. 
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 

1 2 3 1 1 2 2 2 2 3 3

32 2 2 2
2 2

1 3 2 3 1 3 1 2

3 22 2 2
3 1 2 3

3 2 3 1 3 1 2 2 3 1 3 1 2

,    = ,    

        

I I I I R I R I R I R

RI R I R
I I

R R R R R R R R

R RI R R
I I I I

R R R R R R R R R R R R R

   


   

 


    

   

e

ee

ee

 

(c) Just after the switch is opened the current through the inductor continues with the same 
magnitude and direction.  With the open switch, no current can flow through the branch with 
the switch.  Therefore the current through R2 must be equal to the current through R3, but in the 
opposite direction. 

2 2
3 2 1

2 3 1 3 1 2 2 3 1 3 1 2

,     ,    0
R R

I I I
R R R R R R R R R R R R


  

   
e e

 

(d) After a long time, with no voltage source, the energy in the inductor will dissipate and no 
current will flow through any of the branches. 

1 2 3 0I I I    
 
27. (a) We use Eq. 30-5 to determine the emf in the inductor as a function of time.  Since the  

exponential term decreases in time, the maximum emf occurs when t = 0. 

/ / /0
0 0 max 0

tR L t tLI RdI d
L L I e e V e V

dt dt L
            e e . 

 (b) The current is the same just before and just after the switch moves from A to B.  We use Ohm’s  
law for a steady state current to determine I0 before the switch is thrown.  After the switch is 
thrown, the same current flows through the inductor, and therefore that current will flow 
through the resistor R’.  Using Kirchhoff’s loop rule we calculate the emf in the inductor.  This 
will be a maximum at t = 0. 

     /0 0
0 max 0

55
,       0 120V 6.6kVtV V R R

I IR R e V
R R R R

                 
   

e e e  

 
28. The steady state current is the voltage divided by the resistance while the time constant is the 

inductance divided by the resistance, Eq. 30-10.   To cut the time constant in half, we must double 
the resistance.  If the resistance is doubled, we must double the voltage to keep the steady state 
current constant. 

   0 02 2 2200  4400        2 2 240 V 480 VR R V V          

 
29. We use Kirchhoff’s loop rule in the steady state (no voltage drop across the inductor) to determine 

the current in the circuit just before the battery is removed.  This will be the maximum current after 
the battery is removed.  Again using Kirchhoff’s loop rule, with the current given by Eq. 30-11, we 
calculate the emf as a function of time. 

         5 -1

0 0

1.22 10 s2.2k / 18mH/ /
0

0    

0    e 12 V 12V
ttt tR L

V
V I R I

R

IR I Re V e e    

   

      e e

 

The emf across the inductor is greatest at t = 0 with a value of max 12Ve . 
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30. We use the inductance of a solenoid, as derived in Example 30-3:  
2

0
sol

N A
L




l
. 

(a) Both solenoids have the same area and the same length.  Because the wire in solenoid 1 is 1.5  
times as thick as the wire in solenoid 2, solenoid 2 will have 1.5 times the number of turns as 
solenoid 1. 

   

2

0 2 22
22 2 2 2

2 2
0 11 1 1 1

1.5 2.25    2.25

N A
L N N L

N AL N N L




      

 
 
 

l

l

 

(b) To find the ratio of the time constants, both the inductance and resistance ratios need to be  
known.  Since solenoid 2 has 1.5 times the number of turns as solenoid 1, the length of wire 
used to make solenoid 2 is 1.5 times that used to make solenoid 1, or wire 2 wire 11.5 ,l l  and the 

diameter of the wire in solenoid 1 is 1.5 times that in solenoid 2, or wire 1 wire 21.5d d .  Use this to 

find their relative resistances, and then the ratio of time constants. 

   

 

 

wire 1wire 1 wire 1
22 22

wire 11 wire 1 wire 2wire 1 wire 1

wire 2 wire 2 wire 22 wire 2 wire 1
2 2

wire 2 wire 2wire 2

1 1 1 1 1

2 2 2 2

3

3

2

2

1 1 1
  

1.5 1.5 1.5

1
  ;  

1.5

dR dA d

R d
A dd

R L R L

R L R L










     

  

            

ll l

l

l l l l

 2 1

2 1 2

3 1.5    =1.5
1

1.5
2.25

R

R




   
 
 

 

 
31. (a) The AM station received by the radio is the resonant frequency, given by Eq. 30-14.  We divide  

the resonant frequencies to create an equation relating the frequencies and capacitances.  We 
then solve this equation for the new capacitance. 

 
2 2

11 2 1
2 1

2 1 2

2

1 1
2 550kHz

1350pF 0.16nF
1600kHz1 1

2

LCf C f
C C

f C f

LC





   
        

  
 

 (b) The inductance is obtained from Eq. 30-14. 

    
   22 2 2 3 12

1

1 1 1 1
62 H

2 4 4 550 10 Hz 1350 10 F
f L

LC f C


   
    

 
 

 
32. (a) To have maximum current and no charge at the initial time, we set t = 0 in Eqs. 30-13 and 30-15  

to solve for the necessary phase factor . 

0 0 0 0sin ( ) sin cos
2 2

I I I t I t I t
            

 
 

      0 0 00 cos 0 cos sin
2 2

Q Q Q Q t Q t
              
   

 

Differentiating the charge with respect to time gives the negative of the current.  We use this to 
 write the charge in terms of the known maximum current. 

     0 0
0 0 0cos cos         ( ) sin

dQ I I
I Q t I t Q Q t t

dt
   

 
          
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 (b) As in the figure, attach the inductor to a battery and resistor for an  
extended period so that a steady state current flows through the 
inductor.  Then at time t = 0, flip the switch connecting the 
inductor in series to the capacitor. 

 
 
 
 
 
 
33. (a) We write the oscillation frequency in terms of the capacitance using Eq. 30-14, with the parallel  

plate capacitance given by Eq. 24-2.  We then solve the resulting equation for the plate 
separation distance. 

 
2 2

0
0

1 1
2 4

/
f x A f L

LC L A x
  


     

 (b) For small variations we can differentiate x and divide the result by x to determine the fractional  
change. 

   2
2 0

0 2 2
0

4 2 2 2
4 2   ;  

4

A fdf Ldx df x f
dx A fdf L

x A f L f x f

 
 

 
 

      

 (c) Inserting the given data, we can calculate the fractional variation on x. 

  62 1 Hz
2 10 0.0002%

1 MHz

x

x


     

 
34. (a) We calculate the resonant frequency using Eq. 30-14. 

  12

1 1 1 1
18,450 Hz 18.5 kHz

2 2 0.175 H 425 10  F
f

LC  
   


 

(b) As shown in Eq. 30-15, we set the peak current equal to the maximum charge (from Eq. 24-1) 
multiplied by the angular frequency. 

      12
0

3

2 425 10  F 135 V 2 18,450 Hz

6.653 10  A 6.65 mA

I Q CV f  



   

  
 

(c) We use Eq. 30-6 to calculate the maximum energy stored in the inductor. 

  22 31 1
2 2 0.175 H 6.653 10  A 3.87 JU LI      

 
35. (a) When the energy is equally shared between the capacitor and inductor, the energy stored in the  

capacitor will be one half of the initial energy in the capacitor.  We use Eq. 24-5 to write the 
energy in terms of the charge on the capacitor and solve for the charge when the energy is 
equally shared. 

22
0

0

1 2

2 2 2 2

QQ
Q Q

C C
    

 (b) We insert the charge into Eq. 30-13 and solve for the time. 

1
0 0

2 1 2
cos cos

2 2 2 4 8

T T
Q Q t t


 

               
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36. Since the circuit loses 3.5% of its energy per cycle, it is an underdamped oscillation.   We use  Eq.  
24-5 for the energy with the charge as a function of time given by Eq. 30-19.  Setting the change in 
energy equal to 3.5% and using Eq. 30-18 to determine the period, we solve for the resistance. 

   

 

 
 

  
   

2 2 2 2
0 0

2 2
0

2

22 2 2

2

26 2

cos 2 cos 0

2 2 1 0.035 ln(1 0.035) 0.03563
cos 0

2

4 0.035632 2
0.03563

1 4 16 0.03563

4 0.065H 0.03563
1.4457 1.

1.00 10 F 16 0.03563

R
L

R
L

T

T

Q e Q
E RTC C e

QE L

C

LR R
R

L L LC R L C

R



 
 










        

           

   
   

4

 

 
37. As in the derivation of 30-16, we set the total energy equal to the sum of the magnetic and electric 

energies, with the charge given by Eq. 30-19.  We then solve for the time that the energy is 75% of 
the initial energy. 

   

   

2 2 22 2
2 20 0 0

2 2
0 0

cos sin
2 2 2 2 2

0.75 ln 0.75 ln 0.75 0.29
2 2

R R R
L L L

R
L

t t t
E B

t

Q Q QQ LI
U U U e t e t e

C C C C

Q Q L L L
e t

C C R R R

     



         

      
 

 
38. As shown by Eq. 30-18, adding resistance will decrease the oscillation frequency.  We use Eq. 30-

14 for the pure LC circuit frequency and Eq. 30-18 for the frequency with added resistance to solve 
for the resistance. 

  

   
   

2

2

2 2

9

1 1
(1 .0025)       0.9975   

4

4 0.350H4
1 0.9975 1 0.9975 2.0k

1.800 10 F

R

LC L LC

L
R

C

 



      

     


 

 
39. We find the frequency from Eq. 30-23b for the reactance of an inductor. 

  
 
660

2     3283Hz 3300 Hz
2 2 0.0320 H

L
L

X
X fL f

L


 


       

 

40. The reactance of a capacitor is given by Eq. 30-25b, 
1

2
CX

fC
 . 

 (a) 
   6

1 1
290

2 2 60.0 Hz 9.2 10 F
CX

fC  
   


 

 (b)   
2

6 6

1 1
1.7 10

2 2 1.00 10 Hz 9.2 10 F
CX

fC 



    

 
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41. The impedance is 
1

2
CX

fC
 .  The 

extreme values are as follows. 

  

  

max 6

min 6

1

2 10 Hz 1.0 10 F

16,000

1

2 1000 Hz 1.0 10 F

160

X

X












 




 
 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH30.XLS,” on tab “Problem 30.41.” 

 
42. We find the reactance from Eq. 30-23b, and the current from Ohm’s law.  

   3

2

2 2 33.3 10 Hz 0.0360 H 7532 7530

250 V
    0.03319 A 3.3 10 A

7532

L

L

L

X fL

V
V IX I

X

 



      

      


 

 
43. (a) At 0,   the impedance of the capacitor is infinite.  Therefore the parallel combination of the  

resistor R and capacitor C behaves as the resistor only, and so is R.   Thus the impedance of the 
entire circuit is equal to the resistance of the two series resistors. 

   Z R R   
 (b) At ,   , the impedance of the capacitor is zero.  Therefore the parallel combination of the  

resistor R and capacitor C is equal to zero.  Thus the impedance of the entire circuit is equal to 
the resistance of the series resistor only. 

   Z R  
 
44. We use Eq. 30-22a to solve for the impedance. 

   
rms

rms rms
rms

110V
94mH

3.1A 2 60Hz

V
V I L L

I


 
      

 
45. (a) We find the reactance from Eq. 30-25b. 

   
   8

1 1
2804 2800

2 2 660 Hz 8.6 10 F
CX

fC  
     


 

 (b) We find the peak value of the current from Ohm’s law. 

   rms
peak rms

22,000 V
2 2 2 11A at 660 Hz

2804C

V
I I

X
   


 

 
46. (a) Since the resistor and capacitor are in parallel, they will have the same voltage drop across  

them.  We use Ohm’s law to determine the current through the resistor and Eq. 30-25 to 
determine the current across the capacitor.  The total current is the sum of the currents across 
each element. 
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 

 
 

 
 

    
    

6

6

  ;  2

490 2 60 Hz 0.35 10  F2 2

2 2 1 490 2 60 Hz 0.35 10  F 1

             0.0607 6.1%

R C
C

C

R C

V V
I I V fC

R X

V fC R fCI

I I V fC V R R fC



 
  





  

 
  

     

 

 

 (b) We repeat part (a) with a frequency of 60,000 Hz. 

    
    

6

6

490 2 60,000 Hz 0.35 10  F
0.9847 98%

490 2 60,000 Hz 0.35 10  F 1
C

R C

I

I I









 
  

   
 

  
47. The power is only dissipated in the resistor, so we use the power dissipation equation obtained in 

section 25-7. 

   221 1
avg 02 2 1.80A 1350 2187W 2.19kWP I R      

 
48. The impedance of the circuit is given by Eq. 30-28a without a capacitive reactance.  The reactance of 

the inductor is given by Eq. 30-23b. 

 (a)      2 2 22 2 2 2 2 2 3 24 10.0 10 4 55.0 Hz 0.0260 HLZ R X R f L          

41.00 10      

 (b)      2 2 22 2 2 2 2 2 3 2 44 10.0 10 4 5.5 10 Hz 0.0260 HLZ R X R f L           

  4  1.34 10    
 
49. The impedance of the circuit is given by Eq. 30-28a without an inductive reactance.  The reactance 

of the capacitor is given by Eq. 30-25b. 

 (a)  
   

22 2 2

22 2 2 22 6

1 1
75 397

4 4 60 Hz 6.8 10 F
CZ R X R

f C  
        


 

     400 2 sig. fig.   

 (b)  
   

22 2 2

22 2 2 22 6

1 1
75 75

4 4 60000 Hz 6.8 10 F
CZ R X R

f C  
        


 

 
50. We find the impedance from Eq. 30-27. 

  rms

3

rms

120 V
1700

70 10 A

V
Z

I 
   


 

 
51. The impedance is given by Eq. 30-28a with no capacitive reactance. 

 22 2 2 2LZ R X R fL     

 

   

22 2 2 2 2 2 2

60

2 22 2 2 2 2 2 2 2 2 2

2     4 2 4 60 Hz   

4 4 4 60 Hz 4 16 60 Hz   

fZ Z R f L R L

R f L R L R L

 

  

     

       
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     
 

 
2 22 2 2 2

2 2

22 2 2 2 2

3 16 60 Hz 3 25003
4 60 Hz 4 60 Hz

4 4 4 0.42 H

  1645Hz 1.6 kHz

R L R
f

L L


  

 
    

 

 

 
52. (a) The rms current is the rmv voltage divided by the impedance.  The impedance is given by Eq.  

30-28a with no inductive reactance, 

 
 

2 2 2

2

1

2
CZ R X R

fC
    . 

   
 

   

rms rms
rms

22

22 2 2 22 6

2 2

120 V

1 1
3800

4 4 60.0 Hz 0.80 10 F

120 V
2.379 10 A 2.4 10 A

5043

V V
I

Z
R

f L  

 

  

  


    


 

 (b) The phase angle is given by Eq. 30-29a with no inductive reactance. 

   
  6

1 1 1

11
2 60.0 Hz 0.80 10 F2

tan tan tan 41
3800

CX fC

R R




  

 
     


 

  The current is leading the source voltage. 

 (c) The power dissipated is given by    22 3

rms 0.02379A 6.0 10 2.2 WP I R      

 (d) The rms voltage reading is the rms current times the resistance or reactance of the element. 

   

    

 
   

2

rms rms

2

rms
rms rms 6

2.379 10 A 3800 90.4 V 90 V

2.379 10 A
78.88V 79 V

2 2 60.0 Hz 0.80 10 F

 2 sig. fig.
R

C
C

V I R

I
V I X

fC 







     


    



 

  Note that, because the maximum voltages occur at different times, the two readings do not add  
  to the applied voltage of 120 V. 
 
53. We use the rms voltage across the resistor to determine the rms current through the circuit.  Then, 

using the rms current and the rms voltage across the capacitor in Eq. 30-25 we determine the 
frequency. 

 
   

, rms rms
rms , rms

, rmsrms
6

, rms , rms

         
2

3.0 V
240 Hz

2 2 2 1.0 10  C 750 2.7 V

R
C

R

C C

V I
I V

R fC

VI
f

CV CRV



   

 

   
 

 

 Since the voltages in the resistor and capacitor are not in phase, the rms voltage across the power 
source will not be the sum of their rms voltages. 
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54. The total impedance is given by Eq. 30-28a. 

   
2

22 2 1
2

2
L CZ R X X R fL

fC



     

 
 
 

 

  
         

2

23 4 2

4 9

1
  8.70 10 2 1.00 10 Hz 3.20 10 H

2 1.00 10 Hz 6.25 10 F

   8716.5 8.72 k







      

 

   

 
 
    

 The phase angle is given by Eq. 30-29a. 

  

      

1 1

4 2

4 9

1

1

3

1
2

2
tan tan

1
2 1.00 10 Hz 3.20 10 H

2 1.00 10 Hz 6.25 10 F
 tan

535.9
 tan 3.52

8.70 10

L C

fL
X X fC

R R

R







 












 

  
 



 
   

 

 

The voltage is lagging the current, or the current is leading the voltage.   
The rms current is given by Eq. 30-27. 

  2rms
rms

725V
8.32 10 A

Z 8716.5

V
I    


 

 
55. (a) The rms current is the rms voltage divided by the impedance.  The impedance is given by Eq.  

30-28a with no capacitive reactance. 

 22 2 2 2LZ R X R fL    . 

   
     

rms rms
rms 2 2 2 2 2 2 22

120 V

4 965 4 60.0 Hz 0.225H

120 V
     0.124 A

968.7

V V
I

Z R f L 
  

  

 


 

 (b) The phase angle is given by Eq. 30-29a with no capacitive reactance. 

   
   1 1 1 2 60.0 Hz 0.225H2

tan tan tan 5.02
965

LX fL

R R


       


 

  The current is lagging the source voltage. 

 (c) The power dissipated is given by    22

rms 0.124 A 965 14.8 WP I R     

 (d) The rms voltage reading is the rms current times the resistance or reactance of the element. 

   

  

    

rms rms

rms rms rms

0.124 A 965 119.7 V 120 V

2 0.124 A 2 60.0 Hz 0.25H 10.5V

R

L
L

V I R

V I X I fL 

    

   
 

  Note that, because the maximum voltages occur at different times, the two readings do not add  
  to the applied voltage of 120 V. 
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56. (a) The current is found from the voltage and impedance.  The impedance is given by Eq. 30-28a. 

    
2

22 2 1
2

2
L CZ R X X R fL

fC



     

 
 
 

 

   
    

  

2

2

6

rms
rms

1
  2.0 2 60 Hz 0.035H 88.85

2 60 Hz 26 10 F

45V
0.5065A 0.51A

88.85

V
I

Z


 

     


   


 
 
    

(b) Use Eq. 30-29a to find the phase angle. 

  
  

1 1

6

1 1

1
2

2
tan tan

1
2 60 Hz 0.035H

2 60 Hz 26 10 F 88.83
 tan tan 88

2.0 2.0

L C

fL
X X fC

R R







 



 




 


  

    
 

 

 (c) The power dissipated is given by    22

rms 0.5065A 2.0 0.51WP I R     

 
57. For the current and voltage to be in phase, the reactances of the capacitor and inductor must be equal.  

Setting the two reactances equal enables us to solve for the capacitance. 

   2 2 22

1 1 1
2 7.8 F

2 4 4 360Hz 0.025H
L CX fL X C

fC f L
 

  
        

 
58. The light bulb acts like a resistor in series with the inductor.  Using the desired rms voltage across 

the resistor and the power dissipated by the light bulb we calculate the rms current in the circuit and 
the resistance.  Then using this current and the rms voltage of the circuit we calculate the impedance 
of the circuit (Eq. 30-27) and the required inductance (Eq. 30-28b). 

   ,rms
rms

,rms rms

75W 120V
0.625A        192

120V 0.625A
R

R

VP
I R

V I
        

  

 

   

22rms

rms

2 2
22rms

rms

2

1 1 240 V
192 0.88 H

2 2 60 Hz 0.625 A

V
Z R fL

I

V
L R

f I



 

  

           
  

 

 
59. We multiply the instantaneous current by the instantaneous voltage to calculate the instantaneous 

power.  Then using the trigonometric identity for the summation of sine arguments (inside back cover 
of text) we can simplify the result.  We integrate the power over a full period and divide the result by 
the period to calculate the average power. 

   
     
 

0 0 0 0

2
0 0

sin sin sin sin cos sin cos

sin cos sin cos sin

P IV I t V t I V t t t

I V t t t

       

    

    

 
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 

2
2

0 0
0 0

2 2
2

0 0 0 0
0 0

1
sin cos sin cos sin

2

cos sin  sin sin cos  
2 2

T
P PdT I V t t t dt

T

I V t dt I V t t dt




 
 

     


     
 

  

 

 

 
 

 
2

2 1
0 0 0 0 0 020

1 2 1
   cos sin sin cos

2 2 2
I V I V t I V


     

   
           

 

 
60. Given the resistance, inductance, capacitance, and frequency, we calculate the impedance of the 

circuit using Eq. 30-28b.   

  

  
     

6

2 2 22

2 2 660 Hz 0.025 H 103.67 

1 1
120.57 

2 2 660 Hz 2.0 10  F

150 103.67 120.57 150.95 

L

C

L C

X fL

X
fC

Z R X X

 

  

   

   


          

 

 (a) From the impedance and the peak voltage we calculate the peak current, using Eq. 30-27.   

 0
0

340 V
2.252 A 2.3 A

150.95 

V
I

Z
   


 

 (b) We calculate the phase angle of the current from the source voltage using Eq. 30-29a. 

 1 1 103.67 120.57 
tan tan 6.4

150 
L CX X

R
     
    


 

 (c) We multiply the peak current times the resistance to obtain the peak voltage across the resistor. 
The voltage across the resistor is in phase with the current, so the phase angle is the same as in 
part (b). 

  0, 0 2.252 A 150 340 V  ; 6.4RV I R         

(d) We multiply the peak current times the inductive reactance to calculate the peak voltage across 
the inductor.  The voltage in the inductor is 90º ahead of the current.  Subtracting the phase 
difference between the current and source from the 90º between the current and inductor peak 
voltage gives the phase angle between the source voltage and the inductive peak voltage.  

   
  

 
0, 0 2.252 A 103.67 230 V

90.0 90.0 6.4 96.4

L L

L

V I X

 

   

         
 

 (e) We multiply the peak current times the capacitive reactance to calculate the peak voltage across 
the capacitor.  Subtracting the phase difference between the current and source from the -90º 
between the current and capacitor peak voltage gives the phase angle between the source 
voltage and the capacitor peak voltage.  

   
  

 
0, 0 2.252 A 120.57 270 V

90.0 90.0 6.4 83.6

C C

C

V I X

 

   

            
 

 
61. Using Eq. 30-23b we calculate the impedance of the inductor.  Then we set the phase shift in Eq. 30-

29a equal to 25º and solve for the resistance.  We calculate the output voltage by multiplying the 
current through the circuit, from Eq. 30-27, by the inductive reactance (Eq. 30-23b).   

   
  2 2 175 Hz 0.055 H 60.48 

60.48 
tan 129.7 130 

tan tan  25

L

L L

X fL

X X
R

R

 




   


       


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   

output

2 2
0 0

129.70
0.91

129.70 60.48

R
V V IR R

V V IZ Z


    

  
 

 
62. The resonant frequency is found from Eq. 30-32.  The resistance does not influence the resonant 

frequency. 

     
5

0 6 12

1 1 1 1
5.1 10 Hz

2 2 26.0 10 H 3800 10 F
f

LC   
   

 
 

 
63. We calculate the resonant frequency using Eq. 30-32 with the inductance and capacitance given in 

the example.  We use Eq. 30-30 to calculate the power dissipation, with the impedance equal to the 
resistance. 

  0
6

1 1
265 Hz

2 2 0.0300 H 12.0 10  F
f

LC  
  


 

 22
rms rms

rms rms rms

90.0V
cos 324W

25.0

V R V
P I V V

R R R
               

 

 
64. (a) We find the capacitance from the resonant frequency, Eq. 30-32. 

   
  

9

0 22 2 2 3
0

3

1 1 1 1
    5.60 10 F

2 4 4 4.15 10 H 33.0 10 Hz
f C

LC Lf  



     

 
 

 (b) At resonance the impedance is the resistance, so the current is given by Ohm’s law. 

   peak

peak

136 V
35.8 mA

3800

V
I

R
  


 

 
65. (a) The peak voltage across the capacitor is the peak current multiplied by the capacitive reactance.  

We calculate the current in the circuit by dividing the source voltage by the impedance, where 
at resonance the impedance is equal to the resistance. 

 
0 0 0

0 0 0
0 0

1 1

2 2 2C C

V V V
V X I T

f C R RC f  
     

 (b) We set the amplification equal to 125 and solve for the resistance. 

   
   

0
9

0 0

1 1 1
130

2 2 2 2 5000Hz 125 2.0 10 F

T
R

f RC f C


     
      


 

 
66. (a) We calculate the resonance frequency from the inductance and capacitance using Eq.30-32. 

  0
9

1 1
21460 Hz 21 kHz

2 2 0.055 H 1.0 10  F
f

LC  
   


 

 (b) We use the result of Problem 65 to calculate the voltage across the capacitor. 

     
0

0 9
0

1 2.0 V
420 V

2 2 35 1.0 10  F 21460 Hz
C

V
V

RC f  
  

 
 

 (c) We divide the voltage across the capacitor by the voltage source. 

0

0

420 V
210

2.0 V
CV

V
   
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67. (a) We write the average power using Eq. 30-30, with the current in terms of the impedance (Eq.  
30-27) and the power factor in terms of the resistance and impedance (Eq. 30-29b).  Finally we 
write the impedance using Eq. 30-28b. 

 

2 2
rms rms 0

rms rms rms 2 22
cos

2 1

V R V R V R
P I V V

Z Z Z R L C


 
   

   

 

 (b) The power dissipation will be a maximum when the inductive reactance is equal to the  
capacitive reactance, which is the resonant frequency. 

   
1

2
f

LC
  

 (c) We set the power dissipation equal to ½ of the maximum power dissipation and solve for the  
angular frequencies.   

 
 

2 2
0 0

max 222

2 2
2

1 1
1

2 2 22 1

4
 0 1    

2

V R V R
P P L C R

RR L C

RC R C LC
LC RC

LC

 
 

  

 
            

  
     

 

  We require the angular frequencies to be positive and for a sharp peak, 2 2 4R C LC .  The  
angular width will then be the difference between the two positive frequencies. 

2 1 1 1
    

2 2 2 2

LC RC R R R R

LC L L L LLC LC LC
                 

   
 

 
68. (a) We write the charge on the capacitor using Eq. 24-1, where the voltage drop across the  

capacitor is the inductive capacitance multiplied by the circuit current (Eq. 30-25a) and the 
circuit current is found using the source voltage and circuit impedance (Eqs. 30-27 and 30-28b). 

   
0 0 0

0 0 0 2 22 2 2 21 1
C C C

V CV V
Q CV CI X C X

Z C R L C R L C    

      
     

 

(b) We set the derivative of the charge with respect to the frequency equal to zero to calculate the  
frequency at which the charge is a maximum. 

 
 

 
3
2

2 3 2
00 0

2 22 2 2 2 2 2

2

2

2 4 4 /
0

1 1

1

2

V R L L CdQ Vd

d d
R L C R L C

R

LC L

  

     



    
  

        

  

 

 (c) The amplitude in a forced damped harmonic oscillation is given by Eq. 14-23.  This is  
equivalent to the LRC circuit with 0 0 ,  1 / ,   ,  and .F V k C m L b R      

 
69. Since the circuit is in resonance, we use Eq. 30-32 for the resonant frequency to determine the 

necessary inductance.   We set this inductance equal to the solenoid inductance calculated in 
Example 30-3, with the area equal to the area of a circle of radius r, the number of turns equal to the 
length of the wire divided by the circumference of a turn, and the length of the solenoid equal to the 
diameter of the wire multiplied by the number of turns.  We solve the resulting equation for the 
number of turns. 
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2
2

2 0
0

0 2 2

1 1 2
      

42

wire

o

r
N A r

f L
Ndf CLC

 
 



 
 
      

l

l
 

     
2 23 7 72 2

0
3

18.0 10 Hz 2.20 10 F 4 10 T m A 12.0m
37 loops

1.1 10 m
o wiref C

N
d

  
 



  
  


l 

 

 
70. The power on each side of the transformer must be equal.  We replace the currents in the power 

equation with the number of turns in the two coils using Eq. 29-6.  Then we solve for the turn ratio. 
2 2

2 2

345 10  
75

8.0 

p ps
p p p s s s

s p s

p p

s s

Z NI
P I Z P I Z

Z I N

N Z

N Z

   
            

 
   



 

 
71. (a) We calculate the inductance from the resonance frequency. 

   

0

2 2 22 3 9

1
  

2
1 1

0.03982 H 0.040H
4 4 17 10 Hz 2.2 10 Fo

f
LC

L
f C



  

 

   
 

 

 (b) We set the initial energy in the electric field, using Eq. 24-5, equal to the maximum energy in  
the magnetic field, Eq. 30-6, and solve for the maximum current. 

  
 

292
2 2 01 1

0 max max2 2

2.2 10 F 120V
    0.028A

0.03984 H

CV
CV LI I

L


      

 (c) The maximum energy in the inductor is equal to the initial energy in the capacitor. 

  22 91 1
,max 02 2 2.2 10 F 120V 16 JLU CV      

 
72. We use Eq. 30-6 to calculate the initial energy stored in the inductor. 

    22 51 1
0 02 2 0.0600H 0.0500A 7.50 10 JU LI      

 We set the energy in the inductor equal to five times the initial energy and solve for the current.  We 
set the current equal to the initial current plus the rate of increase multiplied by time and solve for the 
time. 

 5

21
2

0
0

2 5.0 7.50 10 J2
    111.8mA

0.0600H

111.8mA 50.0mA
    0.79s

78.0mA/s

U
U LI I

L

I I
I I t t



 
    

 
     

 

 
73. When the currents have acquired their steady-state 

values, the capacitor will be fully charged, and so no 
current will flow through the capacitor.  At this time, 
the voltage drop across the inductor will be zero, as the 
current flowing through the inductor is constant.  
Therefore, the current through R1 is zero, and the 
resistors R2 and R3 can be treated as in series. 
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0
1 3 2

1 3

12V
2.4mA   ;  0

5.0k

V
I I I

R R
    

 
 

 
74. (a) The self inductance is written in terms of the magnetic flux in the toroid using Eq. 30-4.  We set  

the flux equal to the magnetic field of a toroid, from Example 28-10.  The field is dependent 
upon the radius of the solenoid, but if the diameter of the solenoid loops is small compared with 
the radius of the solenoid, it can be treated as approximately constant. 

   
  2 2 2

0 0 0

0

4 2

8
B

N d NI rN N d
L

I I r

   
    

  This is consistent with the inductance of a solenoid for which the length is 02 .rl  
 (b) We calculate the value of the inductance from the given data, with r0 equal to half of the  

diameter. 

    
 

2 272 2
0

0

4 10  T m/A 550 0.020 m
58 H

8 8 0.33 m

N d
L

r





  


 

 
75. We use Eq. 30-4 to calculate the self inductance between the two wires.  We calculate the flux by 

integrating the magnetic field from the two wires, using Eq. 28-1, over the region between the two 
wires.  Dividing the inductance by the length of the wire gives the inductance per unit length. 

 
   

   

0 0 0

0 0 0

1 1 1

2 2 2

ln ln ln ln ln
2 2

r r
B

r r

r

r

I I h
L hdr dr

I I r r r r

L r r r
r r

h r r r

  
  

  
  

 



                      

                            

 
l l

l

l l

l l
l

l

 

 
76. The magnetic energy is the energy density (Eq. 30-7) multiplied by the volume of the spherical shell 

enveloping the earth. 

   
     

242 22 6 3 15

7
0

0.50 10 T
4 4 6.38 10 m 5.0 10 m 2.5 10 J

2 2 4 10 T m A
B

B
U u V r h 

 





           
 

 
77. (a) For underdamped oscillation, the charge on the capacitor is given by Eq. 30-19, with 0.     

Differentiating the current with respect to time gives the current in the circuit.  

2 2
0 0( ) cos   ;  ( ) cos sin

2

R R
L Lt tdQ R

Q t Q e t I t Q e t t
dt L

              
 

 

The total energy is the sum of the energies stored in the capacitor (Eq. 24-5) and the energy 
stored in the inductor (Eq. 30-6).  Since the oscillation is underdamped ( / 2R L ), the 
cosine term in the current is much smaller than the sine term and can be ignored.  The frequency 
of oscillation is approximately equal to the undamped frequency of Eq. 30-14. 

     

 

2 2

0 0

2 2 2
2 2 0 0

2 2
2 2 2

cos sin

2 2 2 2

cos sin
2 2

R R
L L

R R
L L

t t

C L

t t

Q e t L Q e tQ LI
U U U

C C

Q e Q e
t LC t

C C

  

  

 

 

  
     

    
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 (b) We differentiate the energy with respect to time to show the average power dissipation.  We  
then set the power loss per cycle equal to the resistance multiplied by the square of the current.  
For a lightly damped oscillation, the exponential term does not change much in one cycle, while 
the sine squared term averages to ½ .  

 

0 0

0

0 0

2 2

2
2 2 2 2 2

2 2

1 1
sin

2 2

R R
L L

R
L

R R
L L

t t

t
t t

Q e RQ edU d

dt dt C LC

RQ e
P I R Q e t Q e

LC LC
 

 


 

 
   
 
 

            
  

 

  The change in power in the circuit is equal to the power dissipated by the resistor. 
 
78. Putting an inductor in series with the device will protect it from sudden surges in current.  The 

growth of current in an LR circuit is given is Eq. 30-9. 

   max1 1tR L tR LV
I e I e

R
      

The maximum current is 33 mA, and the current is to have a value of 7.5 mA after a time of 75  
microseconds.  Use this data to solve for the inductance. 

 

   

max

max

6

2

max

1     1   

75 10 sec 150
4.4 10 H

7.5mA
ln 1ln 1

33mA

tR L tR L I
I I e e

I

tR
L

I

I

 





     

 
     


   
   

  

 

 Put an inductor of value 24.4 10 H  in series with the device. 
 
79. We use Kirchhoff’s loop rule to equate the input voltage to the voltage drops across the inductor and 

resistor.  We then multiply both sides of the equation by the integrating factor 
Rt
Le  and integrate the 

right-hand side of the equation using a u substitution with  and  
Rt Rt Rt
L L Lu IRe du dIRe Ie dt L    

  

Rt Rt Rt Rt
L L L L

in

in out

dI
V L IR

dt
dI L L L

V e dt L IR e dt du IR e V e
dt R R R

  

      
   

 

 For /L R t ,  1.
Rt
Le   Setting the exponential term equal to 

unity on both sides of the equation gives the desired results. 

 in out

L
V dt V

R
  

 
 
 
80. (a)  Since the capacitor and resistor are in series, the impedance of the circuit is given by Eq. 30- 

28a.  Divide the source voltage by the impedance to determine the current in the circuit.  
Finally, multiply the current by the resistance to determine the voltage drop across the resistor. 

 22 1 2

in in
R

V V R
V IR R

Z R fC
  


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  

     22 6

130 mV 550 
    31 mV

550 1 2 60 Hz 1.2 10  F 


 

    

 

 (b) Repeat the calculation with a frequency of 6.0 kHz. 
  

     22 6

130 mV 550 
130 mV

550 1 2 6000 Hz 1.2 10  F
RV

 


 

    

 

Thus the capacitor allows the higher frequency to pass, but attenuates the lower frequency. 
 
81. (a) We integrate the power directly from the current and voltage over one cycle. 

       

 

2 2

0 0 0 0
0 0 0

2
2

20 0
0 0

0

1
sin sin 90 sin cos

2 2

sin
sin

2 2 4

T
P IVdt I t V t dt I t V t dt

T

t I V
I V

 
 




    
 

 
  

    

 

  

2


 2sin 0 0
  

   
  

 

 (b) We apply Eq. 30-30, with 90   . 

rms rms cos90 0P I V    
As expected the average power is the same for both methods of calculation. 

 
82. Since the current lags the voltage one of the circuit elements must be an inductor.  Since the angle is 

less than 90º, the other element must be a resistor.   We use 30-29a to write the resistance in terms of 
the impedance.  Then using Eq. 30-27 to determine the impedance from the voltage and current and 
Eq. 30-28b, we solve for the unknown inductance and resistance. 

     

  
  

2 2 22 2rms

rms

rms

2 2
rms

2
tan 2 cot

2  2 cot 2 2 1 cot  

120V
  = 51.5mH 52mH

2 1 cot 2 60Hz 5.6A 1 cot 65

2 cot 2 60Hz 51.5mH cot 65 9.1

fL
R fL

R
V

Z R fL fL fL fL
I

V
L

f I

R f L

  

     

  

  

  

      

  
  

    

  

 
83. We use Eq. 30-28b to calculate the impedance at 60 Hz. Then we double that result and solve for the 

required frequency. 

      

 
   

 

22 22
0 0

2 22 2
2 02

0

2 3500 2 60Hz 0.44 H 3504

4 3504 35004
2 2 2.2kHz

2 2 0.44 H

Z R f L

Z R
Z R fL f

L

 


 

        

  
     

 

 
84. (a) We calculate capacitive reactance using Eq. 30-25b.  Then using the resistance and capacitive  

reactance we calculate the impedance.  Finally, we use Eq. 30-27 to calculate the rms current. 

  
   

6

2 22 2

1 1
1474

2 2 60.0Hz 1.80 10 F

5700 1474 5887

C

C

X
fC

Z R X

  
   



       
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rms
rms

120V
20.38mA 20.4mA

5887

V
I

Z
   


 

 (b) We calculate the phase angle using Eq. 30-29a. 

1 1 1474
tan tan 14.5

5700
CX

R
    
    


 

 (c) The average power is calculated using Eq. 30-30. 

    rms rms cos 0.0204A 120V cos 14.5 2.37WP I V       

(d) The voltmeter will read the rms voltage across each element.  We calculate the rms voltage by 
multiplying the rms current through the element by the resistance or capacitive reactance. 

  
  

rms

rms

20.38mA 5.70k 116V

20.38mA 1474 30.0V

R

C C

V I R

V I X

   

   
 

Note that since the voltages are out of phase they do not sum to the applied voltage.  However, 
since they are 90º out of phase their squares sum to the square of the input voltage. 

 
85. We find the resistance using Ohm’s law with the dc voltage and current.  When then calculate the 

impedance from the ac voltage and current, and using Eq. 30-28b. 

 
   

 

rms

rms

2 22 2
22

45V 120V
18   ;  31.58

2.5A 3.8A

31.58 18
2 69mH

2 2 60Hz

V V
R Z

I I

Z R
R fL L

f


 

       

  
    

 

 
86. (a) From the text of the problem, the Q factor is the ratio of the voltage across the capacitor or  

inductor to the voltage across the resistor, at resonance.  The resonant frequency is given by Eq. 
30-32. 

   res 0

res

1 1
2

2 12L L

R

L
V I X f L LLCQ
V I R R R R C

       

 (b) Find the inductance from the resonant frequency, and the resistance from the Q factor. 

   
   

0

6 6

22 2 2 8 6
0

6
2

8

1 1
  

2

1 1
2.533 10 H 2.5 10 H

4 4 1.0 10 F 1.0 10 Hz

1 1 1 2.533 10 H
    4.5 10

350 1.0 10 F

f
LC

L
Cf

L L
Q R

R C Q C



 
 








 

     
 


      



 

 
87. We calculate the period of oscillation as 2 divided by the angular frequency.  Then set the total 

energy of the system at the beginning of each cycle equal to the charge on the capacitor as given by 

Eq. 24-5, with the charge given by Eq. 30-19, with    cos cos 1t t T           .  We take 

the difference in energies at the beginning and end of a cycle, divided by the initial energy.  For small 
damping, the argument of the resulting exponential term is small and we replace it with the first two 
terms of the Taylor series expansion.   
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 

      


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88. We set the power factor equal to the resistance divided by the impedance (Eq. 30-28a) with the 

impedance written in terms of the angular frequency (Eq. 30-28b).  We rearrange the resulting 
equation to form a quadratic equation in terms of the angular frequency.   We divide the positive 
angular frequencies by 2 to determine the desired frequencies. 

 
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

 
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 
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    


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

3
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2 2 2
f


  


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   

 

 
89. (a) We set 0 sinV V t  and assume the inductive reactance  

is greater than the capacitive reactance.  The current will 
lag the voltage by an angle .  The voltage across the 
resistor is in phase with the current and the voltage 
across the inductor is 90º ahead of the current.  The 
voltage across the capacitor is smaller than the voltage in 
the inductor, and antiparallel to it. 

 (b) From the diagram, the current is the projection of the  
maximum current onto the y axis, with the current 
lagging the voltage by the angle .  This is the same 
angle obtained in Eq. 30-29a.  The magnitude of the maximum current is the voltage divided by 
the impedance, Eq. 30-28b. 

 
 

  10
0 22

1
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1

V L C
I t I t t

RR L C

     
 

 
    

 
 

 
90. (a) We use Eq. 30-28b to calculate the impedance and Eq. 30-29a to calculate the phase angle. 

  
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1 1 754rad s 0.42 10 F 3158

23.2 10 16.59 3158 23.4k
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    
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(b) We use Eq. 30-30 to obtain the average power.  We obtain the rms voltage by dividing the 

maximum voltage by 2 .  The rms current is the rms voltage divided by the impedance. 

 
   

22 2
rms 0

rms rms 3

0.95V
cos cos cos cos 7.71 19 W

2 2 23.4 10

V V
P I V

Z Z
         

 
 

(c) The rms current is the peak voltage, divided by 2 , and then divided by the impedance. 

50
rms 3

2 0.95V 2
2.871 10 A 29 A

23.4 10

V
I

Z
    

 
 

The rms voltage across each element is the rms current times the resistance or reactance of the 
element. 

    

  
  

  

5 3
rms

5
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5 4
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R
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L L

V I R

V I X

V I X





 

     

    

     

 

 
91. (a) The impedance of the circuit is given by Eq. 30-28b with L CX X  and 0R  .  We divide the  

magnitude of the ac voltage by the impedance to get the magnitude of the ac current in the 
circuit.  Since L CX X , the voltage will lead the current by 2.    No dc current will flow 
through the capacitor. 

 

   

22 20 20
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1 1      
1

sin 2
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Z L C

V
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 

 
 

      


 


 

 (b) The voltage across the capacitor at any instant is equal to the charge on the capacitor divided by  
the capacitance.  This voltage is the sum of the ac voltage and dc voltage.  There is no dc 
voltage drop across the inductor so the dc voltage drop across the capacitor is equal to the input 
dc voltage. 

out,ac out 1 1

Q
V V V V

C
     

We treat the emf as a superposition of the ac and dc components.  At any instant of time the 
sum of the voltage across the inductor and capacitor will equal the input voltage.  We use Eq. 
30-5 to calculate the voltage drop across the inductor.  Subtracting the voltage drop across the 
inductor from the input voltage gives the output voltage.  Finally, we subtract off the dc voltage 
to obtain the ac output voltage. 
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


 
       
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   20
out,ac out 1 20 2

1
sin sin

1 1

C V
V V V V t t

L C LC

   
  

              
 

 (c) The attenuation of the ac voltage is greatest when the denominator is large. 

2 1
1 L CLC L X X

C
 


     

  We divide the output ac voltage by the input ac voltage to obtain the attenuation. 

20
2

2,out
2 2

2,in 20

1 11
1

V
V LC
V V LC LC


 

  


 

 (d) The dc output is equal to the dc input, since there is no dc voltage drop across the inductor. 

1,out 1V V  

 
92. Since no dc current flows through the capacitor, there will be no dc current through the resistor.  

Therefore the dc voltage passes through the circuit with little attenuation.  The ac current in the 
circuit is found by dividing the input ac voltage by the impedance (Eq. 30-28b)  We obtain the output 
ac voltage by multiplying the ac current by the capacitive reactance.  Dividing the result by the input 
ac voltage gives the attenuation. 

2,out20
2,out 2 2 2 2 2

20

1 1
    

1

C
C

C

VV X
V IX

V R CR X R C 
    

 
 

 
93. (a) Since the three elements are connected in parallel, at any given instant in time they will all three  

have the same voltage drop across them.  That is the voltages across each element will be in 
phase with the source.  The current in the resistor is in phase with the voltage source with 
magnitude given by Ohm’s law. 

0( ) sinR

V
I t t

R
    

(b) The current through the inductor will lag behind the voltage by /2, with magnitude equal to the 
voltage source divided by the inductive reactance. 

0( ) sin
2L

L

V
I t t

X

   
 

 

(c) The current through the capacitor leads the voltage by /2, with magnitude equal to the voltage 
source divided by the capacitive reactance. 

0( ) sin
2C

C

V
I t t

X

   
 

 

 (d) The total current is the sum of the currents through  
each element.  We use a phasor diagram to add the 
currents, as was used in Section 30-8 to add the voltages 
with different phases.  The net current is found by 
subtracting the current through the inductor from the 
current through the capacitor.  Then using the Pythagorean 
theorem to add the current through the resistor.  We use 
the tangent function to find the phase angle between the 
current and voltage source. 
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 
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0( ) 1 sin
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R L

  


     
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0 0

1 1

0

tan tan tanC L
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  
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 


           
  

 

(e) We divide the magnitude of the voltage source by the magnitude of the current to find the 
impedance. 

0 0

2 2
0

0 1 1

V V R
Z

I V R R
R C R C

R L L
 

 

  
         
   

 

(f) The power factor is the ratio of the power dissipated in the circuit divided by the product of the 
rms voltage and current. 

2
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   

 

 
94. We find the equivalent values for each type of element in series.  From the equivalent values we 

calculate the impedance using Eq. 30-28b. 
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eq 1 2 eq 1 2
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eq 1 2

1 1 1
            

1 1 1

R R R L L L
C C C

Z R L R R L L
C C C

  
  

     

   
               

 

 
95. If there is no current in the secondary, there will be no induced emf from the mutual inductance.  

Therefore, we set the ratio of the voltage to current equal to the inductive reactance and solve for the 
inductance. 

  
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220 V
2 0.14 H

2 2 60 Hz 4.3 AL
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X fL L

I f I


 
       

 
96. (a) We use Eq. 24-2 to calculate the capacitance, assuming a parallel plate capacitor. 

   –12 2 2 –4 2

–12o
–3

5.0 8.85 10 C N m 1.0 10 m
2.213 10 F 2.2pF

2.0 10 m

K A
C

d

  
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


 

 (b) We use Eq. 30-25b to calculate the capacitive reactance. 

  
6

–12

1 1
5.995 10 6.0M

2 2 12000Hz 2.2 10 F
CX

fC 
      


 

 (c) Assuming that the resistance in the plasma and in the person is negligible compared with the  
capacitive reactance, calculate the current by dividing the voltage by the capacitive reactance. 

–4o
o 6

2500 V
4.17 10 A 0.42mA

5.995 10C

V
I

X
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 
 

  This is not a dangerous current level. 



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 
 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

298 

 (d) We replace the frequency with 1.0 MHz and recalculate the current. 

   6 –120
0 02 2 1.0 10 Hz 2.2 10 F 2500V 35mA

C

V
I fCV

X
        

  This current level is dangerous. 
 
97. We calculate the resistance from the power dissipated and the current.  Then setting the ratio of the 

voltage to current equal to the impedance, we solve for the inductance. 
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98. We insert the proposed current into the differential equation and solve for the unknown peak current 

and phase. 
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 For the given equation to be a solution for all time, the coefficients of the sine and cosine terms 
must independently be equal. 

1
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For the cos  term: 
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99. The peak voltage across either element is the current through the element multiplied by the 

reactance.  We set the voltage across the inductor equal to six times the voltage across the capacitor 
and solve for the frequency in terms of the resonant frequency, Eq. 30-14. 

0
0 0

6 1 6
2 6         6

2 2L C
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fC LC
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100. We use Kirchhoff’s junction rule to write an equation relating 
the currents in each branch, and the loop rule to write two 
equations relating the voltage drops around each loop.  We 
write the voltage drops across the capacitor and inductor in 
terms of the charge and derivative of the current.  

0 0sin 0  ;  sin 0

R L C

C L
R R

I I I

Q dI
V t I R V t I R L

C dt
 

 

     
 

 We combine these equations to eliminate the charge in the capacitor and the current in the inductor 
to write a single differential equation in terms of the current through the resistor. 

 
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2
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 We set the current in the resistor,    0 0sin sin cos cos sinRI I t I t t         , equal to the 

current provided by the voltage source and take the necessary derivatives.   
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 Setting the coefficients of the time dependent sine and cosine terms separately equal to zero enables 
us to solve for the magnitude and phase of the current through the voltage source.  We also use Eq. 
30-23b and Eq. 30-25b to write the inductance and capacitance in terms of their respective 
reactances. 
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This gives us the current through the power source and resistor.  We insert these values back into 
the junction and loop equations to determine the current in each element as a function of time.  We 
calculate the impedance of the circuit by dividing the peak voltage by the peak current through the 
voltage source. 

   
     

2 22
10 0

0

  ;  tan   ;  sin
C L C L L C

R
C L L C

X X R X XV X X V
Z I t

I X X R X X Z
     

        
 

 

 

   

   

0 0

0

0 0

0 0

sin cos

cos cos

sin cos cos

sin cos cos

C R
C R

C

L R C
C

C C

dQ d dI
I CV t I RC CV t RC

dt dt dt

V R
t t

X Z

V V R
I I I t t t

Z X Z

V R V
t t t

Z X X

  

  

    

    

    

     

         

 
     

 

 

 
101. (a) The resonant frequency is given by Eq. 30-32.  At resonance, the impedance is equal to the  

resistance, so the rms voltage of the circuit is equal to the rms voltage across the resistor. 

  
 

6

rmsrms

1 1
7118Hz 7.1kHz

2 2 0.0050H 0.10 10 F

R

f
LC

V V

  
   





 

(b) We set the inductance equal to 90% of the initial inductance and use Eq. 30-28b to calculate the 
new impedance.  Dividing the rms voltage by the impedance gives the rms current.  We 
multiply the rms current by the resistance to determine the voltage drop across the resistor. 

  
   

     

 

6

2 2 22

rms rms rmsrms

1 1
223.6

2 2 7118Hz 0.10 10 F

2 2 7118Hz 0.90 0.0050H 201.3

45 201.3 223.6 50.24

45
0.90

50.24

C

L

L C

R

X
fC

X fL

Z R X X

R
V V V V

Z

 

 


   



   

         

          

 

 
102. With the given applied voltage, calculate the rms current through each branch as the rms voltage 

divided by the impedance in that branch.  

rms rms
,rms ,rms2 2 2 2

1 2

      C L

C L

V V
I I

R X R X
 

 
 

 Calculate the potential difference between points a and b in two ways.  First pass through the 
capacitor and then through R2.  Then pass through R1  and the inductor.   

rms rms 2
ab 2 2 2 2 2

1 2

C
C C L

C L

V X V R
V I X I R

R X R X
   

 
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rms 1 rms
ab 1 2 2 2 2

1 2

L
C L L

C L

V R V X
V I R X I

R X R X
     

 
 

 Set these voltage differences equal to zero, and rearrange the equations. 
2 2 2 2rms rms 2
2 2 12 2 2 2

1 2

2 2 2 2rms 1 rms
1 2 12 2 2 2

1 2

0

0

C
C L C

C L

L
L L C

C L

V X V R
X R X R R X

R X R X

V R V X
R R X X R X

R X R X

     
 

      
 

 

 
 Divide the resulting equations and solve for the product of the resistances.  Write the reactances in 

terms of the capacitance and inductance to show that the result is frequency independent. 

  
2 22 2

2 12
1 2 1 22 2 2 2

1 2 1

CC L
L C

L L C

R R XX R X L L
R R X X R R

C CR R X X R X





     

 
 

 
103. (a) The output voltage is the voltage across the capacitor, which is the current through the circuit  

multiplied by the capacitive reactance.  We calculate the current by dividing the input voltage 
by the impedance.  Finally, we divide the output voltage by the input voltage to calculate the 
gain. 

   
   

in in in
out 2 2 2 2

out

2 2 2 2
in

1 2 1

1

4 1

C
C

C C

V X V V
V IX

R X R X fCR

V
A

V f C R





   
  

 


 

 (b) As the frequency goes to zero, the gain becomes one.  In this instance the capacitor becomes 
fully charged, so no current flows across the resistor.  Therefore the output voltage is equal to 
the input voltage.  As the frequency becomes very large, the capacitive reactance becomes very 
small, allowing a large current.  In this case, most of the voltage drop is across the resistor, and 
the gain goes to zero. 

 (c) See the graph of the log of the gain as 
a function of the log of the frequency.  
Note that for frequencies less than 
about 100 Hz the gain is ~ 1.  For 
higher frequencies the gain drops off 
proportionately to the frequency.  The 
spreadsheet used for this problem can 
be found on the Media Manager, with 
filename “PSE4_ISM_CH30.XLS,” 
on tab “Problem 30.103c.” 

 
 
104. (a) The output voltage is the voltage across the resistor, which is the current through the circuit  

multiplied by the resistance.  We calculate the current by dividing the input voltage by the 
impedance.  Finally, we divide the output voltage by the input voltage to calculate the gain. 

   
 

in in in
out 2 2 2 2

2

2

2 11
2

C

V R V R fCRV
V IR

R X fCR
R

fC






   
  

  
 
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   out

2 2 2 2
in

2

4 1

V fCR
A

V f C R




 


 

 (b) As the frequency goes to zero, the gain drops to zero.  In this instance the capacitor becomes  
fully charged, so no current flows across the resistor.  Therefore the output voltage drops to 
zero.  As the frequency becomes very large, the capacitive reactance becomes very small, 
allowing a large current.  In this case, most of the voltage drop is across the resistor, and the 
gain is equal to unity. 

 
(c) See the graph of the log of the gain as  

a function of the log of the frequency.  
Note that for frequencies greater than 
about 1000 Hz the gain is ~ 1.  For 
lower frequencies the gain drops off 
proportionately to the inverse of the 
frequency.  The spreadsheet used for 
this problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH30.XLS,” on tab 
“Problem 30.104c.” 
 

 

 
105. We calculate the resonant frequency using Eq. 30-32. 

  
  0

6 6

1 1
20,000rad s

50 10 H 50 10 FLC


 
  

 
 

Using a spreadsheet, we calculate the impedance as a function of frequency using Eq. 30-28b.  We 
divide the rms voltage by the impedance to plot the rms current as a function of frequency.  The 
spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH30.XLS,” on tab “Problem 30.105.” 
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