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CHAPTER 28:  Sources of Magnetic Field 
 
Responses to Questions 
 
1.  Alternating currents will have little effect on the compass needle, due to the rapid change of the 

direction of the current and of the magnetic field surrounding it. Direct currents will deflect a 
compass needle. The deflection depends on the magnitude and direction of the current and the 
distance from the current to the compass. The effect on the compass decreases with increasing 
distance from the wire. 

 
2. The magnetic field due to a long straight current is proportional to the current strength. The electric 

field due to a long straight line of electric charge at rest is proportional to the charge per unit length. 
Both fields are inversely proportional to the distance from the wire or line of charge. The magnetic 
field lines form concentric circles around the wire; the electric field lines are directed radially 
outward if the line of charge is positive and radially inward if the line of charge is negative.  

 
3.  The magnetic forces exerted on one wire by the other try to align the wires. The net force on either 

wire is zero, but the net torque is not zero. 
 
4.  Yes. Assume the upper wire is fixed in position. Since the currents in the wires are in the same 

direction, the wires will attract each other. The lower wire will be held in equilibrium if this force of 
attraction (upward) is equal in magnitude to the weight of the wire (downward). 

 
5. (a) The current in the lower wire is opposite in direction to the current in the upper wire. 

(b) The upper wire can be held in equilibrium due to the balance between the magnetic force from 
the lower wire and the gravitational force. The equilibrium will be stable for small vertical 
displacements, but not for horizontal displacements.  

 

6. (a) Let 2 1.I I   0 encl 0 1 2 0 12d I I I I       B l


  

(b) Let 2 1.I I    0 encl 0 1 2 0d I I I      B l


  

 
7. Inside the cavity 0B


 since the geometry is cylindrical and no current is enclosed. 

 
8. Construct a closed path similar to that shown in part (a) of the figure, such that sides ab and cd are 

perpendicular to the field lines and sides bc and da lie along the field lines. Unlike part (a), the path 
will not form a rectangle; the sides ab and cd will flare outward so that side bc is longer than side da. 
Since the field is stronger in the region of da than it is in the region of bc, but da is shorter than bc, 

the contributions to the integral in Ampère’s law may cancel. Thus, 0 encl 0I d    B

  is possible 

and the field is consistent with Ampère’s law. The lines could not curve upward instead of 
downward, because then bc would be shorter than da and it would not be possible for the 
contributions to sum to zero. 

 
9.  The equation for the magnetic field strength inside a solenoid is given by 0 .B In  

(a) The magnetic field strength is not affected if the diameter of the loops doubles. 
(b) If the spacing between the loops doubles, the number of loops per unit length decreases by a 

factor of 2, and the magnetic field strength then also decreases by a factor of 2. 
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iron rod on pivot 

solenoid

(c)  If the solenoid’s length is doubled along with the doubling of the total number of loops, then the 
number of loops per unit length remains the same, and the magnetic field strength is not 
affected. 

 
10. The Biot-Savart law states that the net field at a point in space is the vector sum of the field 

contributions due to each infinitesimal current element. As shown in Example 28-12, the magnetic 
field along the axis of a current loop is parallel to the axis because the perpendicular field 
contributions cancel. However, for points off the axis, the perpendicular contributions will not 
cancel. The net field for a point off the axis will be dominated by the current elements closest to it. 
For example, in Figure 28-21, the field lines inside the loop but below the axis curve downward, 
because these points in space are closer to the lower segment of the loop (where the current goes into 
the page) than they are to the upper segment (where the current comes out of the page).  

 
11. No. The magnetic field varies in strength and direction for points in the plane of the loop. The 

magnetic field is strongest at the center of the loop. 
 
12.  The lead-in wires to electrical devices have currents running in opposite directions. The magnetic 

fields due to these currents are therefore also opposite in direction. If the wires are twisted together, 
then the distance from a point outside the wires to each of the individual wires is about the same, and 
the field contributions from the two wires will cancel. If the wires were not twisted and were 
separate from each other, then a point outside the wires would be a different distance from one of the 
wires than from the other, and there would be a net field due to the currents in the wires. 

 
13. The Biot-Savart law and Coulomb’s law are both inverse-square in the radius and both contain a 

proportionality constant. Coulomb’s law describes a central force; the Biot-Savart law involves a 
cross product of vectors and so cannot describe a central force. 

14.  (a) The force between two identical electric charges is given by Coulomb’s law: 
2

2
.

kq
F

r
  

Magnetic pole strength of a bar magnet could be defined using an analogous expression for the 

magnetic force between the poles of two identical magnets: 
2

24
.

m
F

r




   Then, magnetic pole 

strength, m, would be given by 
24

.
Fr

m



  To determine m, place two identical magnets 

with their poles facing each other a distance r apart and measure the force between them. 
(b)  The magnetic pole strength of a current loop could be defined the same way by using two  

identical current loops instead of two bar magnets.  
 

15. Determine the magnetic field of the Earth at one of the magnetic poles (north or south), and use 
Equation 28-7b to calculate the magnetic moment. In this equation, x will be (approximately) the 
radius of the Earth. 

 
16.  To design a relay, place an iron rod inside a solenoid, with the 

solenoid oriented such that one end of it is facing a second iron 
rod on a pivot. The second iron rod functions as a switch for 
the large-current circuit and is normally held open by a spring. 
When current flows through the solenoid, the iron rod inside it 
becomes magnetized and attracts the second iron rod, closing 
the switch and allowing current to flow. 
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17. (a) The source of the kinetic energy is the attractive force produced by the magnetic field from the  
magnet acting on the magnetic moments of the atoms in the iron. 

(b) When the block strikes the magnet, some of the kinetic energy from the block is converted into  
kinetic energy in the iron atoms in the magnet, randomizing their magnetic moments and 
decreasing the overall field produced by the magnet. Some of the kinetic energy of the block as 
a whole is also converted into the kinetic energy of the individual atoms in the block, resulting 
in an increase in thermal energy.  

 
18.  No, a magnet with a steady field will only attract objects made of ferromagnetic materials. 

Aluminum is not ferromagnetic, so the magnetic field of the magnet will not cause the aluminum to 
become a temporary magnet and therefore there will be no attractive force. Iron is ferromagnetic, so 
in the presence of a magnet, the domains in a piece of iron will align such that it will be attracted to 
the magnet.   
 

19. An unmagnetized nail has randomly oriented domains and will not generate an external magnetic 
field. Therefore, it will not attract an unmagnitized paper clip, which also has randomly oriented 
domains. When one end of the nail is in contact with a magnet, some of the domains in the nail align, 
producing an external magnetic field and turning the nail into a magnet. The magnetic nail will cause 
some of the domains in the paper clip to align, and it will be attracted to the nail. 

 
20. Yes, an iron rod can attract a magnet and a magnet can attract an iron rod. Consider Newton’s third 

law. If object A attracts object B then object B attracts object A.  
 
21. Domains in ferromagnetic materials in molten form were aligned by the Earth’s magnetic field and 

then fixed in place as the material cooled. 
 
22. Yes. When a magnet is brought near an unmagnetized piece of iron, the magnet’s field causes a 

temporary alignment of the domains of the iron. If the magnet’s north pole is brought near the iron, 
then the domains align such that the temporary south pole of the iron is facing the magnet, and if the 
magnet’s south pole is closest to the iron, then the alignment will be the opposite. In either case, the 
magnet and the iron will attract each other. 

 
23. The two rods that have ends that repel each other will be the magnets. The unmagnetized rod will be 

attracted to both ends of the magnetized rods. 
 
24. No. If they were both magnets, then they would repel one another when they were placed with like 

poles facing each other. However, if one is a magnet and the other isn’t, they will attract each other 
no matter which ends are placed together. The magnet will cause an alignment of the domains of the 
non-magnet, causing an attraction. 

 
25. (a) The magnetization curve for a paramagnetic substance is a straight line with slope slightly 

greater than 1. It passes through the origin; there is no hysteresis. 
 (b) The magnetization curve for a diamagnetic substance is a straight line with slope slightly less 

than 1. It passes through the origin; there is no hysteresis. 
 The magnetization curve for a ferromagnetic substance is a hysteresis curve (see Figure 28-29). 
 
26. (a) Yes. Diamagnetism is present in all materials but in materials that are also paramagnetic or  
   ferromagnetic, its effects will not be noticeable. 
 (b) No. Paramagnetic materials are nonferromagnetic materials with a relative permeability greater  
   than one. 
 (c) No. Ferromagnetic materials are those that can be magnetized by alignment of their domains. 
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Solutions to Problems 
 
 
1. We assume the jumper cable is a long straight wire, and use Eq. 28-1. 

  
   

 

7

4 40
cable

4 10 T m A 65A
3.714 10 T 3.7 10 T

2 2 0.035m

I
B

r


 



 


     


  

 Compare this to the Earth’s field of 40.5 10 T . 

  
4

cable Earth 5

3.714 10 T
7.43

5.0 10 T
B B






 


, so  the field of the cable is over 7 times that of the Earth. 

  
2. We assume that the wire is long and straight, and use Eq. 28-1. 

  
   4

0 wire
wire 7

0

2 0.15m 0.50 10 T2
    37.5A 38A

2 4 10 T m A

I rB
B I

r

 
  






     

 
 

 
3. Since the currents are parallel, the force on each wire will be attractive, toward the other wire.  Use  

Eq. 28-2 to calculate the magnitude of the force. 

  
   

 
 

7 2

0 1 2
2 2

4 10 T m A 35A
25m 0.15N, attractive

2 2 0.040m

I I
F

d


 


  l


 

 
4. Since the force is attractive, the currents must be in the same direction, so the current in the second 

wire must also be upward.  Use Eq. 28-2 to calculate the magnitude of the second current. 

  

 

0 1 2
2 2

42
2 7

0 2 1

  
2

2 2 0.070m
7.8 10 N m 9.75A 9.8A upward

4 10 T m A 28A

I I
F

d

F d
I

I



 
 





 

    
l

l



 

 
5. To find the direction, draw a radius line from the wire to the field point.   

Then at the field point, draw a perpendicular to the radius line, directed so 
that the perpendicular line would be part of a counterclockwise circle.  

 
 
 
 
 
6. For the experiment to be accurate to 2.0% , the magnetic field due to the current in the cable must  

be less than or equal to 2.0% of the Earth’s magnetic field.  Use Eq. 28-1 to calculate the magnetic 
field due to the current in the cable. 

  
       4

Earth0
cable Earth 7

0

2 1.00m 0.020 0.5 10 T2 0.020
0.020     5.0A

2 4 10 T m A

r BI
B B I

r


  






     

 
 

 Thus the maximum allowable current is 5.0A . 

 
 
 
 
 

I

E

D
C
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7. Since the magnetic field from a current carrying wire circles the 
wire, the individual field at point P from each wire is perpendicular 
to the radial line from that wire to point P.  We define 1B


 as the 

field from the top wire, and 2B


 as the field from the bottom wire.  
We use Eq. 28-1 to calculate the magnitude of each individual 
field.  

  

  
 

  
 

7

40
1

1

7

50
2

2

4 10 T m A 35A
1.17 10 T

2 2 0.060 m

4 10 T m A 35A
7.00 10 T

2 2 0.100m

I
B

r

I
B

r


 


 










   


   




 

We use the law of cosines to determine the angle that the radial 
line from each wire to point P makes with the vertical.  Since the field is perpendicular to the radial 
line, this is the same angle that the magnetic fields make with the horizontal. 

     
  

     
  

2 2 2

1
1

2 2 2

1
2

0.060 m 0.130 m 0.100 m
cos 47.7

2 0.060 m 0.130 m

0.100 m 0.130 m 0.060 m
cos 26.3

2 0.100 m 0.130 m









  
    

 
  

    
 

 

Using the magnitudes and angles of each magnetic field we calculate the horizontal and vertical 
components, add the vectors, and calculate the resultant magnetic field and angle.  

       4 o 5 o 5

net 1 1 2 2cos cos 1.174 10 T cos 47.7 7.00 10 T cos 26.3 1.626 10 TxB B B            

       4 o 5 o 4

net 1 1 2 1sin sin 1.17 10 T sin 47.7 7.00 10 T sin 26.3 1.18 10 TyB B B             

   2 22 2 5 4 4
, ,

4
,1 1

5
,

4 4

1.626 10  T 1.18 10  T 1.19 10  T

1.18 10  T
=tan tan 82.2

1.626 10  T

1.19 10  T @ 82.2 1.2 10 T @ 82

net x net y

net y

net y

B B B

B

B


  


 



 

       


  



     B


 

 
8. At the location of the compass, the magnetic field caused by the wire will point to 

the west, and the Earth’s magnetic field points due North.  The compass needle 
will point in the direction of the NET magnetic field. 

  

   
 

7

50
wire

5
1 1Earth

5

wire

4 10 T m A 43A
4.78 10 T

2 2 0.18m

4.5 10 T
tan tan 43 N of W

4.78 10 T

I
B

r

B

B


 








 




   


   





 

 
9. The magnetic field due to the long horizontal wire points straight up at the  

point in question, and its magnitude is given by Eq. 28-1.  The two fields are 
oriented as shown in the diagram.  The net field is the vector sum of the two 
fields. 

  
   

 

7

50
wire

4 10 T m A 24.0A
2.40 10 T

2 2 0.200m

I
B

r


 






   


 

wireB


EarthB
netB





netB


wireB


EarthB



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  5

Earth 5.0 10 TB    

   

o 5 o 5

net Earth net wire Earth

2 22 2 5 5 5

net net net 

5
net 1 1

5

net 

cos44 3.60 10 T          sin 44 1.07 10 T

3.60 10 T 1.07 10 T 3.8 10 T

1.07 10 T
tan tan 17 below the horizont

3.60 10 T

x y

x y

y

x

B B B B B

B B B

B

B


 

  


 



       

        

 
   


al

   

 
10. The stream of protons constitutes a current, whose magnitude is found by multiplying the proton rate  

times the charge of a proton.  Then use Eq. 28-1 to calculate the magnetic field. 

  
     

 

7 9 19

170
stream

4 10 T m A 2.5 10 protons s 1.60 10 C proton
4.0 10 T

2 2 2.0m

I
B

r


 

 


  

   


 

 
11. (a) If the currents are in the same direction, the magnetic fields at the midpoint between the two  

currents will oppose each other, and so their magnitudes should be subtracted. 

   
 

 
     

7

50 1 0 2
net

1 2

4 10 T m A
25A 2.0 10 T A 25A

2 2 2 0.010m

I I
B I I

r r

 
  






      


 

(b) If the currents are in the opposite direction, the magnetic fields at the midpoint between the two  
currents will reinforce each other, and so their magnitudes should be added. 

   
 

 
     

7

50 1 0 2
net

1 2

4 10 T m A
25A 2.0 10 T A 25A

2 2 2 0.010m

I I
B I I

r r

 
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




      


 

 
12. Using the right-hand-rule we see that if the currents flow in the same direction, the magnetic fields 

will oppose each other between the wires, and therefore can equal zero at a given point.  Set the sum 
of the magnetic fields from the two wires equal to zero at the point 2.2 cm from the first wire and use 
Eq. 28-1 to solve for the unknown current.  

 0 1 0 2 2
2 1

1 2 1

6.0cm 2.2cm
0   2.0A 3.5A

2 2 2.2cmnet

I I r
B I I

r r r

 
 

   
         

  
 

 
13. Use the right hand rule to determine the direction of the magnetic field 

from each wire.  Remembering that the magnetic field is inversely 
proportional to the distance from the wire, qualitatively add the magnetic 
field vectors.  The magnetic field at point #2 is zero. 

 
 
 
 
 
 
14. The fields created by the two wires will oppose each other, so the net field is the difference of the  

magnitudes of the two fields.  The positive direction for the fields is taken to be into the paper, and 
so the closer wire creates a field in the positive direction, and the farther wire creates a field in the 
negative direction.  Let d be the separation distance of the wires. 

 0 0 0 0
net 1 1

2 2closer farther closer farther

1 1 1 1

2 2 2 2

I I I I
B

r r r r r d r d

   
   

     
 

   
   

  
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

 

   

 
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 
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 Compare this to the Earth’s field of 40.5 10 T . 

  
6

net Earth 4

1.568 10 T
0.031

0.5 10 T
B B






 


 

 The field of the wires is about 3% that of the Earth.   
 
15. The center of the third wire is 5.6 mm from the left wire, and 2.8 mm from the right wire.  The force 

on the near (right) wire will attract the near wire, since the currents are in the same direction.  The 
force on the far (left) wire will repel the far wire, since the currents oppose each other.  Use Eq. 28-2 
to calculate the force per unit length. 
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16. (a) We assume that the power line is long and straight, and use Eq. 28-1. 

   
  

 
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2 2 8.5m

I
B

r


 



 


     


 

The direction at the ground, from the right hand rule, is south.  Compare this to the Earth’s field 

of 40.5 10 T , which points approximately north. 

   
6

line Earth 4

2.235 10 T
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0.5 10 T
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  The field of the cable is about 4% that of the Earth.   
 (b) We solve for the distance where line Earth .B B  
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So about 0.4 m below the wire, the net B-field would be 0, assuming the Earth’s field points 
straight north at this location. 
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17. The Earth’s magnetic field is present at both locations in the problem, and we 
assume it is the same at both locations.  The field east of a vertical wire must be 
pointing either due north or due south.  The compass shows the direction of the net 
magnetic field, and it changes from 28o E of N to 55o E of N when taken inside.  
That is a “southerly” change (rather than a “northerly” change), and so the field 
due to the wire must be pointing due south.  See the diagram.  For the angles, 

28 , 55 ,        and 180       and so 27    and o125  .  Use 

the law of sines to find the magnitude of wireB


, and then use Eq. 28-1 to find the 

magnitude of the current. 
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wire Earth 0
wire Earth

o
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sin
      

sin sin sin 2

sin 2 sin 27 2
5.0 10 T 0.120m 17A

sin sin125 4 10 T m A

B B I
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r

I B r

 
   

  
  





    

   
 

 

 Since the field due to the wire is due south, the current in the wire must be  down . 
 
18. The magnetic field at the loop due to the long wire is into the page, and can be calculated by Eq. 28-

1.  The force on the segment of the loop closest to the wire is towards the wire, since the currents are 
in the same direction.  The force on the segment of the loop farthest from the wire is away from the 
wire, since the currents are in the opposite direction. 

 

Because the magnetic field varies with distance, it is more difficult to calculate the total force on the 
left and right segments of the loop.  Using the right hand rule, the force on each small piece of the 
left segment of wire is to the left, and the force on each small piece of the right segment of wire is to 
the right.  If left and right small pieces are chosen that are equidistant from the long wire, the net 
force on those two small pieces is zero.  Thus the total force on the left and right segments of wire is 
zero, and so only the parallel segments need to be considered in the calculation.  Use Eq. 28-2. 

 

   
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net near far near far 1 2

near far near far
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   

 
 
 

 
 
 

l l l


 

 
19. The left wire will cause a field on the x axis that points in the y direction, and the right wire will 

cause a field on the x axis that points in the negative y direction.  The distance from the left wire to a 
point on the x axis is x, and the distance from the right wire is d x . 

  
   

0 0 0 0
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1 1 2ˆ ˆ ˆ ˆ
2 2 2 2

I I I I d x

x d x x d x x d x
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
    

  

  
      

B j j j j


 

 
20. The left wire will cause a field on the x axis that points in the negative y direction, and the right wire 

will also cause a field on the x axis that points in the negative y direction.  The distance from the left 
wire to a point on the x axis is x, and the distance from the right wire is d x . 
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
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21. The magnetic fields created by the individual currents will be at right angles to each other.  The field 
due to the top wire will be to the right, and the field due to the bottom wire will be out of the page.  
Since they are at right angles, the net field is the hypotenuse of the two individual fields. 

   
   

2 2 7
2 20 top 2 20 bottom 0

net top bottom

top bottom
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
     

 

   
   

  


 

 
22. The net magnetic field is the vector sum of the magnetic fields 

produced by each current carrying wire.  Since the individual 
magnetic fields encircle the wire producing it, the field is 
perpendicular to the radial line from the wire to point P.  We let 

1B


 be the field from the left wire, and 2B


 designate the field 
from the right wire.  The magnitude of the magnetic field 
vectors is calculated from Eq. 28-1.  
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








   


   




 

We use the law of cosines to determine the angle that the radial line from each wire to point P makes 
with the horizontal.  Since the magnetic fields are perpendicular to the radial lines, these angles are 
the same as the angles the magnetic fields make with the vertical. 

     
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 
  

    
 

 

Using the magnitudes and angles of each magnetic field we calculate the horizontal and vertical 
components, add the vectors, and calculate the resultant magnetic field and angle.  

     5 5
net 1 1 2 2

6

sin sin 2.7500 10 T sin77.606 2.5385 10 T sin64.364

49.75 10 T

xB B B   



         

  
     5 5

net 1 1 2 1

6

cos cos 2.7500 10 T cos77.606 2.5385 10 T cos64.364

5.080 10 T

yB B B   



       

  
 

   2 22 2 6 6 5
, ,

6
,1 1

6
,

5

49.75 10  T 5.080 10  T 5.00 10  T

5.08 10  T
=tan tan 5.83

49.75 10  T

5.00 10  T @ 5.83  below the negative -axis

net x net y

net y

net y

B B B

B

B

x



  


 





         

 
  

 

  B


 

 
 
 
 
 
 



Chapter 28  Sources of Magnetic Field 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

229 

23. (a) The net magnetic field a point y above the center of  
the strip can be found by dividing the strip into 
infinitely thin wires and integrating the field 
contribution from each wire.  Since the point is directly 
above the center of the strip, we see that the vertical 
contributions to the magnetic field from symmetric 
points on either side of the center cancel out.  Therefore, 
we only need to integrate the horizontal component of 
the magnetic field.  We use Eq. 28-1 for the magnitude 
of the magnetic field, with the current given by 

.
I

dI dx
d

    

1 1

2 2

1 1

2 2

0 0 0

2 22 2 2 2

/ 2

1 10 0

/ 2

sin

2 2 2
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2 2

d d
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d d

d

d

I dx y Iy dx
B dI

r d d x yx y x y

Iy x I d

d y y d y

   
  

 
 

 

 



  
 

 

 
  
 

 
 
 

  
 

(b) In the limit of large y,  1tan / 2 / 2 .d y d y     

10 0 0tan
2 2 2x

I I Id d
B

d y d y y

  
  

  
   

 
 

This is the same as the magnetic field for a long wire. 
 
24. We break the current loop into the three branches of the triangle and add the forces from each of the 

three branches.  The current in the parallel branch flows in the same direction as the long straight 
wire, so the force is attractive with magnitude given by Eq. 28-2. 

0
1 2

II
F a

d





  

By symmetry the magnetic force for the other two segments will be equal.  These two wires can be 
broken down into infinitesimal segments, each with horizontal length dx.   The net force is found by 
integrating Eq. 28-2 over the side of the triangle.  We set x=0 at the left end of the left leg.  The 

distance of a line segment to the wire is then given by 3r d x  .  Since the current in these 
segments flows opposite the direction of the current in the long wire, the force will be repulsive. 
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We calculate the net force by summing the forces from the three segments. 
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25. Use Eq. 28-4 for the field inside a solenoid. 
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26. The field inside a solenoid is given by Eq. 28-4. 
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27. (a) We use Eq. 28-1, with r equal to the radius of the wire. 
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  (b) We use the results of Example 28-6, for points inside the wire.  Note that  1.25 0.50 mmr     

  0.75mm.  
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(c) We use Eq. 28-1, with r equal to the distance from the center of the wire. 
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28. We use the results of Example 28-10 to find the maximum and minimum fields. 
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29. (a) The copper wire is being wound about an average   

 diameter that is approximately equal to the outside 
diameter of the solenoid minus the diameter of the wire, or 

.D d   See the (not to scale) end-view diagram.  The 
length of each wrapping is  .D d    We divide the 

length of the wire L  by the length of a single winding to 
determine the number of loops.  The length of the solenoid 
is the number of loops multiplied by the outer diameter of 
the wire, d. 
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(b) The field inside the solenoid is found using Eq. 28-4.  Since the coils are wound closely 
together, the number of turns per unit length is equal to the reciprocal of the wire diameter. 
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30. (a) The magnitude of the magnetic field from each wire is found using Eq. 28-1.  The direction of  
the magnetic field is perpendicular to the radial vector from the current to the point of interest.  
Since the currents are both coming out of the page, the magnetic fields will point 
counterclockwise from the radial line.  The total magnetic field is the vector sum of the 
individual fields. 

   0 0
1 2 1 1 2 2

1 2

ˆ ˆ ˆ ˆsin cos sin cos
2 2

I I

r r
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        
    

i j  

This equation for the magnetic field shows 
that the x-component of the magnetic field 
is symmetric and the y-component is anti-
symmetric about  = 90.  

 (b) See sketch. 
 (c) The two diagrams are similar in shape, as  

both form loops around the central axes.  
However, the magnetic field lines form a 
vector field, showing the direction, not 
necessarily the magnitude of the magnetic 
field.  The equipotential lines are from a 
scalar field showing the points of constant 
magnitude.  The equipotential lines do not 
have an associated direction. 

  
 
31. Because of the cylindrical symmetry, the magnetic fields will be 

circular.  In each case, we can determine the magnetic field using 
Ampere’s law with concentric loops.  The current densities in the wires 
are given by the total current divided by the cross-sectional area. 
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(a) Inside the inner wire the enclosed current is determined by the  
current density of the inner wire. 
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(b) Between the wires the current enclosed is the current on the inner wire. 
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(c) Inside the outer wire the current enclosed is the current from the inner wire and a portion of the 
current from the outer wire. 
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(d)  Outside the outer wire the net current enclosed is zero. 

 0 encl 0    2 0    0ds I B R B        B
   

 
(e) See the adjacent graph.  The  

spreadsheet used for this problem 
can be found on the Media 
Manager, with filename 
“PSE4_ISM_CH28.XLS,” on tab 
“Problem 28.31e.” 

 

 
  

 
 
 
32. We first find the constants C1 and C2 by integrating the currents over each cylinder and setting the  

integral equal to the total current. 
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(a) Inside the inner wire the enclosed current is determined by integrating the current density inside  
the radius R. 
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(b) Between the wires the current enclosed is the current on the inner wire. 
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(c) Inside the outer wire the current enclosed is the current from the inner wire and a portion of the  
current from the outer wire. 
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(d)  Outside the outer wire the net current enclosed is zero. 

 0 encl 0    2 0    0ds I B R B        B
    

 
 
 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
R  (cm)

B
 (

10
-5

 T
)



Chapter 28  Sources of Magnetic Field 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

233 

33. Use Eq. 28-7b to write a ratio of the magnetic fields at the surface of the earth and 13,000 km above 
the surface.  Use the resulting ratio to determine the magnetic field above the surface. 
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34. Since the point C is along the line of the two straight segments of the current, 

these segments do not contribute to the magnetic field at C.  We calculate the 
magnetic field by integrating Eq. 28-5 along the two curved segments.  Along 
each integration the line segment is perpendicular to the radial vector and the 
radial distance is constant. 

1 1

2 2

0 0
0 0 0 0

2 2 2 2
1 2 1 20 0

ˆ ˆ ˆ ˆ
4 4 4 4

R R

R R

I d r I d r I I
ds ds

R R R R

 

 

   
   

 
      B k k

l l
 


 

0 0 0 2 1

1 2 1 2

ˆ ˆ ˆ  
4 4 4

I I I R R

R R R R

     
  

 
    

 
k k k  

 
35. Since the current in the two straight segments flows radially toward and away from the center of the 

loop, they do not contribute to the magnetic field at the center.  We calculate the magnetic field by 
integrating Eq. 28-5 along the two curved segments.  Along each integration segment, the current is 
perpendicular to the radial vector and the radial distance is constant.  By the right-hand-rule the 
magnetic field from the upper portion will point into the page and the magnetic field from the lower 
portion will point out of the page. 
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36. We assume that the inner loop is sufficiently small that the magnetic field from the 

larger loop can be considered to be constant across the surface of the smaller loop.  
The field at the center of the larger loop is illustrated in Example 28-12.  Use Eq. 27-
10 to calculate the magnetic moment of the small loop, and Eq. 27-11 to calculate the 
torque. 
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 This torque would cause the inner loop to rotate into the same plane as the outer loop with the 
currents flowing in the same direction. 

 
37. (a) The magnetic field at point C can be obtained using the Biot- 

Savart law (Eq. 28-5, integrated over the current).   First break the 
loop into four sections:  1) the upper semi-circle, 2) the lower 
semi-circle, 3) the right straight segment, and 4) the left straight 
segment.   The two straight segments do not contribute to the 
magnetic field as the point C is in the same direction that the 
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current is flowing.  Therefore, along these segments r̂  and ˆd  are parallel and ˆ ˆ 0d r  .  For 
the upper segment, each infinitesimal line segment is perpendicular to the constant magnitude 
radial vector, so the magnetic field points downward with constant magnitude. 
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Along the lower segment, each infinitesimal line segment is also perpendicular to the constant 
radial vector. 
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Adding the two contributions yields the total magnetic field. 
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(b) The magnetic moment is the product of the area and the current.  The area is the sum of the two  
half circles.  By the right-hand-rule, curling your fingers in the direction of the current, the 

thumb points into the page, so the magnetic moment is in the k̂  direction. 
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38. Treat the moving point charge as a small current segment.  We can write the 

product of the charge and velocity as the product of a current and current segment.  
Inserting these into the Biot-Savart law gives us the magnetic field at point P. 

0 0 0
2 2 3

ˆ ˆ

4 4 4

d dq
q q d Id

dt dt

I d r q r q

r r r

  
  

  

  
  

v

v v r
B

l
l l

l

  

    

 
39. (a) The disk can be broken down into a series of infinitesimal thick rings.   

As the charge in each of these rings rotates it produces a current of 
magnitude  2dI dq  , where dq is the surface charge density 

multiplied by the area of the ring.  We use Eq. 27-10 to calculate the 
magnetic dipole moment of each current loop and integrate the dipole 
moments to obtain the total magnetic dipole moment.  
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(b)  To find the magnetic field a distance x along the axis of the disk, we again consider the disk as a 
series of concentric currents.  We use the results of Example 28-12 to determine the magnetic 
field from each current loop in the disk, and then integrate to obtain the total magnetic field. 
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(c) When we take the limit x R  our equation reduces to Eq. 28-7b.   
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40. (a) Choose the y axis along the wire and the x axis passing from the  

center of the wire through the point P.  With this definition we 
calculate the magnetic field at P by integrating Eq. 28-5 over the 
length of the wire.  The origin is at the center of the wire. 
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 (b) If we take the limit as d  , this equation reduces to Eq. 28-1. 
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41. (a) The magnetic field at point Q can be obtained by integrating Eq. 28-5 over  

 the length of the wire.  In this case, each infinitesimal current segment dl is 
parallel to the x axis, as is each radial vector.  Since the magnetic field is 
proportional to the cross-product of the current segment and the radial 
vector, each segment contributes zero field. Thus the magnetic field at point 
Q is zero. 

 (b) The magnetic field at point P is found by integrating Eq. 28-5 over the  
length of the current segment. 
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42. We treat the loop as consisting of 5 segments, The first has length d, 

is located a distance d to the left of point P, and has current flowing 
toward the right.  The second has length d, is located a distance 2d to 
left of point P, and has current flowing upward.  The third has length 
d, is located a distance d to the left of point P, and has current 
flowing downward.  The fourth has length 2d, is located a distance d 
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below point P, and has current flowing toward the left.  Note that the fourth segment is twice as long 
as the actual fourth current.  We therefore add a fifth line segment of length d, located a distance d 
below point P with current flowing to the right.  This fifth current segment cancels the added portion, 
but allows us to use the results of Problem 41 in solving this problem.  Note that the first line points 
radially toward point P, and therefore by Problem 41(a) does not contribute to the net magnetic field.  
We add the contributions from the other four segments, with the contribution in the positive z-
direction if the current in the segment appears to flows counterclockwise around the point P. 
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43. (a) The angle subtended by one side of a polygon, , from the  

center point P is 2 divided by the number of sides, n. The 
length of the side L and the distance from the point to the 
center of the side, D, are obtained from trigonometric relations. 
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The magnetic field contribution from each side can be found 
using the result of Problem 40.   
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The contributions from each segment add, so the total magnetic field is n times the field from 
one side. 
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(b) In the limit of large n,  / n , becomes very small, so tan( / ) /n n  . 
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  This is the magnetic field at the center of a circle. 
 
44. The equation derived in Eq. 28-12 gives the magnetic field  

a distance x from a single loop.  We expand this single loop 
to the field of an infinite solenoid by multiplying the field 
from a single loop by n dx, the density of loops times the 
infinitesimal thickness, and integrating over all values of x.  
Use the table in Appendix B-4 to evaluate the integral. 
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45. To find the magnetic field at point (x,y) we break each current segment  

into two segments and sum fields from each of the eight segments to 
determine the magnetic field at the center.  We use the results of Problem 
41(b) to calculate the magnetic field of each segment. 
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We simplify this equation by factoring out common constants and combining terms with similar 
roots. 

2 2 2 2 2 2 2 2
0 ( ) ( ) ( ) ( ) ˆ

4 ( ) ( )( ) ( )

y x y b x a y b x a y xI

xy b x y a y b x x a y




        
    

     
B k


 

  
46. (a) By symmetry we see that on the x axis the magnetic field can only have an x component.  To  

justify this assertion, imagine that the magnetic field had a component off the axis.  If the 
current loop were rotated by 90 about the x axis, the loop orientation would be identical to the 
original loop, but the off-axis magnetic field component would have changed.  This is not 
possible, so the field only has an x component.  The contribution to this field is the same for 
each loop segment, and so the total magnetic field is equal to 4 times the x component of the 
magnetic field from one segment.  We integrate Eq. 28-5 to find this magnetic field. 
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d d
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d x y d x y
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d x d xd x d x y

 
 

 
 

 




 

         

 
          

 
j k i

B

i i



 

(b) Let x d to show that the magnetic field reduces to a dipole field of Eq. 28-7b. 

  
2 2

0 0
1/ 2 32 2

ˆ ˆ2 2

24 2

d I d I

xx x

 


 
i i

B


 

Comparing our magnetic field to Eq. 28-7b we see that it is a dipole field with the magnetic 

moment 2 ˆd Iμ i


 

 
47. (a) If the iron bar is completely magnetized, all of the dipoles are aligned.  The total dipole moment  
  is equal to the number of atoms times the dipole moment of a single atom.   

1 1
A

m

N V
N

M

     
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     23 3 2
23

2 2

6.022 10 atoms/mole 7.80g/cm 9.0cm 1.2cm 1.0cm A m
   1.8 10

55.845g/mole atom

   16.35 A m 16 A m  


  

  
 

 



 

 

(b) We use Eq. 27-9 to find the torque. 

  2sin 16.35 A m 0.80 T sin 90 13 m NB        

 
48. The magnetic permeability is found  

from the two fields. 

  
0 0

0

0 0 0

  ;    ;

    

B nI B nI

B B

B B

 


 



 

  
 

For the graph, we have not plotted 
the last three data points so that the 
structure for low fields is seen.  The 
spreadsheet used for this problem can 
be found on the Media Manager, with 
filename “PSE4_ISM_CH28.XLS,” 
on tab “Problem 28.48.” 

 
49. The magnetic field of a long, thin torus is the same as the field given by a long solenoid, as in Eq. 

28-9. 

    7 -12200 4 10  Tm/A 285 m 3.0 A 2.4 TB nI       

 
50. The field inside the solenoid is given by Eq. 28-4 with 

0 replaced by the permeability of the iron. 

  
   
   

5

0

2.2T 0.38 m
    2.7 10 T m A 22

640 48A

NI B
B

NI


       

l

l
  

 
51. Since the wires all carry the same current and are 

equidistant from each other, the magnitude of the force per 
unit length between any two wires is the same and is given 
by Eq. 28-2.   

  
 

272
0

4

4 10  T m/A 8.00 A

2 2 0.035 m

3.657 10 N/m

IF

d


 






 

 


l  

The direction of the force between two wires is along the 
radial line and attractive for currents traveling in the same 
direction and repulsive for currents traveling in opposite 
directions.  The forces acting on wire M are radially away 
from the other two wires.  By symmetry, the horizontal 
components of these forces cancel and the net force is the 
sum of the vertical components. 

 4 4

cos30 cos30
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The force on wire N is found by adding the components of the forces from the other two wires.  By 
symmetry we see that this force is directed at an angle of 300.  The force on wire P, will have the 
same magnitude but be directed at 240. 

 
 

   

4 4 4
, 

4 4
, y

2 24 4 4

4

cos60 3.657 10 N/m 3.657 10 N/m cos60 1.829 10 N/m

sin 60 3.657 10 N/m sin 60 3.167 10 N/m

1.829 10 N/m 3.167 10 N/m 3.7 10 N/m at 300

3.7 10 N/m at 240

N x NP NM

N NM

N

P

F F F

F F

F

F

  

 

  



         

         

       

  

 

 
52. The magnetic field at the midpoint between currents M and N is the 

vector sum of the magnetic fields from each wire, given by Eq. 28-1.    
Each field points perpendicularly to the line connecting the wire to the 
midpoint. 
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



  

   22 2 4 5 4

net net net 1.849 10 T 4.571 10 T 4.93 10 Tx yB B B             

5
net 1 1

net 4

net 
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y

y

B

B



 



 
    
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 The net field points slightly below the horizontal direction. 
 
53. For the wire to be suspended the net magnetic force must equal the 

gravitational force.  Since the same current flows through the two lower 
wires, the net magnetic force is the sum of the vertical components of 
the force from each wire, given by Eq. 28-2.  We solve for the unknown 
current by setting this force equal to the weight of the wire.   
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54. The centripetal force is caused by the magnetic field, and is given by Eq. 27-5b.  From this force we  

can calculate the radius of curvature. 

  
2

sin   
v

F qvB qv B m
r

 
     

  
  

  
31 7 o

4

19 2

9.11 10 kg 1.3 10 m s sin7
2.734 10 m 0.27 mm

1.60 10 C 3.3 10 T

mv
r

qB




 

 
    

 
 

x

y 

60°

 

I1 

I2 I3

L

F


F


mg




Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

240 

The component of the velocity that is parallel to the magnetic field is unchanged, and so the pitch is 
that velocity component times the period of the circular motion. 

  

   
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 
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55. (a) Use Eq. 28-1 to calculate the field due to a long straight wire. 

   
  

 
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 (b) 
  

 

7

6 60 B
B at A

B to A

4 10 T m A 4.0A
5.333 10 T 5.3 10 T
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I
B

r


 



 


     


 

 (c) The two fields are not equal and opposite.  Each individual field is due to a single wire, and has  
no dependence on the other wire.  The magnitude of current in the second wire has nothing to 
do with the value of the field caused by the first wire. 

 (d) Use Eq. 28-2 to calculate the force due to one wire on another.  The forces are attractive since  
the currents are in the same direction. 

   

     
 

7

on A due to B on B due to A 0 A B

A B A to B
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

 


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l l



  

These two forces per unit length are equal and opposite because they are a Newton’s third law 
pair of forces. 

 
56. (a) The magnetic field from the long straight wire will be out of the page  

in the region of the wire loop with its magnitude given by Eq. 28-1. 
By symmetry, the forces from the two horizontal segments are  
equal and opposite, therefore they do not contribute to the net force. 
We use Eq. 28-2 to find the force on the two vertical segments of  
the loop and sum the results to determine the net force.  Note  
that the segment with the current parallel to the straight wire  
will be attracted to the wire, while the segment with the  
current flowing in the opposite direction will be repelled from the wire. 
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(b) Since the forces on each segment lie in the same plane, the net torque on the loop is zero. 
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57. The sheet may be treated as an infinite number of parallel wires.  
The magnetic field at a location y above the wire will be the sum of 
the magnetic fields produced by each of the wires.  If we consider 
the magnetic field from two wires placed symmetrically on either 
side of where we are measuring the magnetic field, we see that the 
vertical magnetic field components cancel each other out.  
Therefore, the field above the wire must be horizontal and to the 
left.  By symmetry, the field a location y below the wire must have 
the same magnitude, but point in the opposite direction.  We 
calculate the magnetic field using Ampere’s law with a rectangular 
loop that extends a distance y above and below the current sheet, as shown in the figure. 

 0 encl 0

sides top bottom

1
02

0 2

, to the left above the sheet

d d d d B D I jtD

B jt

 



      

 

   B B B Bl l l l 



      
   

 

 
58. (a) We set the magnetic force, using Eq. 28-2, equal to the weight of the wire and solve for the  

necessary current.  The current must flow in the same direction as the upper current, for the 
magnetic force to be upward. 
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 (b) The lower wire is in unstable equilibrium, since if it is raised slightly from equilibrium, the  
  magnetic force would be increased, causing the wire to move further from equilibrium. 
  (c) If the wire is suspended above the first wire at the same distance, the same current is needed,  

but in the opposite direction, as the wire must be repelled from the lower wire to remain in 
equilibrium.  Therefore the current must be 360 A to the left.  This is a stable equilibrium for 
vertical displacement since if the wire is moved slightly off the equilibrium point the magnetic 
force will increase or decrease to push the wire back to the equilibrium height. 

 
59. The magnetic field at the center of the square loop is four times the magnetic field from one of the 

sides.  It will be directed out of the page.  We can use the result of Problem 40 for the magnitude of 
the field from one side, with 1

2 .R d   If the current is flowing counterclockwise around the square 

loop, the magnetic field due to each piece will point upwards. 
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60. The magnetic field at the center of a circular loop was calculated in Example 28-12.  To determine 

the radius of the loop, we set the circumferences of the loops equal. 
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circle square
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Therefore, changing the shape to a circular loop will decrease the magnetic field. 
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61. (a) Choose x = 0 at the center of one coil.  The center of the other coil will then be at x = R.  Since  
the currents flow in the same direction in both coils, the right-hand-rule shows that the magnetic 
fields from the two coils will point in the same direction along the axis.  The magnetic field 
from a current loop was found in Example 28-12.  Adding the two magnetic fields together 
yields the total field.   
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(b) Evaluate the derivative of the magnetic field at 1
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 Evaluate the second derivative of the magnetic field at 1
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Therefore, at the midpoint 0
dB

dx
  and 
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2
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d B
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  

(c) We insert the given data into the magnetic field equation to calculate the field at the midpoint. 
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62. The total field is the vector sum of the fields from the two currents.  We  

can therefore write the path integral as the sum of two such integrals. 

1 2d d d   B B B
    

    l l l  

To evaluate the integral for current 1, we use Eq. 28-1, with the 
magnetic field constant and parallel to the loop at each line segment. 

2
0 1

1 0 1

02

I
d rd I

r


 


  B


 l  

To evaluate the integral for current 2, we consider a different angle d   
centered at I2  and crossing the path of the loop at two locations, as 
shown in the diagram.  If we integrate clockwise around the path, the 
components of dl parallel to the field will be 1r d  and 2 .r d   
Multiplying these components by the magnetic field at both locations 
gives the contribution to the integral from the sum of these segments. 
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The total integral will be the sum of these pairs resulting in a zero net integral. 
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63. From Example 28-12, the magnetic field on the axis of a circular loop of wire of radius R carrying  

current I is 
 

0

2

3/ 22 22

IR
B

R x





, where x is the distance along the axis from the center of the loop.  

For the loop described in this problem, we have Earth.R x R   
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64. The magnetic field from the wire at the location of the plane is perpendicular to the velocity of the 

plane since the plane is flying parallel to the wire. We calculate the force on the plane, and thus the 
acceleration, using Eq. 27-5b, with the magnetic field of the wire given by Eq. 28-1. 
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65. (a) To find the length of wire that will give the coil sufficient resistance to run at maximum power,  

we write the power equation (Eq. 25-7b) with the resistance given by Eq. 25-3.  We divide the 
length by the circumference of one coil to determine the number of turns. 
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 (b) We use the result of Example 28-12 to determine the magnetic field at the center of the coil,  
  with the current obtained from Eq. 25-7b. 
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(c) Increasing the number of turns will proportionately increase the resistance and therefore  
  decrease the current.  The net result is no change in the magnetic field. 
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I5

a

a a

P

66. The magnetic field at the center of the square is the vector sum of the 
magnetic field created by each current.  Since the magnitudes of the 
currents are equal and the distance from each corner to the center is the 
same, the magnitude of the magnetic field from each wire is the same 
and is given by Eq. 28-1.  The direction of the magnetic field is 
directed by the right-hand-rule and is shown in the diagram.  By 
symmetry, we see that the vertical components of the magnetic field 
cancel and the horizontal components add.  
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67. The wire can be broken down into five segments:  the two  

long wires, the left vertical segment, the right vertical  
segment, and the top horizontal segment.  Since the current  
in the two long wires either flow radially toward or away  
from the point P, they will not contribute to the magnetic  
field.  The magnetic field from the top horizontal segment  
points into the page and is obtained from the solution  
to Problem 40. 
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The magnetic fields from the two vertical segments both point into the page with magnitudes 
obtained from the solution to Problem 41. 
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Summing the magnetic fields from all the segments yields the net field. 
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68. Use Eq. 28-4 for the field inside a solenoid. 
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69. The field due to the solenoid is given by Eq. 28-4.  Since the field due to the solenoid is 

perpendicular to the current in the wire, Eq. 27-2 can be used to find the force on the wire segment. 

  
         

 

7

0 solenoid
wire wire solenoid wire wire

solenoid

4 10 T m A 33A 550
22A 0.030m

0.15m

   0.10 N to the south

I N
F I B I




  



l
l l



 

 



Chapter 28  Sources of Magnetic Field 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

245 

70. Since the mass of copper is fixed and the density is fixed, the volume is fixed, and we designate it as 

Cu Cu Cu Cu CuV m A  l .  We call the fixed voltage 0V .  The magnetic field in the solenoid is given by 

Eq. 28-4. 
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 The number of turns of wire is the length of wire divided by the circumference of the solenoid. 

  

Cu

Cu 0 0 Cu Cu 0 0 Cu Cu 0 0 Cu Cusol

2 2

sol RCu sol Cu RCu sol Cu RCu sol sol Cu

12
    

2 2

V m N V m V mr
N B

r r

     
   

    

l

l

l l l l l l
 

 The first factor in the expression for B is made of constants, so we have 
sol sol Cu

1
B

r


l l
.  Thus we 

want the wire to be  short and fat  .  Also the radius of the solenoid should be small and the length of 
the solenoid small. 

 
71. The magnetic field inside the smaller solenoid will equal the sum of the fields from both solenoids.  

The field outside the inner solenoid will equal the field produced by the outer solenoid only.  We set 
the sum of the two fields given by Eq. 28-4 equal to 1

2 times the field of the outer solenoid and 

solve for the ratio of the turn density. 
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72. Take the origin of coordinates to be at the center of the semicircle.The magnetic field at the center of 

the semicircle is the vector sum of the magnetic fields from each of the two long wires and from the 
semicircle.  By the right-hand-rule each of these fields point into the page, so we can sum the 
magnitudes of the fields.   The magnetic field for each of the long segments is obtained by 
integrating Eq. 28-5 over the straight segment. 
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The magnetic field for the curved segment is obtained by integrating Eq. 28-5 over the semicircle. 
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73. (a) Set x = 0 at the midpoint on the axis between the two loops.  Since the loops are a distance R  

apart, the center of one loop will be at 1
2x R   and the center of the other at 1

2 .x R   The 

currents in the loops flow in opposite directions, so by the right-hand-rule the magnetic fields 
from the two wires will subtract from each other.  The magnitude of each field can be obtained 
from Example 28-12. 
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Factoring out 31
8 R  from each of the denominators yields the desired equation.  
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(b) For small values of x, we can use the approximation
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Again we can use the expansion for small deviations 
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This magnetic field has the expected linear dependence on x with a coefficient of 

  2
048 / 25 5C NI R . 

(c)  Set C equal to 0.15 T/m and solve for the current. 

 
  
  

22

7
0

25 0.15 T/m 0.04 m 525 5
1.5 A

48 48 4 10  T m/A 150

CR
I

N  
  

 
 

 
74. We calculate the peak current using Eqs. 25-7 and 25-9. Then we use the peak current in Eq. 28-1 to 

calculate the maximum magnetic field. 
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75. We use the results of Example  
28-12 to calculate the magnetic field as 
a function of position.  The spreadsheet 
used for this problem can be found on 
the Media Manager, with filename 
“PSE4_ISM_CH28.XLS,” on tab 
“Problem 28.75.” 
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76. (a) Use the results of Problem 61(a) to write the magnetic field. 
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 (b) See the graph.  The spreadsheet  
used for this problem can be 
found on the Media Manager, 
with filename 
“PSE4_ISM_CH28.XLS,” on tab 
“Problem 28.76b.” 

  
 
 
 
 
 

(c) Use the values from the spreadsheet to find the % difference. 
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