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CHAPTER 24:  Capacitance, Dielectrics, Electric Energy Storage 
 
Responses to Questions 
 
1.  Yes. If the conductors have different shapes, then even if they have the same charge, they will have 

different charge densities and therefore different electric fields near the surface. There can be a 
potential difference between them. The definition of capacitance C = Q/V cannot be used here 
because it is defined for the case where the charges on the two conductors of the capacitor are equal 
and opposite. 

 
2.  Underestimate. If the separation between the plates is not very small compared to the plate size, then 

fringing cannot be ignored and the electric field (for a given charge) will actually be smaller. The 
capacitance is inversely proportional to potential and, for parallel plates, also inversely proportional 
to the field, so the capacitance will actually be larger than that given by the formula. 

  
3.  Ignoring fringing field effects, the capacitance would decrease by a factor of 2, since the area of 

overlap decreases by a factor of 2. (Fringing effects might actually be noticeable in this 
configuration.) 

 
4.  When a capacitor is first connected to a battery, charge flows to one plate. Because the plates are 

separated by an insulating material, charge cannot cross the gap. An equal amount of charge is 
therefore repelled from the opposite plate, leaving it with a charge that is equal and opposite to the 
charge on the first plate. The two conductors of a capacitor will have equal and opposite charges 
even if they have different sizes or shapes.  

 
5.  Charge a parallel-plate capacitor using a battery with a known voltage V. Let the capacitor discharge 

through a resistor with a known resistance R and measure the time constant. This will allow 
calculation of the capacitance C. Then use C = ε0A/d and solve for ε0. 

 
6.  Parallel. The equivalent capacitance of the three capacitors in parallel will be greater than that of the 

same three capacitors in series, and therefore they will store more energy when connected to a given 
potential difference if they are in parallel. 

 
7. If a large copper sheet of thickness l is inserted between the plates of a parallel-plate capacitor, the 

charge on the capacitor will appear on the large flat surfaces of the copper sheet, with the negative 
side of the copper facing the positive side of the capacitor. This arrangement can be considered to be 
two capacitors in series, each with a thickness of  1

2 .d  l  The new net capacitance will be 

 0 ,C A d   l  so the capacitance of the capacitor will be reduced. 

 
8.  A force is required to increase the separation of the plates of an isolated capacitor because you are 

pulling a positive plate away from a negative plate. The work done in increasing the separation goes 
into increasing the electric potential energy stored between the plates. The capacitance decreases, 
and the potential between the plates increases since the charge has to remain the same. 

 
9. (a) The energy stored quadruples since the potential difference across the plates doubles and the  

capacitance doesn’t change: 21
2U CV . 

 (b) The energy stored quadruples since the charge doubles and the capacitance doesn’t change:  
2

1
2

Q
U

C
 . 
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(c) If the separation between the plates doubles, the capacitance is halved. The potential  
difference across the plates doesn’t change if the capacitor remains connected to the battery, so 

the energy stored is also halved: 21
2U CV . 

 
10. (c) If the voltage across a capacitor is doubled, the amount of energy it can store is quadrupled:  

  21
2U CV . 

 
11.  The dielectric will be pulled into the capacitor by the electrostatic attractive forces between the 

charges on the capacitor plates and the polarized charges on the dielectric’s surface. (Note that the 
addition of the dielectric decreases the energy of the system.) 

 
12. If the battery remains connected to the capacitor, the energy stored in the electric field of the 

capacitor will increase as the dielectric is inserted. Since the energy of the system increases, work 
must be done and the dielectric will have to be pushed into the area between the plates.  If it is  
released, it will be ejected. 

  

13. (a) If the capacitor is isolated, Q remains constant, and 
2

1
2

Q
U

C
  becomes 

2

1
2'

Q
U

KC
  and the  

stored energy decreases. 

(b)  If the capacitor remains connected to a battery so V does not change, 21
2U CV becomes  

21
2'U KCV , and the stored energy increases. 

 
14. For dielectrics consisting of polar molecules, one would expect the dielectric constant to decrease 

with temperature. As the thermal energy increases, the molecular vibrations will increase in 
amplitude, and the polar molecules will be less likely to line up with the electric field. 

 
15.  When the dielectric is removed, the capacitance decreases. The potential difference across the plates 

remains the same because the capacitor is still connected to the battery. If the potential difference 
remains the same and the capacitance decreases, the charge on the plates and the energy stored in the 
capacitor must also decrease. (Charges return to the battery.) The electric field between the plates 
will stay the same because the potential difference across the plates and the distance between the 
plates remain constant.  

 
16. For a given configuration of conductors and dielectrics, C is the proportionality constant between the 

voltage between the plates and the charge on the plates.  
 
17.  The dielectric constant is the ratio of the capacitance of a capacitor with the dielectric between the 

plates to the capacitance without the dielectric. If a conductor were inserted between the plates of a 
capacitor such that it filled the gap and touched both plates, the capacitance would drop to zero since 
charge would flow from one plate to the other. So, the dielectric constant of a good conductor would 
be zero.  

 
 

Solutions to Problems 
 
1. The capacitance is found from Eq. 24-1. 

  
3

62.8 10 C
    3.0 10 F 3.0 F

930 V

Q
Q CV C

V





        
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2. We assume the capacitor is fully charged, according to Eq. 24-1. 

     6 412.6 10 F 12.0 V 1.51 10 CQ CV        

 
3. The capacitance is found from Eq. 24-1. 

  
12

1275 10 C
    3.1 10 F 3.1pF

24.0 V

Q
Q CV C

V




        

 
4. Let 1Q  and 1V  be the initial charge and voltage on the capacitor, and let 2Q  and 2V  be the final 

charge and voltage on the capacitor.  Use Eq. 24-1 to relate the charges and voltages to the 
capacitance. 

  

 1 1 2 2 2 1 2 1 2 1

6
72 1

2 1

            

26 10 C
5.2 10 F 0.52 F

50 V

Q CV Q CV Q Q CV CV C V V

Q Q
C

V V





       

 
    



 

 
5. After the first capacitor is disconnected from the battery, the total charge must remain constant.  The 

voltage across each capacitor must be the same when they are connected together, since each 
capacitor plate is connected to a corresponding plate on the other capacitor by a constant-potential 
connecting wire.  Use the total charge and the final potential difference to find the value of the 
second capacitor. 

     

 

Total 1 1 1 1 final 2 2 final
initial final final

Total 1 2 1 2 final 1 1 1 2 final
final final initial

1
initial 6 5

2 1

final

          

     

125V
1 7.7 10 F 1 5.6 10 F 56 F

15V

Q C V Q C V Q C V

Q Q Q C C V C V C C V

V

C C
V

 

  

       

       
          

 

 
6. The total charge will be conserved, and the final potential difference across the capacitors will be the 

same. 

  

1 2 0 1 1
0 1 2 1 2 1 0

1 2 2 1 2

1 2
2 0 1 0 0 2 0

1 2 1 2

1
0

1 01 2
1 2

1 1 1 2

  ;          
Q Q Q Q C

Q Q Q V V Q Q
C C C C C

C C
Q Q Q Q Q Q Q

C C C C

C
Q

Q QC C
V V V

C C C C


       



     
 


    



 
 
 

 

 
7. The work to move the charge between the capacitor plates is ,W qV  where V is the voltage 

difference between the plates, assuming that q Q  so that the charge on the capacitor does not 
change appreciably.  The charge is then found from Eq. 24-1.  The assumption that q Q is justified. 

  
   15μF 15J

1.1C
0.20 mC

    
Q CW

W qV q Q
C q

       
 
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8. (a) The total charge on the combination of capacitors is the sum of the charges on the two  
individual capacitors, since there is no battery connected to them to supply additional charge, 
and there is no neutralization of charge by combining positive and negative charges.  The 
voltage across each capacitor must be the same after they are connected, since each capacitor 
plate is connected to a corresponding plate on the other capacitor by a constant-potential 
connecting wire.  Use the total charge and the fact of equal potentials to find the charge on each 
capacitor and the common potential difference. 

1 1 1 2 2 2 1 1 final 2 2 final
initial initial initial initial final final

Total 1 2 1 2 1 1 2 2 1 final 2 final
initial initial final final initial initial

1 1 2 2
initial i

final

               

  

Q C V Q C V Q C V Q C V

Q Q Q Q Q C V C V C V C V

C V C V

V

   

        




      
 

   

   

6 6

nitial

6
1 2

1 2

6 3

1 1 final
final

6 3

2 2 final
final

2.70 10 F 475V 4.00 10 F 525V

6.70 10 F

      504.85V 505V

2.70 10 F 504.85V 1.36 10 C

4.00 10 F 504.85V 2.02 10 C

C C

V V

Q C V

Q C V

 



 

 

  


 

   

    

    

 

 (b) By connecting plates of opposite charge, the total charge will be the difference of the charges on  
the two individual capacitors.  Once the charges have equalized, the two capacitors will again 
be at the same potential. 

   

1 1 1 2 2 2 1 1 final 2 2 final
initial initial initial initial final final

Total 1 2 1 2 1 1 2 2 1 final 2 final
initial initial final final initial initial

1 1
initial

final

               

     

Q C V Q C V Q C V Q C V

Q Q Q Q Q C V C V C V C V

C V C

V

   

        




      
 

   

   

6 62 2
initial

6

1 2

1 2

6 4

1 1 final
final

6 4

2 2 final
final

2.70 10 F 475V 4.00 10 F 525V

6.70 10 F

      122.01V 120 V

2.70 10 F 122.01V 3.3 10 C

4.00 10 F 122.01V 4.9 10 C

V

C C

V V

Q C V

Q C V

 



 

 

  


 

   

    

    

 

 
9. Use Eq. 24-1. 

  
    6

3

1200 F 6.0 V 1d
 ;  7.2 10 s 83d

1.0 10 C s 86,400s

Q C V
Q C V t

Q t Q t 

 
        

    
 
 
 

 

 
10. (a) The absolute value of the charge on each plate is given by Eq. 24-1.  The plate with electrons  

has a net negative charge. 
          Q CV N e CV       
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   15

5 5

19

35 10 F 1.5V
3.281 10 3.3 10 electrons

1.60 10 C

CV
N

e






     


 

 (b) Since the charge is directly proportional to the potential difference, a 1.0% decrease in potential  
difference corresponds to a 1.0% decrease in charge. 

      15

15

0.01   ;

0.01 35 10 F 1.5V0.01 0.01
1.75s 1.8s

0.30 10 C s

Q Q

Q Q CV
t

Q t Q t Q t





 


      

      

 

 
11. Use Eq. 24-2. 

  
   
 

6 3

2 2

0 12 2 2

0

0.40 10 F 2.8 10 m
    126.6 m 130 m

8.85 10 C N m

A Cd
C A

d




 



 
     

 
 

 If the capacitor plates were square, they would be about 11.2 m on a side. 
 
12. The capacitance per unit length of a coaxial cable is derived in Example 24-2 

  
 

 
 

12 2 2

110

outside inside

2 8.85 10 C N m2
3.5 10 F m

ln ln 5.0 mm 1.0 mm

C

R R







   
l


 

 
13. Inserting the potential at the surface of a spherical conductor into Eq. 24.1 gives the capacitance of a 

conducting sphere.  Then inserting the radius of the Earth yields the Earth’s capacitance. 

     12 6 4

0

0

4 4 8.85 10 F/m 6.38 10 m 7.10 10 F
4

Q Q
C r

V Q r
 


          

 
14. From the symmetry of the charge distribution, any electric field 

must be radial, away from the cylinder axis, and its magnitude 
must be independent of the location around the axis (for a given 
radial location).  We assume the cylinders have charge of 
magnitude Q in a length l.  Choose a Gaussian cylinder of 
length d and radius R, centered on the capacitor’s axis, with 
d l  and the Gaussian cylinder far away from both ends of 

the capacitor.  On the ends of this cylinder, dE A


 and so 
there is no flux through the ends.  On the curved side of the 

cylinder, the field has a constant magnitude and dE A


 .  Thus .d EdAE A


   Write Gauss’s law. 

  encl
curved curved
walls walls 0

2
Q

d E A E Rd


   E A


  

 For b ,R R   encl 00    2 0    0.Q E Rd E       

 For a ,R R  encl 0Q
Q Q

d d


 
l l

, and so  encl 00    2 0    0.Q E Rd E       

 
15. We assume there is a uniform electric field between the capacitor plates, so that ,V Ed  and then 

use Eqs. 24-1 and 24-2. 

  
       12 4 2 6

max max 0 max 0 max

8

8.85 10 F/m 6.8 10 m 3.0 10 V m

1.8 10 C

A
Q CV E d AE

d
   



      

 

 

  

d  Ra 

Rb 

+  Q 

–  Q 

Gaussian cylinder 
of radius R 
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16. We assume there is a uniform electric field between the capacitor plates, so that ,V Ed  and then 
use Eqs. 24-1 and 24-2. 

  
       12 4 2 5

0 0

9

8.85 10 F/m 21.0 10 m 4.80 10 V m

8.92 10 C

A
Q CV Ed AE

d
   



      

 

 

 
17. We assume there is a uniform electric field between the capacitor plates, so that ,V Ed  and then 

use Eqs. 24-1 and 24-2. 

     
6

4

6 3

92 10 C
    5.8 10 V m

0.80 10 F 2.0 10 m

Q
Q CV CEd E

Cd



 


      

 
 

 
18. (a) The uncharged plate will polarize so that negative  

charge will be drawn towards the positive capacitor  
plate, and positive charge will be drawn towards the 
negative capacitor plate.  The same charge will be 
on each face of the plate as on the original capacitor 
plates.  The same electric field will be in the gaps as 
before the plate was inserted.  Use that electric field 
to determine the potential difference between the 
two original plates, and the new capacitance.  Let x be the distance from one original plate to the 
nearest face of the sheet, and so d x l  is the distance from the other original plate to the 
other face of the sheet. 

   

   

   
 

1 2

0 0 0 0

1 2 0

0 0 0

  ;    ;  

    

Q d xQ Qx
E V Ex V E d x

A A A

Q d x Q dQx Q A
V V V C

A A A C d


   


  

 
       

  
        



l
l

l l

l

  

(b) 
 

 0

final
initial 0 final 0

initial
0

1
  ;    ;  1.7

0.40 0.60

A

dA A C d d
C C

Ad d C d d d
d


 




      

  

l

l l
 

 
19. (a) The distance between plates is obtained from Eq. 24-2. 

   0 0    
A A

C x
x C

 
    

Inserting the maximum capacitance gives the minimum plate separation and the minimum 
capacitance gives the maximum plate separation. 

   6 2

0
min 12

max

8.85pF/m 25 10 m
0.22 m

1000.0 10 F

A
x

C









  


 

   6 2

o
max

min

8.85pF/m 25 10 m
0.22 mm 220 m

1.0 pF

A
x

C





     

  So 0.22 m 220 m .x    

 
 

d

x

d x  lE


E

positive plate

negative plate
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(b) Differentiating the distance equation gives the approximate uncertainty in distance. 

0 0

2

dx d A A
x C C C

dC dC C C

 
        

  
. 

The minus sign indicates that the capacitance increases as the plate separation decreases.  Since 
only the magnitude is desired, the minus sign can be dropped.  The uncertainty is finally written 
in terms of the plate separation using Eq. 24-2. 

2

0
2

00

A x C
x C

AA

x





   
 
 
 

 

(c) The percent uncertainty in distance is obtained by dividing the uncertainty by the  
separation distance. 

     
   

min min

2

min o

0.22 m 0.1pF 100%
100% 100% 0.01%

8.85pF/m 25mm

x x C

x A




 
      

     
   

max max

2

max o

0.22 mm 0.1pF 100%
100% 100% 10%

8.85pF/m 25mm

x x C

x A
 

      

 
20. The goal is to have an electric field of strength SE  at a radial distance of 5.0 bR from the center of the 

cylinder.  Knowing the electric field at a specific distance allows us to calculate the linear charge 
density on the inner cylinder.  From the linear charge density and the capacitance we can find the 
potential difference needed to create the field.  From the cylindrically symmetric geometry and 

Gauss’s law, the field in between the cylinders is given by 
0

1
.

2
E

R




   The capacitance of a 

cylindrical capacitor is given in Example 24-2. 

 
 

 

 

      

       

b S 0 b S

0 b

a b a b
0 b S

a b

4 6

b S a b 4

1
5.0     2 5.0

2 5.0

ln ln
    2 5.0

2 2 2
ln

0.100 m
       5.0 ln 5.0 1.0 10 m 2.7 10 N C ln 9300 V

1.0 10 m

Q
E R R E R E

R

R R R RQ Q Q
Q CV V R E

C
R R

R E R R


 




    





     

     

    


       

l

l l
 

 
21. To reduce the net capacitance, another capacitor must be added in series. 

  1 eq

eq 1 2 2 eq 1 1 eq

1 1 1 1 1 1
      

C C

C C C C C C C C


        

  
   
   

9 9

1 eq 9

2 9 9

1 eq

2.9 10 F 1.6 10 F
3.57 10 F 3600pF

2.9 10 F 1.6 10 F

C C
C

C C

 



 

 
    

   
 

 Yes, an existing connection needs to be broken in the process.  One of the connections of the original 
capacitor to the circuit must be disconnected in order to connect the additional capacitor in series. 

 
22. (a) Capacitors in parallel add according to Eq. 24-3. 

    6 5

eq 1 2 3 4 5 6 6 3.8 10 F 2.28 10 F 22.8 FC C C C C C C              



Chapter 24  Capacitance, Dielectrics, Electric Energy Storage 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

107 

 (b) Capacitors in series add according to Eq. 24-4. 

   

1 1 6
7

eq 6

1 2 3 4 5 6

1 1 1 1 1 1 6 3.8 10 F
6.3 10 F

3.8 10 F 6

     0.63 F

C
C C C C C C



  





         





   
       

 
23. We want a small voltage drop across C1.  Since ,V Q C  if we put 

the smallest capacitor in series with the battery, there will be a large 
voltage drop across it.  Then put the two larger capacitors in parallel, 
so that their equivalent capacitance is large and therefore will have a 
small voltage drop across them.  So put C1 and C3 in parallel with 
each other, and then put that combination in series with C2.  See the 
diagram.  To calculate the voltage across C1, find the equivalent 
capacitance and the net charge.  That charge is used to find the 
voltage drop across C2, and then that voltage is subtracted from the battery voltage to find the 
voltage across the parallel combination. 

  

 
 

 

 

eq2 1 31 2 3 2
eq eq eq 0 2

eq 2 1 3 2 1 3 1 2 3 2 2

2 1 3
0

eq eq 0 21 2 3
1 0 2 0 0 0 0

2 2 2 1 2 3

1 1 1
     ;    ;    ;

1.5 F
12 V

6.5 F

2.8V

QC C CC C C Q
C Q C V V

C C C C C C C C C C C C

C C C
V

Q C V CC C C
V V V V V V V

C C C C C C




 
       

   


 

         
 



 

 
24. The capacitors are in parallel, and so the potential is the same for each capacitor, and the total charge 

on the capacitors is the sum of the individual charges.  We use Eqs. 24-1 and 24-2. 

  

1 2 3
1 1 0 2 2 0 3 3 0

1 2 3

1 2 3 1 2 3
total 1 2 3 0 0 0 0 0 0

1 2 3 1 2 3

1 2 3
0 0 0

1 2 3total 1 2 3
net 0 0 0 1 2 3

1 2 3

 ;  ; 
A A A

Q CV V Q C V V Q C V V
d d d

A A A A A A
Q Q Q Q V V V V

d d d d d d

A A A
V

d d dQ A A A
C C C C

V V d d d

  

     

  
  

     

        

 

       

 
 
 

 
    

 
 

 

 
25. Capacitors in parallel add linearly, and so adding a capacitor in parallel will increase the net 

capacitance without removing the 5.0 F  capacitor. 

5.0 F 16 F    11 F connected in parallelC C       

 
26. (a) The two capacitors are in  parallel .  Both capacitors have their high voltage plates at the same  

potential (the middle plate), and both capacitors have their low voltage plates at the same 
potential (the outer plates, which are connected). 

 (b) The capacitance of two capacitors in parallel is the sum of the individual capacitances. 

   0 0
1 2 0

1 2 1 2

1 2
0

1 2

1 1A A
C C C A

d d d d

d d
A

d d

 
      

   
   

   
 

3C

2C

1C

0V
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(c) Let 1 2 constant.d d  l  Then 
 

0 0

1 2 1 1

.
A A

C
d d d d

 
 



l l

l
 We see that C   as 1 0d   or 

1d  l  (which is 2 0d  ).  Of course, a real capacitor would break down as the plates got too 

close to each other.  To find the minimum capacitance, set 
 1

0
dC

d d
 and solve for 1.d  

 

   
 
 

   1
1 2

10 1
0 1 2222 2

1 1 1 1 1 1

1 2
min 0 0 0 01 1

2 21 2 1 2

0
min max

1 2

2
0    

4 4

4
 ; 

d

ddC d A
A d d

d d d d d d d d

d d
C A A A A

d d d d

A
C C

d d




   






     

 


   



  


 
 
 

     
          l

ll
l l

l l

l

l l l
 

 
27. The maximum capacitance is found by connecting the capacitors in parallel. 

  9 9 8 8

max 1 2 3 3.6 10 F 5.8 10 F 1.00 10 F 1.94 10 F in parallelC C C C                

 The minimum capacitance is found by connecting the capacitors in series. 

  

1 1

9

min 9 9 8

1 2 3

1 1 1 1 1 1
1.82 10 F in series

3.6 10 F 5.8 10 F 1.00 10 F
C

C C C

 


  
       

  

   
     

 

 
28. When the capacitors are connected in series, they each have the same charge as the net capacitance. 

 (a)  
1 1

1 2 eq eq 6 6

1 2

1 1 1 1
9.0V

0.50 10 F 0.80 10 F
Q Q Q C V V

C C

 

 
      

 

   
     

 

6

6 6

1 2
1 26 6

1 2

    2.769 10 C

2.769 10 C 2.769 10 C
5.538V 5.5V      3.461V 3.5V

0.50 10 F 0.80 10 F

Q Q
V V

C C



 

 

 

 
       

 

 

 (b) 6 6

1 2 eq 2.769 10 C 2.8 10 CQ Q Q         

 
When the capacitors are connected in parallel, they each have the full potential difference. 

(c)    6 6

1 2 1 1 19.0 V      9.0V      0.50 10 F 9.0V 4.5 10 CV V Q CV          

     6 6

2 2 2 0.80 10 F 9.0V 7.2 10 CQ C V        

 
29. (a) From the diagram, we see that C1 and C2 are in series.  That combination is in parallel with C3,  

and then that combination is in series with C4.  Use those combinations to find the equivalent 
capacitance.  We use subscripts to indicate which capacitors have been combined. 

   

31 1
12 123 12 32 2 2

12

3
1234 5

1234 123 4

1 1 1
      ;    ;

1 1 1 2 1 5
    

3 3

C C C C C C C C
C C C

C C
C C C C C C

        

      
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(b) The charge on the equivalent capacitor 1234C is given by 3
1234 1234 5 .Q C V CV    This is the 

charge on both of the series components of 1234.C  

   
3 3 2

123 123 123 123 1235 2 5

3 3
4 4 4 45 5

    

    

Q CV C V CV V V

Q CV C V V V

    

   
 

The voltage across the equivalent capacitor  123C  is the voltage across both of its parallel 

components.  Note that the sum of the charges across the two parallel components of 123C is the 

same as the total charge on the two components, 3
5 .CV  

   
   
 

2 1 2 1
123 12 12 12 125 2 5 5

2 2 2
123 3 3 3 35 5 5

  ;  

  ;  

V V V Q C V C V CV

V V V Q C V C V CV

    

    
 

Finally, the charge on the equivalent capacitor 12C is the charge on both of the series 

components of 12.C  

   1 1 1 1
12 1 1 1 1 12 2 1 2 25 5 5 5      ;      Q CV Q CV V V Q CV Q CV V V           

  Here are all the results, gathered together. 

   
31 2

1 2 3 45 5 5

31 2
1 2 3 45 5 5

  ;    ;  

  ;    ;  

Q Q CV Q CV Q CV

V V V V V V V

   

   
 

 
30. C1 and C2 are in series, so they both have the same charge.  We then use that charge to find the 

voltage across each of C1 and C2.  Then their combined voltage is the voltage across C3.  The voltage 
across C3 is used to find the charge on C3.   

   

1 2
1 2 1 2

1 2

3 1 2 3 3 3

12.4 C 12.4 C
12.4 C ; 0.775V  ;  0.775V

16.0 F 16.0 F

1.55V ; 16.0 F 1.55V 24.8 C

Q Q
Q Q V V

C C

V V V Q C V

 


 

 

       

     

 

From the diagram, C4 must have the same charge as the sum of the charges on C1 and C3.  Then the 
voltage across the entire combination is the sum of the voltages across C4 and C3. 

 
4

4 1 3 4

4

ab 4 3

37.2 C
12.4 C 24.8 C 37.2 C  ;  1.31V

28.5 F

1.31V 1.55V 2.86V

Q
Q Q Q V

C

V V V


  


       

    

 

 Here is a summary of all results. 

1 2 3 4

1 2 3 4 ab

12.4 C ; 24.8 C ; 37.2 C

0.775V ; 1.55V ; 1.31V ; 2.86V

Q Q Q Q

V V V V V

     

    
  

 
31. When the switch is down the initial charge on C2 is calculated from Eq. 24-1.  

2 2 0Q C V  

When the switch is moved up, charge will flow from C2 to C1 until the voltage 
across the two capacitors is equal.   

2 1 2
2 1

2 1 1

Q Q C
V Q Q

C C C

 
      

The sum of the charges on the two capacitors is equal to the initial charge on C2.   

C2

C1

V0

S
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  2 2 1
2 2 1 1 1 1

1 1

C C C
Q Q Q Q Q Q

C C

        
 
 
 

 

 Inserting the initial charge in terms of the initial voltage gives the final charges. 
2

2 1 1 2 2 2
1 2 0 1 0 2 1 0

1 2 1 1 2

  ;  
C C C C C C

Q C V Q V Q Q V
C C C C C C

       
 

 
 
 

 

 
32. (a) From the diagram, we see that C1 and C2 are in parallel, and  

C3 and C4 are in parallel.  Those two combinations are then in 
series with each other.  Use those combinations to find the 
equivalent capacitance.  We use subscripts to indicate which 
capacitors have been combined. 

   

   
 

12 1 2 34 3 4

1234 12 34 1 2 3 4

1 2 3 4
1234

1 2 3 4

  ;    ;

1 1 1 1 1
 

C C C C C C

C C C C C C C

C C C C
C

C C C C

   

    
 

 


  

 

(b) The charge on the equivalent capacitor 1234C is given by 1234 1234 .Q C V   This is the charge on 

both of the series components of 1234.C  Note that 12 34 .V V V  

   

   
   

 
   
   

 

1 2 3 4

1 2 3 4 3 41234
12 1234 12 12 12

12 1 2 1 2 3 4

1 2 3 4

1 2 3 4 1 21234
34 1234 34 34 34

34 3 4 1 2 3 4

    

    

C C C C

C C C C C CC
Q C V C V V V V V

C C C C C C C

C C C C

C C C C C CC
Q C V C V V V V V

C C C C C C C

 
   

     
   

 
   

     
   

 

The voltage across the equivalent capacitor  12C  is the voltage across both of its parallel 

components, and the voltage across the equivalent 34C is the voltage across both its parallel 

components. 

 
 

 
 

 
 

3 4
12 1 2

1 2 3 4

1 3 4 2 3 4
1 1 1 2 2 2

1 2 3 4 1 2 3 4

  ;

  ;  

C C
V V V V

C C C C

C C C C C C
CV Q V C V Q V

C C C C C C C C


  

  

 
   

     

 

 
 

 
 

 
 

1 2
34 3 2

1 2 3 4

3 1 2 4 1 2
3 3 3 4 4 4

1 2 3 4 1 2 3 4

  ;

  ;  

C C
V V V V

C C C C

C C C C C C
C V Q V C V Q V

C C C C C C C C


  

  

 
   

     

 

 
 
 

b

C1 

C2a

C 3

C 4

a

C1234 

b

c

c ba 

C34 C12 
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33. (a) The voltage across C3 and C4 must be the same, since they are in parallel. 

    3 4 4
3 4 4 3

3 4 3

16 F
        23 C 46 C

8 F

Q Q C
V V Q Q

C C C


 


        

The parallel combination of C3 and C4 is in series with the parallel combination of C1 and C2, 
and so 3 4 1 2.Q Q Q Q     That total charge then divides between C1 and C2 in such a way that 

1 2.V V  

   

   

1 4 1
1 2 3 4 1 2

1 4 4

1
1 2

4 1

69 C
69 C  ;        

8.0 F
69 C 69 C 23 C  ; 69 C 23 C 46 C

24.0 F

Q Q Q
Q Q Q Q V V

C C C

C
Q Q

C C





     




        

     


 

  Notice the symmetry in the capacitances and the charges. 
 (b) Use Eq. 24-1. 

   

1
1 2 1

1

3
3 4 3

3

23 C
2.875V 2.9 V  ; 2.9 V

8.0 F

23 C
2.875V 2.9 V  ; 2.9 V

8.0 F

Q
V V V

C

Q
V V V

C







     

     
 

 (c) ba 1 3 2.875V 2.875V 5.75V 5.8VV V V       

 

34. We have P 1 2C C C  and 
S 1 2

1 1 1
.

C C C
    Solve for 1C  and 2C in terms of PC  and S.C  

  

 
   

 

     

P 1 1 P

S 1 2 1 P 1 1 P 1 1 P 1

2P
1 P 1 P S

S 1 P 1

22

P P P S

1

2 P 1

1 1 1 1 1
  

1
    0  

35.0 F 35.0 F 4 35.0 F 5.5 F4

2 2
28.2 F, 6.8 F

35.0 F 28.2 F 6.8 F or 35.0 F 6.8 F 28.2 F

   

C C C C

C C C C C C C C C C C C

C
C C C C C

C C C C

C C C C
C

C C C

   

 

     

 
      

  

     


  
 



      

 

 So the two values are 28.2 F and 6.8 F .     

 
35. Since there is no voltage between points a and b, we can imagine there 

being a connecting wire between points a and b.  Then capacitors C1 and 
C2 are in parallel, and so have the same voltage.  Also capacitors C3 and 
Cx are in parallel, and so have the same voltage.  

  1 2 3
1 2 3

1 2 3

      ;      x
x

x

Q Q Q Q
V V V V

C C C C
       

 Since no charge flows through the voltmeter, we could also remove it 
from the circuit and have no change in the circuit.  In that case, 
capacitors C1 and Cx are in series and so have the same charge.  
Likewise capacitors C2 and C3 are in series, and so have the same 
charge. 

V0

c

C1

C2 C3

Cx

b

a

V
d
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  1 2 3  ;  xQ Q Q Q   

 Solve this system of equations for Cx.  

   3 1 1
3 3 3

3 3 2 2

8.9 F
    4.8 F 2.4 F

18.0 F
x x

x

x

Q Q Q Q C
C C C C

C C Q Q C


 


      

 
 
 

 

 
36. The initial equivalent capacitance is the series combination of the two individual capacitances.  Each 

individual capacitor will have the same charge as the equivalent capacitance.  The sum of the two 
initial charges will be the sum of the two final charges, because charge is conserved.  The final 
potential of both capacitors will be equal. 

  

     

eq 1 2

1 2 1 2
eq eq eq 0 0

1 2 1 2

1 2 eq 1
final final final

1 2 eq 1 2
final final final final 1 2 2

1
1 eq
final 1 2

1 1 1
  

3200pF 1800pF
  ;  12.0V 13,824 pC

5000pF

2

2   ;        

3200pF
2 2

5000

C C C

C C C C
C Q C V V

C C C C

Q Q Q Q

Q Q Q V V
C C C

C
Q Q

C C

  

    
 


      

 


 

 

8

8

2 eq 1
final final

13,824 pC 17,695pC 1.8 10 C
pF

2 2 13,824 pC 17,695pC 9953pC 1.0 10 CQ Q Q





  

      

 

 
37. (a) The series capacitors add reciprocally, and then the parallel combination is found by adding  

linearly. 

   

1 1 1

3 2 3 2 32
eq 1 1 1 1

2 3 2 3 2 3 2 3 2 3

1 1 C C C C CC
C C C C C

C C C C C C C C C C

  


         


     
     
     

 

 (b) For each capacitor, the charge is found by multiplying the capacitance times the voltage.  For  

1C , the full 35.0 V is across the capacitance, so    6

1 1 24.0 10 F 35.0VQ CV      

48.40 10 C .   The equivalent capacitance of the series combination of 2C  and 3C  has the full 

35.0 V across it, and the charge on the series combination is the same as the charge on each of 
the individual capacitors. 

   
1

6 41
eq eq eq 2 33

1 1
     24.0 10 F 35.0V 2.80 10 C

2 3

C
C Q C V Q Q

C C



          
 
 
 

 

 

38. From the circuit diagram, we see that 1C  is in parallel with the voltage, and so 1 24V .V    

Capacitors 2C  and 3C  both have the same charge, so their voltages are inversely proportional to their 

capacitance, and their voltages must total to 24.0 V. 

   

2 3 2 2 3 3 2 3

2 3
2 2 2

3 2 3

3 2

      ;  

4.00 F
    24.0V 13.7V

7.00 F

24.0V 13.7V 10.3V

Q Q C V C V V V V

C C
V V V V V

C C C

V V V




    

     


    
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39. For an infinitesimal area element of the capacitance a distance y up from the 
small end, the distance between the plates is tan .d x d y d y        

Since the capacitor plates are square, they are of dimension ,A A  and the 

area of the infinitesimal strip is .A dydA    The infinitesimal capacitance dC 
of the strip is calculated, and then the total capacitance is found by adding 
together all of the infinitesimal capacitances, in parallel with each other. 

  

 

0 0 0

0
0

0 0

    

ln

A
A

A dA A dy
C dC

d d y d y

A dy A
C dC d y

d y

  
 


 

 

   
 

   
 

 

   0 0 0  ln ln ln ln 1
A A d A A A

d A d
d d

    


  


     
             

 

 We use the approximation from page A-1 that   21
2ln 1 .x x x     

  

2

0 0 01
2ln 1 1

2

A A A A A A A
C

d d d d d

      
 

     
      
      
       

 

 
40. No two capacitors are in series or in parallel in the diagram, and so we may not simplify by that 

method.  Instead use the hint as given in the problem.  We consider point a as the higher voltage.  
The equivalent capacitance must satisfy tot eq .Q C V  

(a) The potential between a and b can be written in three ways.  Alternate but equivalent 
expressions are shown in parentheses. 

    2 1 2 3 4 5 4 2 3 5 3 4 1  ;    ;      ;  V V V V V V V V V V V V V V V V            

There are also three independent charge relationships.  Alternate but equivalent expressions are 
shown in parentheses.  Convert the charge expressions to voltage – capacitance expression. 

 tot 2 5 tot 4 1 2 1 3 4 3 5

eq 2 2 5 5 eq 4 4 1 1 2 2 1 1 3 3

           ;           ;    

  ;    ;  

Q Q Q Q Q Q Q Q Q Q Q Q

C V C V C V C V C V CV C V CV C V

       

     
 

  We have a set of six equations:        2 1 2 3 4 5 41   ;   2  ;   3V V V V V V V V V V        

           eq 2 2 5 5 eq 4 4 1 1 2 2 1 1 3 34  ;   5  ;   6C V C V C V C V C V CV C V CV C V       

  Solve for eqC as follows. 

   (i) From Eq. (1), 21 .V V V    Rewrite equations (5) and (6).  V1 has been eliminated. 

        eq 4 4 1 1 2 2 2 1 1 2 3 35  ;   6C V C V CV CV C V CV CV C V       

   (ii) From Eq. (3), 45 .V V V    Rewrite equation (4).  V5 has been eliminated. 

      eq 2 2 5 5 4 4C V C V C V C V    

   (iii) From Eq. (2), 3 2 4.V V V V    Rewrite equation (6).  V3 has been eliminated. 

     
 

     
2 2 1 1 2 3 3 2 3 4

1 2 3 2 3 4 1 3

6   

 6

C V CV CV C V C V C V

C C C V C V C C V

     

    
 

 
 

d y 

y


d 
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Here is the current set of equations. 

     

 
 

     

eq 2 2 5 5 4

eq 4 4 1 1 2

1 2 3 2 3 4 1 3

 4

 5

6

C V C V C V C V

C V C V CV CV

C C C V C V C C V

  

  

    

 

   (iv) From Eq. (4),  4 2 2 5 eq

5

1
.V C V C V C V

C
     Rewrite equations (5) and (6). 

     
   

       
5 eq 4 2 2 5 eq 5 1 5 1 2

5 1 2 3 2 3 2 2 5 eq 5 1 3

 5

 6

C C V C C V C V C V C CV C CV

C C C C V C C V C V C V C C C V

    

      

  
  

 

   (v) Group all terms by common voltage. 

     
     

      
5 eq 4 eq 4 5 5 1 4 2 5 1 2

5 1 3 3 eq 3 5 5 1 2 3 3 2 2

 5

 6

C C C C C C C C V C C C C V

C C C C C C C V C C C C C C V

    

        
 

   (vi) Divide the two equations to eliminate the voltages, and solve for the equivalent  
capacitance. 

     

 
 

 
  

5 eq 4 eq 4 5 5 1 4 2 5 1

5 1 2 3 3 25 1 3 3 eq 3 5

1 2 3 1 2 4 1 2 5 1 3 5 1 4 5 2 3 4 2 4 5 3 4 5
eq

1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5

    
C C C C C C C C C C C C

C C C C C CC C C C C C C

C C C C C C C C C C C C C C C C C C C C C C C C
C

C C C C C C C C C C C C C C C C

   
 

    

      


      

  
 

(b) Evaluate with the given data.  Since all capacitances are in F, and the expression involves 

capacitance cubed terms divided by capacitance squared terms, the result will be in F.  

   

      
     

                  

1 2 3 1 2 4 1 2 5 1 3 5 1 4 5 2 3 4 2 4 5 3 4 5
eq

1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5

1 2 3 4 5 5 3 4 4 2 3 2 5 3 5

1 3 4 5 2 3 4 5 3 4 5

4.5 8.0 17.0 4.5 12.5 8.0 8.0 4.5 8.0 4.

C C C C C C C C C C C C C C C C C C C C C C C C
C

C C C C C C C C C C C C C C C C

C C C C C C C C C C C C C C C

C C C C C C C C C C C

      


      

      


      

  


      
           

5 4.5 4.5
F

4.5 17.0 8.0 17.0 4.5 12.5

6.0 F







 



 

 
41. The stored energy is given by Eq. 24-5. 

   22 9 31 1
2 2 2.8 10 F 2200V 6.8 10 JU CV        

 
42. The energy density is given by Eq. 24-6. 

     22 12 2 2 7 31 1
02 2 8.85 10 C N m 150V m 1.0 10 J mu E        

 
43. The energy stored is obtained from Eq. 24-5, with the capacitance of Eq. 24-2. 

   
   

242 2
3

212 2 2
0

4.2 10 C 0.0013m
2.0 10 J

2 2 2 8.85 10 C N m 0.080 m

Q Q d
U

C A






    

 
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44. (a) The charge is constant, and the tripling of separation reduces the capacitance by a factor of 3. 

   

2

0
122

2

1 2
0

1

2
3

32

Q A
CCU d

AQU C
dC




     

(b) The work done is the change in energy stored in the capacitor. 

   
2 2 2

2 1 1 1 1

1 0
0

3 2 2
2

Q Q Q d
U U U U U

AC A
d


        

 
45. The equivalent capacitance is formed by C1 in parallel with the series combination of C2 and C3.  

Then use Eq. 24-5 to find the energy stored. 

  

   

2

2 3 3
net 1 2

2 3

22 2 6 33 31
net2 4 4

2

22.6 10 F 10.0V 1.70 10 J

C C C
C C C C

C C C

U C V CV  

    


     

 

 
46. (a) Use Eqs. 24-3 and 24-5. 

        22 2 6 4 41 1 1
parallel eq 1 22 2 2 0.65 10 F 28V 2.548 10 J 2.5 10 JU C V C C V             

 (b) Use Eqs. 24-4 and 24-5. 

   

     
6 6

22 21 21 1 1
series eq2 2 2 6

1 2

5 5

0.45 10 F 0.20 10 F
28V

0.65 10 F

5.428 10 J 5.4 10 J

C C
U C V V

C C

 



 

 
  

 

   

  
         

 (c) The charge can be found from Eq. 24-5. 

   

 

 

4

51
parallel2

5

6

series

2 2.548 10 J2
        1.8 10 C

28V

2 5.428 10 J
3.9 10 C

28V

U
U QV Q Q

V

Q










      


  

 

 

47. The capacitance of a cylindrical capacitor is given in Example 24-2 as 
 

0

a b

2
.

ln
C

R R




l
 

 (a) If the charge is constant, the energy can be calculated by 
2

1
2 .

Q
U

C
  

   
 

 

 
 

2
01

2

a b a b2 12
2

01 2 a b1
2

a b1

2

ln ln 3
1

2 ln
ln 3

Q

R R R RU CC

QU C R R
R RC




    

l

l
 

  The energy comes from the work required to separate the capacitor components. 
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 (b) If the voltage is constant, the energy can be calculated by 21
2 .U CV  

   
 

 

 
 

0

21
a b a b22 2 2

21
021 1 1 a b

a b

2

ln 3 ln
1

2 ln 3
ln

R R R RU C V C

U CV C R R
R R




    

l

l
 

Since the voltage remained constant, and the capacitance decreased, the amount of charge on 
the capacitor components decreased.  Charge flowed back into the battery that was maintaining 
the constant voltage. 

 
48. (a) Before the capacitors are connected, the only stored energy is in the initially-charged capacitor.   

Use Eq. 24-5. 

      22 6 4 41 1
1 1 02 2 2.20 10 F 12.0V 1.584 10 J 1.58 10 JU CV            

 (b) The total charge available is the charge on the initial capacitor.  The capacitance changes to the  
equivalent capacitance of the two capacitors in parallel. 

   

   
 

2 262 2 2

1 01 1 1
1 1 0 eq 1 2 2 2 2 2 6

eq 1 2

5 5

2.20 10 F 12.0V
  ;    ;  

5.70 10 F

6.114 10 J 6.11 10 J                                                    

Q C V
Q Q CV C C C U

C C C





 


      

 

   

 

 (c) 5 4 5

2 1 6.114 10 J 1.584 10 J 9.73 10 JU U U              

 
49. (a)  With the plate inserted,  the capacitance is that of two series capacitors of plate separations 

1d x  and 2 .d d x  l    
1

0

0 0

i

x d x A
C

A A d


 


 

  


 
 
 

l

l
 

With the plate removed the capacitance is obtained directly from Eq. 24-2. 

0
f

A
C

d


  

Since the voltage remains constant the energy of the capacitor will be given by Eq. 24-5 written 
in terms of voltage and capacitance.  The work will be the change in energy as the plate is 
removed. 

 

 

21
2

2
20 0 01

2 2

f i f iW U U C C V

A A A V
V

d d d d

  

   

   
 

 
 
 

l

l l

 

The net work done is negative.  Although the person pulling the plate out must do work, charge 
is returned to the battery, resulting in a net negative work done. 

 
(b)  Since the charge now remains constant, the energy of the capacitor will be given by Eq. 24-5 

written in terms of capacitance and charge. 
2 2 2

0 0 0

1 1

2 2 2f i

Q Q d d Q
W

C C A A A  


    
   
   

  

l l
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  The original charge is 0
0 0

A
Q CV V

d


 

 l
 and so 

 

2

0
20

0 0
2

0

.
2 2

A
V

AVdW
A d





 



 
 
 

l
ll

l
 

 

50. (a) The charge remains constant, so we express the stored energy as 
2 2

1 1
2 2

0

,
Q Q x

U
C A

   where x  

is the separation of the plates.  The work required to increase the separation by dx  is 
,dW Fdx  where F is the force on one plate exerted by the other plate.  That work results in an 

increase in potential energy, .dU  

 
2 2

1
2

0 0

1
    

2

Q dx Q
dW Fdx dU F

A A 
      

(b) We cannot use 
2

0 0 0

Q Q
F QE Q Q

A A


  

    because the electric field is due to both plates, 

and charge cannot put a force on itself by the field it creates.  By the symmetry of the geometry, 
the electric field at one plate, due to just the other plate, is 1

2 .E   See Example 24-10. 

 
51. (a) The electric field outside the spherical conductor is that of an equivalent point charge at the  

center of the sphere, so 
2

0

1
, .

4

Q
E r R

r
    Consider a differential volume of radius dr, and 

volume 24 ,dV r dr  as used in Example 22-5.  The energy in that volume is .dU udV   
Integrate over the region outside the conductor. 

 

2 2 2
2 21 1

0 02 2 2 2

0 0 0

2

0

1 1 1
4

4 8 8

8

RR R

Q Q Q
U dU udV E dV r dr dr

r r r

Q

R

  
  



 

      



 
 
 

    
 

 (b) Use Eq. 24-5 with the capacitance of an isolated sphere, from the text immediately after  
Example 24-3. 

   
2 2 2

1 1
2 2

0 04 8

Q Q Q
U

C R R 
    

(c) When there is a charge q < Q on the sphere, the potential of the sphere is 
0

1
.

4

q
V

R
   The 

work required to add a charge dq to the sphere is then 
0

1
.

4

q
dW Vdq dq

R
    That work 

increase the potential energy by the same amount, so 
0

1
.

4

q
dU dW Vdq dq

R
     Build up 

the entire charge from 0 to Q, calculating the energy as the charge increases. 

   
2

0 0 00 0

1 1

4 4 8

Q Qq Q
U dU dW Vdq dq qdq

R R R  
            
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52. In both configurations, the voltage across the combination of capacitors is the same.  So use 
1
2 .U CV   

  

 
 

   
 

 

2 21 21 1 1 1
P P 1 2 S S2 2 2 2

1 2

22 21 21 1
P S 1 2 1 2 1 22 2

1 2

2 2

2 2 2 2 2

1 1 2 2 1 2

1

2

  ;  

5     5     5   

3 9 4 3 5
3 0        

2 2

3 5 3 5
, 2.62,0.382

2 2

C C
U C V C C V U C V V

C C

C C
U U C C V V C C C C

C C

C C C
C C C C C C

C

C

     


       


  
      

 
 

 

 
53. First find the ratio of energy requirements for a logical operation in the past to the current energy 

requirements for a logical operation. 

  
 
 

221 2
2past past past past

21
2present present presentpresent

20 5.0
220

1 1.5

N CVE C V

E N CV C V
   

     
     

    
 

 So past operations would have required 220 times more energy.  Since 5 batteries in the past were 
required to hold the same energy as a present battery, it would have taken 1100 times as many 
batteries in the past.  And if it takes 2 batteries for a modern PDA, it would take 2200 batteries to 
power the PDA in the past.  It would not fit in a pocket or purse.  The volume of a present-day 

battery is    22 30.5cm 4 cm 3cm .V r   l   The volume of 2200 of them would be 36600cm , 

which would require a cube about 20 cm in side length. 
 
54. Use Eq. 24-8 to calculate the capacitance with a dielectric. 

       
 

22

12 2 2 11

0 3

4.2 10 m
2.2 8.85 10 C N m 1.9 10 F

1.8 10 m

A
C K

d




 




     


 

 
55. The change in energy of the capacitor is obtained from Eq. 24-5 in terms of the constant voltage and 

the capacitance. 

 2 2 21 1 1
f i 0 0 02 2 2 1U U U C V KC V K C V         

The work done by the battery in maintaining a constant voltage is equal to the voltage multiplied by 
the change in charge, with the charge given by Eq. 24-1. 

      2

battery f i 0 0 01W V Q Q V C V KC V K C V        

The work done in pulling the dielectric out of the capacitor is equal to the difference between the 
change in energy of the capacitor and the energy done by the battery. 

   

       

2 21
battery 0 02

22 9 41
02

1 1

1 3.4 1 8.8 10 F 100 V 1.1 10 J

W U W K C V K C V

K C V  

       

      
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56. We assume the charge and dimensions are the same as in Problem 43.  Use Eq. 24-5 with charge and 
capacitance. 

  
   

     

262 2 2

1 1 1 1
2 2 2 2 12 2 2 4 2

0 0

420 10 C 0.0013m
289.2 J 290J

7 8.85 10 C N m 64 10 m

Q Q Q d
U

C KC K A



 


     

  
 

 

57. From Problem 10, we have 1535 10 F.C     Use Eq. 24-8 to calculate the area. 

  

   
   

215 9 6
13 2

0 12 2 2

0

2 2

35 10 F 2.0 10 m 10 m
    3.164 10 m

25 8.85 10 C N m 1m

0.3164 m 0.32 m                           

A Cd
C K A

d K






 

 





 
     

 

 

 
 
   

 Half of the area of the cell is used for capacitance, so 21.5cm  is available for capacitance.  Each 
capacitor is one “bit.” 

  

26
2 7

2 2

10 m 1bit 1byte
1.5cm 5.86 10 bytes 59 Mbytes

10 cm 0.32 m 8bits




  
    

    
    

 

 
58. The initial charge on the capacitor is initial initialQ C V .  When the mica is inserted, the capacitance 

changes to final initialC KC , and the voltage is unchanged since the capacitor is connected to the same 

battery.  The final charge on the capacitor is final finalQ C V . 

  
      9

final initial final initial initial

7

1 7 1 3.5 10 F 32 V

     6.7 10 C

Q Q Q C V C V K C V 



         

 
 

 
59. The potential difference is the same on each half of the capacitor, 

so it can be treated as two capacitors in parallel.  Each parallel 
capacitor has half of the total area of the original capacitor. 

   
1 1
2 2 1

1 2 1 0 2 0 1 2 02

A A A
C C C K K K K

d d d
         

 
60. The intermediate potential at the boundary of the two dielectrics can 

be treated as the “low” potential plate of one half and the “high” 
potential plate of the other half, so we treat it as two capacitors in 
series.  Each series capacitor has half of the inter-plate distance of 
the original capacitor. 

  
1 1

1 2 0 1 22 2

1 2 1 0 2 0 0 1 2 1 2

1 1 1 2
    

2

d d d K K A K K
C

C C C K A K A A K K d K K


  


      


 

 
 
61. The capacitor can be treated as two series capacitors with the same 

areas, but different plate separations and dielectrics.  Substituting 
Eq. 24-8 into Eq. 24-4 gives the effective capacitance. 

11

1 2 0 1 2

1 2 1 0 2 0 1 2 2 1

1 1 d d A K K
C

C C K A K A d K d K


 



    


  
  

   
 

d K1 K2

d
K1

K2

d1 K1

K2d2
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62. (a) Since the capacitors each have the same charge and the same voltage in the initial situation,  

each has the same capacitance of 0

0

.
Q

C
V

   When the dielectric is inserted, the total charge of 

02Q  will not change, but the charge will no longer be divided equally between the two 

capacitors.  Some charge will move from the capacitor without the dielectric  1C  to the 

capacitor with the dielectric  2C .  Since the capacitors are in parallel, their voltages will be the 

same. 

   

 

1 2 1 0 1
1 2

1 2

1 0 0 0 2 0

2
          

2 2
0.48   ;  1.52

1 4.2

Q Q Q Q Q
V V

C C C KC

Q Q Q Q Q Q
K


     

   


 

 (b) 1 0 2 0
1 2 0

1 0 0 2 0 0

0.48 1.52
0.48

3.2

Q Q Q Q
V V V

C Q V C Q V
       

 
63. (a) We treat this system as two capacitors, one with a dielectric,  

and one without a dielectric.  Both capacitors have their high 
voltage plates in contact and their low voltage plates in 
contact, so they are in parallel.  Use Eq. 24-2 and 24-8 for the 
capacitance.  Note that x is measured from the right edge of 
the capacitor, and is positive to the left in the diagram. 

   
   

2

1 2 0 0 0 1 1
x x x

C C C K K
d d d

  


       
  

l l l l

l
  

 (b) Both “capacitors” have the same potential difference, so use 21
2 .U CV  

      
2

2 21
1 2 0 0 02 1 1

2

x
U C C V K V

d
     

  
l

l
 

 (c) We must be careful here.  When the voltage across a capacitor is constant and a dielectric is  
inserted, charge flows from the battery to the capacitor.  So the battery will lose energy and the 
capacitor gain energy as the dielectric is inserted.  As in Example 24-10, we assume that work is 

done by an external agent  ncW  in such a way that the dielectric has no kinetic energy.  Then 

the work-energy principle (Chapter 8) can be expressed as ncW U   or nc .dW dU   This is 

analogous to moving an object vertically at constant speed.  To increase (decrease) the 
gravitational potential energy, positive (negative) work must be done by an outside, non-
gravitational source. 

 

In this problem, the potential energy of the voltage source and the potential energy of the 
capacitor both change as x changes.  Also note that the change in charge stored on the capacitor 
is the opposite of the change in charge stored in the voltage supply. 

 

   

   

21
nc cap battery nc 0 battery 02

battery cap2 2 2 2 21 1 1 1
nc 0 0 0 0 0 0 02 2 2 2

2 2
2 0 01

0 02

      

1
1

2

dW dU dU dU F dx d CV d Q V

dQ dQdC dC dC dC dC
F V V V V V V V

dx dx dx dx dx dx dx

K V
V K

d d




      

       


     

  

l l

l

 

   

 

d K 

x    +  
x 

¬
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Note that this force is in the opposite direction of dx, and so is to the right.  Since this force is 
being applied to keep the dielectric from accelerating, there must be a force of equal magnitude 
to the left pulling on the dielectric.  This force is due to the attraction of the charged plates and 
the induced charge on the dielectric.  The magnitude and direction of this attractive force are 

 
2

0 0 1 ,  left .
2

V
K

d




l
  

 
64. (a) We consider the cylinder as two cylindrical capacitors in parallel.  The two “negative plates” are  

the (connected) halves of the inner cylinder (half of which is in contact with liquid, and half of 
which is in contact with vapor).  The two “positive plates” are the (connected) halves of the 
outer cylinder (half of which is in contact with liquid, and half of which is in contact with 
vapor).  Schematically, it is like Figure 24-30 in Problem 59.  The capacitance of a cylindrical 
capacitor is given in Example 24-2. 

   
 

 
     

 
 

0 liq 0 V 0
liq V liq V V

a b a b a b

a b
V

liq V 0

2 2 2
 

ln ln ln

ln1

2

K h K h h
C C C K K K C

R R R R R R

C R Rh
K

K K

  




        

 


 
  

 
 
 

l l

l

l l

 

 (b) For the full tank, 1,
h


l
 and for the empty tank, 0.

h


l
 

  Full:  
     

0 liq0
liq V V

a b a b

22

ln ln

Kh
C K K K

R R R R


    

  

ll

l
 

     
 

12 2 2

9
2 8.85 10 C N m 2.0 m 1.4

   1.5 10 F
ln 5.0 mm 4.5mm

 


 

    

  Empty: 
     

0 0 V
liq V V

a b a b

2 2

ln ln

h K
C K K K

R R R R

 
    

  
l l

l
 

     
 

12 2 2

9
2 8.85 10 C N m 2.0 m 1.0

   1.1 10 F
ln 5.0 mm 4.5mm

 


 

    

 
65. Consider the dielectric as having a layer of equal and opposite charges at each side of the dielectric.  

Then the geometry is like three capacitors in series.  One air gap is taken to be 1,d  and then the other 

air gap is 1 .d d  l  

 

 

   
 

1 1

1 2 3 0 0 0 0

12 2 2 2 2

100

3
3

1 1 1 1 1
  

8.85 10 C N m 2.50 10 m
1.72 10 F

1.00 10 m
1.00 10 m

3.50

d d d
d

C C C C A K A A A K

A
C

d
K

   


 






 
         

  
   

   

  
    

   
      

l l l
l

l
l
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66. By leaving the battery connected, the voltage will not change when the dielectric is inserted, but the 
amount of charge will change.  That will also change the electric field. 

 (a) Use Eq. 24-2 to find the capacitance. 

    
2 2

12 2 2 10 10

0 0 3

2.50 10 m
8.85 10 C N m 1.106 10 F 1.11 10 F

2.00 10 m

A
C

d



  




       


 
 
 

 

 (b) Use Eq. 24-1 to find the initial charge on each plate. 

      10 8 8

0 0 1.106 10 F 150 V 1.659 10 C 1.66 10 CQ C V           
 

  In Example 24-12, the charge was constant, so it was simple to calculate the induced charge and then 
the electric fields from those charges.  But now the voltage is constant, and so we calculate the fields 
first, and then calculate the charges.  So we are solving the problem parts in a different order. 

  

(d) We follow the same process as in part (f) of Example 24-12. 

   

   

 

     
 

0
0 D 0

5

0 3

3 3

5

  

150 V
1.167 10 V m

1.00 10 m
2.00 10 m 1.00 10 m

3.50

1.17 10 V m

E
V E d E E d

K

V
E

d
K



 

      

   
     

 

l l l l

l
l

  

 (e) 
5

4 40
D

1.167 10 V m
3.333 10 V m 3.33 10 V m

3.50

E
E

K


        

  

 (h) 0

0 0

  
Q

E
A


 

    

  
    5 2 12 2 2 8

0

8

1.167 10 V m 0.0250 m 8.85 10 C N m 2.582 10 C

2.58 10 C

Q EA  



      

 
  

(c)  8 8

ind

1 1
1 2.582 10 C 1 1.84 10 C

3.50
Q Q

K
          

   
   

 

(f) Because the battery voltage does not change, the potential difference between the plates is  

unchanged when the dielectric is inserted, and so is 150 V .V   

 (g) 
8

102.582 10 C
1.72 10 pF

150 V

Q
C

V




     

  Notice that the capacitance is the same as in Example 24-12.  Since the capacitance is a constant  
(function of geometry and material, not charge and voltage), it should be the same value. 

 
67. The capacitance will be given by /C Q V .  When a charge Q is placed on one plate and a 

charge   –Q is placed on the other plate, an electric field will be set up between the two plates.  
The electric field in the air-filled region is just the electric field between two charged plates, 

0

0 0

Q
E

A


 

  .  The electric field in the dielectric is equal to the electric field in the air,  
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 divided by the dielectric constant: 0

0

D

E Q
E

K KA
  . 

The voltage drop between the two plates is obtained by integrating the electric field between the 
two plates. One plate is set at the origin with the dielectric touching this plate.  The dielectric 
ends at x  l .  The rest of the distance to x d  is then air filled. 

 
0 0 00 0

d dQdx Qdx Q
V d d

KA A A K  
        

 
   E x

l

l

l
l

 
 

The capacitance is the ratio of the voltage to the charge. 

 
0

0

Q Q A
C

QV dd
KA K





  
   

 
 

ll
ll

  

 
68. Find the energy in each region from the energy density and the volume.  The energy density in the 

“gap” is given by 21
gap 0 gap2 ,u E and the energy density in the dielectric is given by 21

D D2 Du E  
2 2

gap gap1 1
0 02 2 ,

E E
K

K K
  
 
 
 

 where Eq. 24-10 is used. 

  
 

   
 

     

2

gap1
2 0

D D D D
2

2 gaptotal gap D gap gap D D 1 1
2 20 gap 0

Vol

Vol Vol

1.00 mm
0.222

1.00 mm 3.50 1.00 mm

E
AU U u K

EU U U u u
E A d A

K

K
d Kd

K



 
  

 
 

   
   

l

l l

l

l

l l l
l

 

 
69. There are two uniform electric fields – one in the air, and one in the gap.  They are related by Eq. 24-

10.  In each region, the potential difference is the field times the distance in the direction of the field 
over which the field exists. 

       

air
air air glass glass air air glass

glass

glass

air

air glass glass

3 3

4

  

5.80
90.0 V

3.00 10 m 5.80 2.00 10 m

2.69 10 V m

     

E
V E d E d E d d

K

K
E V

d K d

 

    





  

 

 

 
4

3air
glass

glass

2.69 10 V m
4.64 10 V m

5.80

E
E

K


     

The charge on the plates can be calculated from the field at the plate, using Eq. 22-5.  Use Eq. 24-
11b to calculate the charge on the dielectric. 
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     

 

plate plate

air

0 0

4 12 2 2 2 7

plate air 0

7 7

ind

  

2.69 10 V m 8.85 10 C N m 1.45m 3.45 10 C

1 1
1 3.45 10 C 1 2.86 10 C

5.80

Q
E

A

Q E A

Q Q
K



 

  

 

  

      

         
   
   

 

 
70. (a) The capacitance of a single isolated conducting sphere is given after example 24-3. 

    
0

12
12 2 2 10

4   

F 1m 10 pF
4 8.85 10 C N m 1.11 10 1.11pF cm

m 100cm 1F

C r

C

r



  

 

     
   

        

  

  And so      1.11pF cm     pF cm .C r C r     

 (b) We assume that the human body is a sphere of radius 100 cm.  Thus the rule    pF cmC r   

says that the capacitance of the human body is about 100 pF .  

 (c) A 0.5-cm spark would require a potential difference of about 15,000 V.  Use Eq. 24-1. 

      100 pF 15,000 V 1.5 CQ CV     

 
71. Use Eq. 24-5 to find the capacitance. 

  
 

 
2 51

2 22

2 1200J2
    4.3 10 F

7500 V

U
U CV C

V
       

 
72. (a) We approximate the configuration as a parallel-plate capacitor, and so use Eq. 24-2 to calculate  

the capacitance. 

   
      22

12 2 2 12

0 0

12

4.5in 0.0254 m in
8.85 10 C N m 7.265 10 F

0.050 m

7 10 F

A r
C

d d


   



      

 

 

 (b) Use Eq. 24-1. 

      12 11 117.265 10 F 9 V 6.539 10 C 7 10 CQ CV           

 (c) The electric field is uniform, and is the voltage divided by the plate separation. 

   
9 V

180 V m 200 V m
0.050 m

V
E

d
     

 (d) The work done by the battery to charge the plates is equal to the energy stored by the capacitor.   
Use Eq. 24-5. 

      22 12 10 101 1
2 2 7.265 10 F 9 V 2.942 10 J 3 10 JU CV           

 (e) The electric field will stay the same, because the voltage will stay the same (since the capacitor  
is still connected to the battery) and the plate separation will stay the same.  The capacitance 
changes, and so the charge changes (by Eq. 24-1), and so the work done by the battery changes 
(by Eq. 24-5). 
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73. Since the capacitor is disconnected from the battery, the charge on it cannot change.  The 
capacitance of the capacitor is increased by a factor of K, the dielectric constant. 

   initial initial
initial initial final final final initial initial

final initial

1
    34.0 V 15V

2.2

C C
Q C V C V V V V

C KC
        

 
74. The energy is given by Eq. 24-5.  Calculate the energy difference for the two different amounts of 

charge, and then solve for the difference. 

  

     

   
   

22 2
2 21 1 1

2 2 2

6

3 31 1
2 23

1
    2   

2 2

17.0 10 F 18.5J
13.0 10 C 17.7 10 C 17.7 mC

13.0 10 C

Q QQ Q Q
U U Q Q Q Q Q

C C C C C

C U
Q Q

Q



 



  
            


        

 

  
 

 
75. The energy in the capacitor, given by Eq. 24-5, is the heat energy absorbed by the water, given by 

Eq. 19-2. 

     

21
heat 2      

J
2 3.5kg 4186 95 C 22 C

2 kg C
844 V 840 V

3.0 F

U Q CV mc T

mc T
V

C

    

  
 

   

 
 
 

 

 
76. (a) The capacitance per unit length of a cylindrical capacitor with no dielectric is derived in  

Example 24-2, as 
 

0

outside inside

2

ln
.

C

R R




l
  The addition of a dielectric increases the capacitance 

by a factor of K. 

   
 

0

outside inside

2

ln

C K

R R




l
 

 (b) 
 

 
 

12 2 2

100

outside inside

2 8.85 10 C N m 2.62
1.1 10 F m

ln ln 9.0 mm 2.5mm

C K

R R





 

   
l

 

 
77. The potential can be found from the field and the plate separation.  Then the capacitance is found 

from Eq. 24-1, and the area from Eq. 24-8. 

  
 

   
   
   

6

9 9

4 3

9 3

2

0 12 2 2

0

  ;    

0.675 10 C
3.758 10 F 3.76 10 F

9.21 10 V m 1.95 10 m

3.758 10 F 1.95 10 m
    0.221m

3.75 8.85 10 C N m

V
E Q CV CEd

d

Q
C

Ed

A Cd
C K A

d K






 



 



   


     

 

 
    

 

  

 
78. (a) If N electrons flow onto the plate, the charge on the top plate is ,Ne  and the positive charge  

associated with the capacitor is .Q Ne   Since ,Q CV  we have     ,Ne CV V Ne C    

showing that V is proportional to N. 
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 (b) Given 1mVV  and we want 1,N   solve for the capacitance.  

   

 19 16 16

3

      

1
1.60 10 C 1.60 10 F 2 10 F

1 10 V

Ne e N
V V

C C

N
C e

V
  




    


      

 

  

(c) Use Eq. 24-8. 

      
   

2

0 0

16 9 6
7

12 2 2

0

  

1.60 10 F 100 10 m 10 m
7.76 10 m 0.8 m

8.85 10 C N m 3 1m

A
C K K

d d

Cd

K

 






 





  

 
    

 
 
 
 

l

l

 

 
79. The relative change in energy can be obtained by inserting Eq. 24-8 into Eq. 24-5. 

 

2

0

0
2

00
1
20

12
2

2

Q A
U CC d

KAQU C K
dC




     

The dielectric is attracted to the capacitor.  As such, the dielectric will gain kinetic energy as it enters 
the capacitor.  An external force is necessary to stop the dielectric.  The negative work done by this 
force results in the decrease in energy within the capacitor. 

 

Since the charge remains constant, and the magnitude of the electric field depends on the charge, and 
not the separation distance, the electric field will not be affected by the change in distance between 
the plates.  The electric field between the plates will be reduced by the dielectric constant, as given in 
Eq. 24-10. 

0

0 0

/ 1E E K

E E K
   

 
80. (a) Use Eq. 24-2. 

   
   

 

12 2 2 6 2

7 70
8.85 10 C N m 120 10 m

7.08 10 F 7.1 10 F
1500 m

A
C

d




 
  

       

 (b) Use Eq. 24-1. 

     7 77.08 10 F 3.5 10 V 24.78C 25CQ CV        

 (c) Use Eq. 24-5. 

      7 8 81 1
2 2 24.78C 3.5 10 V 4.337 10 J 4.3 10 JU QV        

 
81. We treat this as N capacitors in parallel, so that the total capacitance is N times the capacitance of a 

single capacitor.  The maximum voltage and dielectric strength are used to find the plate separation 
of a single capacitor. 

  

3
6

6 6

S

eq 0

100 V 6.0 10 m
3.33 10 m  ;  1800

30 10 V m 3.33 10 m

  

V
d N

E d

A
C NC N K

d








      

 

  

l
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   

     
6 6

eq

12 2 2 3 3

0

1.0 10 F 3.33 10 m
1.244 1.2

1800 8.85 10 C N m 12.0 10 m 14.0 10 m

C d
K

N A

 

  

 
   

   
 

   
82. The total charge doesn’t change when the second capacitor is connected, since the two-capacitor 

combination is not connected to a source of charge.  The final voltage across the two capacitors must 
be the same.  Use Eq. 24-1. 

     

0 1 0 1 2 1 1 2 2 1 1 2 1

0 1
2 1

1

12.4 V 5.9 V
3.5 F 3.856 F 3.9 F

5.9 V

Q C V Q Q C V C V C V C V

V V
C C

V
  

      

 
   

 
 
 

 

 
83. (a) Use Eq. 24-5 to calculate the stored energy. 

      22 8 41 1
2 2 8.0 10 F 2.5 10 V 25JU CV       

 (b) The power is the energy converted per unit time. 

   
  5

6

0.15 25JEnergy
9.38 10 W 940 kW

time 4.0 10 s
P


    


 

 
84. The pressure is the force per unit area on a face of the dielectric.  The force is related to the potential 

energy stored in the capacitor by Eq. 8-7, ,
dU

F
dx

   where x is the separation of the capacitor 

plates. 

  
   

   

2 2
2 2 0 01 1

02 2 2 2

242

12 2 2

0

     ;   
2 2

2 1.0 10 m 40.0 Pa2
170 V

3.1 8.85 10 C N m

A dU K AV F K V
U CV K V F P

x dx x A x

x P
V

K

 








        


  

 

 
 
 

  

 
85. (a) From the diagram, we see that one group of 4 plates is connected together, and the other group  

of 4 plates is connected together.  This common grouping shows that the capacitors are 
connected  in parallel . 

 (b) Since they are connected in parallel, the equivalent capacitance is the sum of the individual  
capacitances.  The variable area will change the equivalent capacitance. 

   

   
 

eq 0

4 2

12 2 2 12min
min 0 3

7 7

2.0 10 m
7 7 8.85 10 C N m 7.7 10 F

1.6 10 m

A
C C

d

A
C

d






 



 


    




 

      
 

4 2

12 2 2 11max
max 0 3

9.0 10 m
7 7 8.85 10 C N m 3.5 10 F

1.6 10 m

A
C

d




 




    


  

  And so the range is from 7.7 pF to 35pF . 
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86. (a) Since the capacitor is charged and then disconnected from the power supply, the charge is  
constant.  Use Eq. 24-1 to find the new voltage. 

     41
1 1 2 2 2 1

2

8.0pF
constant        7500V 6.0 10 V

1.0pF

C
Q CV CV C V V V

C
           

 (b) In using this as a high voltage power supply, once it discharges, the voltage drops, and it needs  
to be recharged.  So it is not a constant source of high voltage.  You would also have to be sure 
it was designed to not have breakdown of the capacitor material when the voltage gets so high.  

Another disadvantage is that it has only a small amount of energy stored:  21
2U CV  

   212 4 31
2 1.0 10 C 6.0 10 V 1.8 10 J        , and so could actually only supply a small amount 

of power unless the discharge time was extremely short. 
 
87. Since the two capacitors are in series, they will both have the same charge on them. 

   
     

1 2 series

series series 1 2

12 12

12series 1
2 12 12

1 series

1 1 1
  ;    

125 10 C 175 10 F
5.15 10 F

175 10 F 25.0V 125 10 C

V
Q Q Q

C Q C C

Q C
C

CV Q

 



 

     

 
   

   

 

 
88. (a) The charge can be determined from Eqs. 24-1 and 24-2. 

   
   

   
4 2

12 2 2 11

0 4

11

2.0 10 m
8.85 10 C N m 12 V 4.248 10 C

5.0 10 m

4.2 10 C

A
Q CV V

d




 






     



 


 

 (b) Since the battery is disconnected, no charge can flow to or from the plates.  Thus the charge is  
constant. 

 114.2 10 CQ    
 (c) The capacitance has changed and the charge has stayed constant, and so the voltage has  

changed. 

   

 

1 1 0 0 0 1 0 0

1 0

1
1 0

0

constant          

0.75mm
12 V 18V

0.50mm

A A
Q CV CV C V V V

d d

d
V V

d

       

  
 

 (d) The work is the change in stored energy. 

        11 101 1 1 1
1 0 1 02 2 2 2 4.248 10 C 6.0V 1.3 10 JW U QV QV Q V V             

 
89. The first capacitor is charged, and so has a certain amount of charge on its plates.  Then, when the 

switch is moved, the capacitors are not connected to a source of charge, and so the final charge is 
equal to the initial charge.  Initially treat capacitors 2C  and 3C  as their equivalent capacitance, 

   2 3
23

2 3

2.0 F 2.4 F
1.091 F.

4.4 F

C C
C

C C

 



  


  The final voltage across 1C  and 23C  must be the 

same.  The charge on 2C  and 3C  must be the same.  Use Eq. 24-1. 
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   

0 1 0 1 23 1 1 23 23 1 1 23 1

1
1 0 1 23

1 23

    

1.0 F
24 V 11.48V

1.0 F 1.091 F

Q C V Q Q C V C V C V C V

C
V V V V

C C


 

       

    
 

 

  

   
   

1 1 1

23 23 23 2 3

2 3
2 3

2 3

1.0 F 11.48V 11.48 C

1.091 F 11.48 V 12.52 C

12.52 C 12.52 C
6.26 V  ;  5.22 V

2.0 F 2.4 F

Q C V

Q C V Q Q

Q Q
V V

C C

 

 

 
 

  

    

     

 

 To summarize:  1 1 2 2 3 311 C , 11V  ;  13 C , 6.3V  ;  13 C , 5.2 VQ V Q V Q V         

 
90. The metal conducting strips connecting cylinders b and c mean that b and c 

are at the same potential.  Due to the positive charge on the inner cylinder 
and the negative charge on the outer cylinder, cylinders b and c will 
polarize according to the first diagram, with negative charge on cylinder c, 
and positive charge on cylinder b.  This is then two capacitors in series, as 
illustrated in the second diagram.  The capacitance per unit length of a 
cylindrical capacitor is derived in Example 24-2. 

  

   

   

   

     

 

0 0
1 2

a b c d net 1 2

0 0

a b c d1 2
net

0 01 2

a b c d

0 0

c d a b a c b d

0

a c b d

2 2 1 1 1
 ;  ;   

ln ln

2 2

ln ln

2 2

ln ln

2 2
  

ln ln ln

2

ln

C C
R R R R C C C

R R R RC C
C

C C
R R R R

R R R R R R R R

C

R R R R

 

 

 

 



    

 
 

  




   
   
   

l l

l l

l l

l l

l

 

 
91. The force acting on one plate by the other plate is equal to the electric field produced by one charged 

plate multiplied by the charge on the second plate. 
2

0 02 2

Q Q
F EQ Q

A A 
  

 
 
 

 

The force is attractive since the plates are oppositely charged.  Since the force is constant, the work 
done in pulling the two plates apart by a distance x is just the force times distance. 

2

02

Q x
W Fx

A
   

The change in energy stored between the plates is obtained using Eq. 24-5. 
2 2 2

2 1 0 0 0

1 1 2

2 2 2

Q Q x x Q x
W U

C C A A A  
  

        
   

 

The work done in pulling the plates apart is equal to the increase in energy between the plates. 
 

R a 
Rb

Rc R d 
+

–
+

–

Cyl. d
Cyl. c

Cyl. b
Cyl. a
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92. Since the other values in this problem manifestly have 2 significant figures, we assume that the  
capacitance also has 2 significant figures. 
(a) The number of electrons is found from the charge on the capacitor. 

   
   15

5

19

30 10 F 1.5V
    2.8 10 's

1.60 10 C

CV
Q CV Ne N e

e






      


 

 (b) The thickness is determined from the dielectric strength. 

   9

max min 9

min max

1.5V
    1.5 10 m

1.0 10 V m

V V
E d

d E
     


 

 (c) The area is found from Eq. 24-8. 

   
   
 

15 9

13

0 12 2 2

0

30 10 F 1.5 10 m
    2.0 10 m

25 8.85 10 C N m

A Cd
C K A

d K




 





 
     

 
 

 
93. Use Eq. 24-2 for the capacitance. 

  
   

 

12 2 2 4 2

160 0
8.85 10 C N m 1.0 10 m

    9 10 m
1F

A A
C d

d C

 
 


  

       

  No , this is not practically achievable.  The gap would have to be smaller than the radius of a proton. 
 
94. See the schematic diagram for the arrangement.  The two 

“capacitors” are in series, and so have the same charge.  Thus 
their voltages, which must total 25kV, will be inversely 
proportional to their capacitances.   Let C1 be the glass-filled 
capacitor, and C2 be the vinyl capacitor.  The area of the foot is 
approximately twice the area of the hand, and since there are 
two feet on the floor and only one hand on the screen, the area 

ratio is foot

hand

4
.

1

A

A
  

  

2
1 1 2 2 1 2

1

0 glass hand 0 vinyl foot

1 2

glass vinyl

    

  ;  

C
Q C V C V V V

C

K A K A
C C

d d

 

   

 
 

     
     

0 vinyl foot

vinyl vinyl foot glass2

0 glass hand1 glass hand vinyl

glass

2
1 2 2 2 2 2

1

3 4 0.63
1.5

5 1 1.0

2.5 25,000 V    10,000 V

K A

d K A dC
K AC K A d

d

C
V V V V V V V

C




   

       

  

 
95. (a) Use Eq. 24-2 to calculate the capacitance. 

   
   

 
12 2 2 2

90
0 3

8.85 10 C N m 2.0 m
5.9 10 F

3.0 10 m

A
C

d








 
   


 

  Use Eq. 24-1 to calculate the charge. 

25kV

6.3mm glass

1cm vinyl

hand

feet

floor
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      9 7 7

0 0 0 5.9 10 F 45V 2.655 10 C 2.7 10 CQ C V           

  The electric field is the potential difference divided by the plate separation. 

   0
0 3

45V
15000 V m

3.0 10 m

V
E

d 
  


 

  Use Eq. 24-5 to calculate the energy stored. 

      22 9 61 1
0 0 02 2 5.9 10 F 45V 6.0 10 JU C V        

 (b) Now include the dielectric.  The capacitance is multiplied by the dielectric constant. 

    9 8 8

0 3.2 5.9 10 F 1.888 10 F 1.9 10 FC KC           

The voltage doesn’t change.  Use Eq. 24-1 to calculate the charge. 

    9 7 7

0 3.2 5.9 10 F 45V 8.496 10 C 8.5 10 CQ CV KC V            

Since the battery is still connected, the voltage is the same as before, and so the electric field 
doesn’t change. 

   0 15000 V mE E   

Use Eq. 24-5 to calculate the energy stored. 

        22 2 9 51 1 1
02 2 2 3.2 5.9 10 F 45V 1.9 10 JU CV KC V         

 
96. (a) For a plane conducting surface, the electric field is given by Eq. 22-5. 

   
     6 12 2 2 4 2

max S 0

0 0

7 7

    3 10 N C 8.85 10 C N m 150 10 m

3.98 10 C 4 10 C                                    

Q
E Q E A

A




 
 

 

        

   

 

 (b) The capacitance of an isolated sphere is derived in the text, right after Example 24-3. 

      12 2 2 10 10

04 4 8.85 10 C N m 1m 1.11 10 F 1 10 FC r              

 (c) Use Eq. 24-1, with the maximum charge from part (a) and the capacitance from part (b). 

   
7

10

3.98 10 C
    3586 V 4000 V

1.11 10 F

Q
Q CV V

C






     


 

 
97. (a)  The initial capacitance is obtained directly from Eq. 24-8. 

     0
0 3

3.7 8.85 pF/m 0.21m 0.14 m
32 nF

0.030 10 m

K A
C

d




  


 

(b) Maximum charge will occur when the electric field between the plates is equal to the dielectric 
strength.  The charge will be equal to the capacitance multiplied by the maximum voltage, 
where the maximum voltage is the electric field times the separation distance of the plates. 

     6 3

max 0 0 32 nF 15 10 V/m 0.030 10 m

14 C

Q C V C Ed



    


 

(c) The sheets of foil would be separated by sheets of paper with 
alternating sheets connected together on each side.  This capacitor 
would consist of 100 sheets of paper with 101 sheets of foil. 

   Al paper101 100 101 0.040 mm 100 0.030 mm

7.0 mm

t d d   


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(d) Since the capacitors are in parallel, each capacitor has the same voltage which is equal to the  

total voltage.  Therefore breakdown will occur when the voltage across a single capacitor 
provides an electric field across that capacitor equal to the dielectric strength. 

   6 3

max max 15 10 V/m 0.030 10 m 450 VV E d         

 

98. From Eq. 24-2, 0 .C A
d


   So if 

we plot C vs. A, we should get a 

straight line with a slope of 0 .
d


 

  

0
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 
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
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The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH24.XLS,” on tab “Problem 24.98.” 
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