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CHAPTER 23:  Electric Potential 
 
Responses to Questions 
 
1.  Not necessarily. If two points are at the same potential, then no net work is done in moving a charge 

from one point to the other, but work (both positive and negative) could be done at different parts of 
the path.  No. It is possible that positive work was done over one part of the path, and negative work 
done over another part of the path, so that these two contributions to the net work sum to zero. In this 
case, a non-zero force would have to be exerted over both parts of the path.  

 
2.  The negative charge will move toward a region of higher potential and the positive charge will move 

toward a region of lower potential. In both cases, the potential energy of the charge will decrease. 
 
3. (a) The electric potential is the electric potential energy per unit charge. The electric potential is a  

scalar. The electric field is the electric force per unit charge, and is a vector. 
(b) Electric potential is the electric potential energy per unit charge. 

 
4.  Assuming the electron starts from rest in both cases, the final speed will be twice as great. If the 

electron is accelerated through a potential difference that is four times as great, then its increase in 
kinetic energy will also be greater by a factor of four. Kinetic energy is proportional to the square of 
the speed, so the final speed will be greater by a factor of two. 

 
5.  Yes. If the charge on the particle is negative and it moves from a region of low electric potential to a 

region of high electric potential, its electric potential energy will decrease. 
 
6.  No. Electric potential is the potential energy per unit charge at a point in space and electric field is 

the electric force per unit charge at a point in space. If one of these quantities is zero, the other is not 
necessarily zero. For example, the point exactly between two charges with equal magnitudes and 
opposite signs will have a zero electric potential because the contributions from the two charges will 
be equal in magnitude and opposite in sign. (Net electric potential is a scalar sum.) This point will 
not have a zero electric field, however, because the electric field contributions will be in the same 
direction (towards the negative and away from the positive) and so will add. (Net electric field is a 
vector sum.) As another example, consider the point exactly between two equal positive point 
charges. The electric potential will be positive since it is the sum of two positive numbers, but the 
electric field will be zero since the field contributions from the two charges will be equal in 
magnitude but opposite in direction.  

 
7. (a) V at other points would be lower by 10 V. E would be unaffected, since E is the negative  

gradient of V, and a change in V by a constant value will not change the value of the gradient. 
(b) If V represents an absolute potential, then yes, the fact that the Earth carries a net charge would  

affect the value of V at the surface. If V represents a potential difference, then no, the net charge 
on the Earth would not affect the choice of V. 

 
8.  No. An equipotential line is a line connecting points of equal electric potential. If two equipotential 

lines crossed, it would indicate that their intersection point has two different values of electric 
potential simultaneously, which is impossible. As an analogy, imagine contour lines on a 
topographic map. They also never cross because one point on the surface of the Earth cannot have 
two different values for elevation above sea level. 
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9.  The equipotential lines (in black) are perpendicular to the electric field lines (in red). 
 
 
 
 
 
 
 
 
 
10.  The electric field is zero in a region of space where the electric potential is constant. The electric 

field is the gradient of the potential; if the potential is constant, the gradient is zero.  
 
11. The Earth’s gravitational equipotential lines are roughly circular, so the orbit of the satellite would 

have to be roughly circular. 
 
12.  The potential at point P would be unchanged. Each bit of positive charge will contribute an amount 

to the potential based on its charge and its distance from point P. Moving charges to different 
locations on the ring does not change their distance from P, and hence does not change their 
contributions to the potential at P. 

 

The value of the electric field will change. The electric field is the vector sum of all the contributions 
to the field from the individual charges. When the charge Q is distributed uniformly about the ring, 
the y-components of the field contributions cancel, leaving a net field in the x-direction. When the 
charge is not distributed uniformly, the y-components will not cancel, and the net field will have 
both x- and y-components, and will be larger than for the case of the uniform charge distribution. 
There is no discrepancy here, because electric potential is a scalar and electric field is a vector. 

 
13. The charge density and the electric field strength will be greatest at the pointed ends of the football 

because the surface there has a smaller radius of curvature than the middle.  
 
14.  No. You cannot calculate electric potential knowing only electric field at a point and you cannot 

calculate electric field knowing only electric potential at a point. As an example, consider the 
uniform field between two charged, conducting plates. If the potential difference between the plates 
is known, then the distance between the plates must also be known in order to calculate the field. If 
the field between the plates is known, then the distance to a point of interest between the plates must 
also be known in order to calculate the potential there. In general, to find V, you must know E and be 
able to integrate it. To find E, you must know V and be able to take its derivative. Thus you need E 
or V in the region around the point, not just at the point, in order to be able to find the other variable. 

 
15. (a) Once the two spheres are placed in contact with each other, they effectively become one larger  

conductor. They will have the same potential because the potential everywhere on a conducting 
surface is constant. 

(b) Because the spheres are identical in size, an amount of charge Q/2 will flow from the initially  
charged sphere to the initially neutral sphere so that they will have equal charges.  

(c) Even if the spheres do not have the same radius, they will still be at the same potential once they  
are brought into contact because they still create one larger conductor. However, the amount of 
charge that flows will not be exactly equal to half the total charge. The larger sphere will end up 
with the larger charge. 
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16. If the electric field points due north, the change in the potential will be (a) greatest in the direction 
opposite the field, south; (b) least in the direction of the field, north; and (c) zero in a direction 
perpendicular to the field, east and west. 

 
17. Yes. In regions of space where the equipotential lines are closely spaced, the electric field is stronger 

than in regions of space where the equipotential lines are farther apart. 
 
18.  If the electric field in a region of space is uniform, then you can infer that the electric potential is 

increasing or decreasing uniformly in that region. For example, if the electric field is 10 V/m in a 
region of space then you can infer that the potential difference between two points 1 meter apart 
(measured parallel to the direction of the field) is 10 V. If the electric potential in a region of space is 
uniform, then you can infer that the electric field there is zero.  

 
19. The electric potential energy of two unlike charges is negative. The electric potential energy of two 

like charges is positive. In the case of unlike charges, work must be done to separate the charges. In 
the case of like charges, work must be done to move the charges together. 

 
 

Solutions to Problems 
 
1. Energy is conserved, so the change in potential energy is the opposite of the change in kinetic 

energy.  The change in potential energy is related to the change in potential. 

     
 

231 52

initial final

19

  

9.11 10 kg 5.0 10 m s
0.71V

2 2 1.60 10 C

U q V K

K K K mv
V

q q q





     

  
      

 

 

 The final potential should be lower than the initial potential in order to stop the electron.    
 
2. The work done by the electric field can be found from Eq. 23-2b. 

    19 17ba
ba ba ba    1.60 10 C 55V 185V 3.84 10 J

W
V W qV

q
              

 
3. The kinetic energy gained by the electron is the work done by the electric force.  Use Eq. 23-2b to 

calculate the potential difference. 

   
16

ba
ba 19

5.25 10 J
3280V

1.60 10 C

W
V

q






    

 
 

The electron moves from low potential to high potential, so  plate B  is at the higher potential. 
 
4. By the work energy theorem, the total work done, by the external force and the electric field 

together, is the change in kinetic energy.  The work done by the electric field is given by Eq. 23-2b. 

  

 

 

external electric final initial external b a final

4 4

external final
b a 6

KE KE     KE   

KE 7.00 10 J 2.10 10 J
53.8V

9.10 10 C

W W W q V V

W
V V

q

 



       

   
    

 

 

 Since the potential difference is negative, we see that a bV V . 
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5. As an estimate, the length of the bolt would be the voltage difference of the bolt divided by the 
breakdown electric field of air. 

8

6

1 10
33m 30m

3 10 V m

V
 


 

 
6. The distance between the plates is found from Eq. 23-4b, using the magnitude of the electric field. 

2ba ba 45V
    3.5 10 m

1300V m

V V
E d

d E
       


7. The maximum charge will produce an electric field that causes breakdown in the air.  We use the 

same approach as in Examples 23-4 and 23-5. 

  

   

surface 0 breakdown surface

0 0

22 6 6

0 0 breakdown 9 2 2

1
 and   

4

1
4 0.065m 3 10 V m 1.4 10 C

8.99 10 N m C

Q
V r E V

r

Q r E



 

  

    


 
 
 

 

 
8. We assume that the electric field is uniform, and so use Eq. 23-4b, using the magnitude of the 

electric field. 

  4ba

3

110V
2.8 10 V m

4.0 10 m

V
E

d 
   


 

 
9. To find the limiting value, we assume that the E-field at the radius of the sphere is the minimum 

value that will produce breakdown in air.  We use the same approach as in Examples 23-4 and 23-5. 

     

surface
surface 0 breakdown 0 6

breakdown

surface 0 surface 0 9 2 2

0 0

8

35,000V
    0.0117 m 0.012 m

3 10 V m

1 1
    4 35,000V 0.0117 m

4 8.99 10 N m C

4.6 10 C                                   

V
V r E r

E

Q
V Q V r

r





     


   


 

 
 
 

 

 
10. If we assume the electric field is uniform, then we can use Eq. 23-4b to estimate the magnitude of the 

electric field.   From Problem 22-24 we have an expression for the electric field due to a pair of 
oppositely charged planes.  We approximate the area of a shoe as 30 cm x 8 cm. 

  
     

0 0

12 2 2 2 3

60

3

  

8.85 10 C / Nm 0.024m 5.0 10 V
1.1 10 C

1.0 10 m

V Q
E

d A

AV
Q

d


 








   

 
   



 

 
11. Since the field is uniform, we may apply Eq. 23-4b.  Note that the electric field always points from 

high potential to low potential. 

 (a) BA 0 .V     The distance between the two points is exactly perpendicular to the field lines. 

 (b)    CB C B 4.20 N C 7.00m 29.4 VV V V       

 (c) CA C A C B B A CB BA 29.4 V 0 29.4 VV V V V V V V V V              
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12. From Example 22-7, the electric field produced by a large plate is uniform with magnitude 
0

.
2

E



   

The field points away from the plate, assuming that the charge is positive.  Apply Eq. 23-41. 

             0 0

0 0 00 0

ˆ ˆ0     
2 2 2

x x x x
V x V V x V d dx V x V

  
  

           
 
 
 

 E i i


 l  

 

13. (a) The electric field at the surface of the Earth is the same as that of a point charge, 
2

0 0

.
4

Q
E

r
  

The electric potential at the surface, relative to ( ) 0V    is given by Eq. 23-5.  Writing this in 
terms of the electric field and radius of the earth gives the electric potential. 

   6

0

0 0

150 V m 6.38 10 m  = 0.96 GV
4

Q
V Er

r
       

(b) Part (a) demonstrated that the potential at the surface of the earth is 0.96 GV lower than the 
potential at infinity.  Therefore if the potential at the surface of the Earth is taken to be zero, the 

potential at infinity must be ( ) 0.96 GV .V     If the charge of the ionosphere is included in 
the calculation, the electric field outside the ionosphere is basically zero.  The electric field 
between the earth and the ionosphere would remain the same.  The electric potential, which 
would be the integral of the electric field from infinity to the surface of the earth, would reduce 
to the integral of the electric field from the ionosphere to the earth.  This would result in a 
negative potential, but of a smaller magnitude. 

 
14. (a) The potential at the surface of a charged sphere is derived in Example 23-4. 

   
   

 

0 0 0 0

0 0

12 2 2

8 20 0 0 0 0

2 2

0 0 0

8 2

    4   
4

680 V 8.85 10  C /Nm4
3.761 10 C m

Area 4 4 0.16 m

3.8 10 C m

Q
V Q rV

r

Q Q rV V

r r r




 


 







   


      

 

 

 (b) The potential away from the surface of a charged sphere is also derived in Example 23-4. 

   
   

 
0 0 0 0 0 0 0

0 0

0.16 m 680 V4
   4.352 m 4.4 m

4 4 25V

Q rV rV rV
V r

r r r V


 

         

 
15. (a) After the connection, the two spheres are at the same potential.  If they were at different  

potentials, then there would be a flow of charge in the wire until the potentials were equalized. 
(b) We assume the spheres are so far apart that the charge on one sphere does not influence the 

charge on the other sphere.  Another way to express this would be to say that the potential due 
to either of the spheres is zero at the location of the other sphere.  The charge splits between the 
spheres so that their potentials (due to the charge on them only) are equal.  The initial charge on 
sphere 1 is Q, and the final charge on sphere 1 is Q1. 

 
1 1 1 1 1

1 2 1 2 1

0 1 0 2 0 1 0 2 1 2

  ;    ;          
4 4 4 4

Q Q Q Q Q Q r
V V V V Q Q

r r r r r r   
 

      


 

Charge transferred 
   

1 2
1

1 2 1 2

r r
Q Q Q Q Q

r r r r
   

 
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16. From Example 22-6, the electric field due to a long wire is radial relative to the wire, and is of 

magnitude 
0

1
.

2
E

R




   If the charge density is positive, the field lines point radially away from the 

wire.  Use Eq. 23-41 to find the potential difference, integrating along a line that is radially outward 
from the wire. 

     
b b

a a

a
b a b a

0 0 0 b

1
ln ln

2 2 2 R

R R

R R

R
V V d dR R R

R

  
  

         E


 l  

 
17. (a) The width of the end of a finger is about 1 cm, and so consider the fingertip to be a part of a  

sphere of diameter 1 cm.  We assume that the electric field at the radius of the sphere is the 
minimum value that will produce breakdown in air.  We use the same approach as in Examples 
23-4 and 23-5. 

      6

surface 0 breakdown 0.005m 3 10 V m 15,000VV r E     

  Since this is just an estimate, we might expect anywhere from 10,000 V to 20,000 V. 

 (b) 
2

0
surface

0 0 0 0

1 1 4
 

4 4

Q r
V

r r

 
 

    

     12 2 2

5 20
surface

0

8.85 10  C /N m
15,000V 2.7 10 C m

0.005m
V

r









   


 

Since this is an estimate, we might say the charge density is on the order of 230 C m .  
 
18. We assume the field is uniform, and so Eq. 23-4b applies. 

7

9

0.10 V
1 10 V m

10 10 m

V
E

d 
   


 

 
19. (a) The electric field outside a charged, spherically symmetric volume is the same as that for a  

point charge of the same magnitude of charge.  Integrating the electric field from infinity to the 
radius of interest will give the potential at that radius. 

      0 02 2

0 0 0 0

  ;  
4 4 4 4

rrQ Q Q Q
E r r V r r dr

r r r r    

        

(b) Inside the sphere the electric field is obtained from Gauss’s Law using the charge enclosed by a 
sphere of radius r. 

    
34

2 3
03 34

30 0 0 0

4     
4

Q r Qr
r E E r r

r r




  
     

Integrating the electric field from the surface to 0r r  gives the electric potential inside the 

sphere. 

           
0 0

2 2

0 0 3 3 2

0 0 0 0 0 0 0 0 0

3
4 4 8 8

rr

r r

Qr Q Qr Q r
V r r V r dr

r r r r r   
      

 
 
 

  

 (c) To plot, we first calculate  0 0

0 04

Q
V V r r

r
    and  0 0 2

0 04
.

Q
E E r r

r
     Then we plot  

0V V  and 0E E as functions of 0 .r r  
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For 0 :r r  

2

2 2 3
0 0 0 0 01

0 02 2

0 0
2

0 0 0 0

3
8 4

3  ; 

4 4

Q r Qr

r r r rr
V V E E

Q Qr r
r r

 

 



    

 
    

 
 

 

For 0 :r r     
22

1 20 00 0
0 0 0 02

2

0 0 0 0

4 4
  ;  

4 4

Q Q

r rr r
V V r r E E r r

Q Qr r
r r

 

 

        

 
The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH23.XLS,” on tab 
“Problem 23.19c.” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20. We assume the total charge is still Q, and let 2

E .kr    We evaluate the constant k by calculating 

the total charge, in the manner of Example 22-5. 

   
0

2 2 54
E 05 5

00

5
4     

4

r
Q

Q dV kr r dr k r k
r

  


       

 (a) The electric field outside a charged, spherically symmetric volume is the same as that for a  
point charge of the same magnitude of charge.  Integrating the electric field from infinity to the 
radius of interest gives the potential at that radius. 

      0 02 2

0 0 0 0

  ;  
4 4 4 4

rrQ Q Q Q
E r r V r r dr

r r r r    

        

(b) Inside the sphere the electric field is obtained from Gauss’s Law using the charge enclosed by a 
sphere of radius r. 

    
5

2 2 2 5encl 4
encl E 55 5 5

0 0 0 00

5 5
4   ;  4   
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  
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    
3

encl
0 2 5

0 0 04 4

Q Qr
E r r

r r 
    

Integrating the electric field from the surface to 0r r  gives the electric potential inside the 

sphere. 

           
0 0

3 4 4

0 0 5 5 4

0 0 0 0 0 0 0 0 0

5
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rr

r r

Qr Q Qr Q r
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r r r r r   
      

 
 
 

  

(c) To plot, we first calculate  0 0

0 04

Q
V V r r

r
    and  0 0 2

0 04
.

Q
E E r r

r
     Then we plot  

0V V  and 0E E as functions of 0 .r r  

For 0 :r r  

4 3

4 4 35
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0 0
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5
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4 4

Q r Qr

r r r rr
V V E E

Q Qr r
r r

 

 



    

 
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For 0 :r r     
22

1 20 00 0
0 0 0 02

2

0 0 0 0

4 4
  ;  

4 4

Q Q

r rr r
V V r r E E r r

Q Qr r
r r

 

 

        

 
The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH23.XLS,” on tab 
“Problem 23.20c.” 
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21. We first need to find the electric field.  Since the charge distribution is spherically symmetric, 
Gauss’s law tells us the electric field everywhere. 

   2

2

0 0

encl encl1
4     

4

Q Q
d E r E

r


 
    E A


  

 If 0,r r calculate the charge enclosed in the manner of Example 22-5. 
2 4 3 5

2 2

encl E 0 0 02 2 2

0 0 00 0

1 4 4 4
3 5

r rr r r r
Q dV r dr r dr

r r r
          

     
     
     

    

The total charge in the sphere is the above expression evaluated at 0.r r  
3 5 3

0 0 0 0
total 0 2

0

8
4

3 5 15

r r r
Q

r


  

 
 
 

 

Outside the sphere, we may treat it as a point charge, and so the potential at the surface of the sphere 
is given by Eq. 23-5, evaluated at the surface of the sphere. 

 

3

0 0
2

total 0 0
0

0 0 0 0 0

8
1 1 215

4 4 15

r
Q r

V r r
r r




  
     

The potential inside is found from Eq. 23-4a.  We need the field inside the sphere to use Eq. 23-4a.  

The field is radial, so we integrate along a radial line so that .d EdrE


 l  

 

3 5

0 2 3
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4
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        
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  E


 l

 
 
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22. Because of the spherical symmetry of the problem, the electric field in each region is the same as that 

of a point charge equal to the net enclosed charge. 

(a) For 
3
2encl

2 2 2 2

0 0 0

1 1 3
:   

4 4 8

Q Q Q
r r E

r r r  
     

 For 21 :   0 ,r r r E  because the electric field is 0 inside of conducting material. 

 For 
1
2encl

1 2 2 2

0 0 0

1 1 1
0 :   

4 4 8

Q Q Q
r r E

r r r  
      

 (b) For 2r r , the potential is that of a point charge at the center of the sphere. 

   
3
2

2

0 0 0

1 1 3

4 4 8
, 

Q Q Q
V r r

r r r  
    
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(c) For 21r r r , the potential is constant and equal to its value on the outer shell, because there is 

no electric field inside the conducting material. 

    2 1 2

0 2

3

8
, 

Q
V V r r r r r

r
      

(d) For 10 r r  , we use Eq. 23-4a.  The field is radial, so we integrate along a radial line so that 

.d EdrE


 l  

  

1
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  

        

       

 
 
 

     
     

     

  E

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 (e) To plot, we first calculate  0 2

0 2

3

8

Q
V V r r

r
    and  0 2 2

0 2

3

8
.

Q
E E r r

r
     Then we plot  

0V V  and 0E E as functions of 2 .r r  

  For 10 r r  :     
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  For 2r r :     
22

1 22 20 0
2 22

0 0
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8 8
 ; 
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The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH23.XLS,” on tab 
“Problem 23.22e.” 
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r /r 2

E
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23. The field is found in Problem 22-33.  The field inside the cylinder is 0, and the field outside the 

cylinder is 0

0

.
R

R




 

(a) Use Eq. 23-4a to find the potential.  Integrate along a radial line, so that .d EdRE


 l  

  

0

0 0 0

0 0

0 0 0

0
0 0

0 0

ln   

ln ,  

R R R

R R

R R R

R

R R R
V V d E dR dR

R R

R R
V V R R

R

 
 




         

  

  E


 l

 

(b) The electric field inside the cylinder is 0, so the potential inside is constant and equal to the  

potential on the surface, 0 .V  

(c) No, we are not able to assume that 0V   at .R     0V   because there would be charge at 
infinity for an infinite cylinder.  And from the formula derived in (a), if ,R   .RV    

 
24. Use Eq. 23-5 to find the charge. 

        9

0 9 2 2

0

1 1
   4 0.15 m 185V 3.1 10 C

4 8.99 10 N m C

Q
V Q rV

r



     


 
 
 

 

 
25. (a) The electric potential is given by Eq. 23-5. 

    
19

9 2 2

10

0

1 1.60 10 C
8.99 10 N m C 28.77 V 29V

4 0.50 10 m

Q
V

r






    


  

(b) The potential energy of the electron is the charge of the electron times the electric potential due 
to the proton. 

   19 181.60 10 C 28.77V 4.6 10 JU QV           

 
26. (a) Because of the inverse square nature of the electric  

field, any location where the field is zero must be 
closer to the weaker charge  2q .  Also, in between the 

two charges, the fields due to the two charges are parallel to each other (both to the left) and 
cannot cancel.  Thus the only places where the field can be zero are closer to the weaker charge, 

  dx

1 0q 2 0q 
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but not between them.  In the diagram, this is the point to the left of 2.q   Take rightward as the 

positive direction.  

 
 

 

2 22 1
2 122

0 0

6
2

26 6
1 2

1 1
0      

4 4

2.0 10 C
5.0cm 16cm left of 

3.4 10 C 2.0 10 C

q q
E q d x q x

x d x

q
x d q

q q

 



 

      



  

   

 

(b) The potential due to the positive charge is positive  
everywhere, and the potential due to the negative 
charge is negative everywhere.  Since the negative 
charge is smaller in magnitude than the positive charge, 
any point where the potential is zero must be closer to the negative charge.  So consider 
locations between the charges (position 1x ) and to the left of the negative charge (position 2x ) 

as shown in the diagram. 
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
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
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      

   

   


 
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 

 
 
 

 
 
 

 

So the two locations where the potential is zero are 1.9 cm from the negative charge towards the 
positive charge, and 7.1 cm from the negative charge away from the positive charge. 

 
27. The work required is the difference in the potential energy of the charges, calculated with the test 

charge at the two different locations.  The potential energy of a pair of charges is given in Eq. 23-10 

as 
0

1

4

qQ
U

r
 .  So to find the work, calculate the difference in potential energy with the test 

charge at the two locations.  Let Q represent the 25 C  charge, let q represent the 0.18 C  test 
charge, D represent the 6.0 cm distance, and let d represent the 1.0 cm distance. Since the potential 
energy of the two 25 C charges doesn’t change, we don’t include it in the calculation. 
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An external force needs to do positive work to move the charge. 

  d
1x2x

1 0q 2 0q 
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28. (a) The potential due to a point charge is given by Eq. 23-5. 

   

ba b a

0 b 0 a 0 b a
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      

 
 
 
 
 
 



 

 (b) The magnitude of the electric field due to a point  
charge is given by Eq. 21-4a.  The direction of the 
electric field due to a negative charge is towards the 
charge, so the field at point a will point downward, and 
the field at point b will point to the right.  See the 
vector diagram. 
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29. We assume that all of the energy the proton gains in being accelerated by the 

voltage is changed to potential energy just as the proton’s outer edge reaches the 
outer radius of the silicon nucleus.   
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30. By energy conservation, all of the initial potential energy of the charges will change to kinetic energy 

when the charges are very far away from each other.  By momentum conservation, since the initial 
momentum is zero and the charges have identical masses, the charges will have equal speeds in 
opposite directions from each other as they move.  Thus each charge will have the same kinetic 
energy. 
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31. By energy conservation, all of the initial potential energy will change to kinetic energy of the 
electron when the electron is far away.  The other charge is fixed, and so has no kinetic energy.  
When the electron is far away, there is no potential energy. 
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32. Use Eq. 23-2b and Eq. 23-5. 
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      

   

   
   
   

   
   
   

 

 
33. (a) For every element dq as labeled in Figure  

23-14 on the top half of the ring, there 
will be a diametrically opposite element 
of charge –dq.  The potential due to those 
two infinitesimal elements will cancel 
each other, and so the potential due to the 
entire ring is 0. 

 (b) We follow Example 21-9 from the  
textbook.  But because the upper and 
lower halves of the ring are oppositely 
charged, the parallel components of the 
fields from diametrically opposite infinitesimal segments of the ring will cancel each other, and 

the perpendicular components add, in the negative y direction.  We know then that 0 .xE   
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Note that for ,x R  this reduces to 
3

0

ˆ,
4

Q R

x
 E j


which has the typical distance dependence 

for the field of a dipole, along the axis of the dipole. 
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34. The potential at the corner is the sum of the potentials due to each of the charges, using Eq. 23-5. 

  
     

0 0 0 0 0

3 21 1 1 1 1 1 2
1 2 1

4 4 4 4 4 22 2

Q QQ Q Q
V

    


       
 
 l l l ll

 

 
35. We follow the development of Example 23-9, with Figure 23-15.  The charge on a thin ring of radius 

R and thickness dR is  2 .dq dA RdR      Use Eq. 23-6b to find the potential of a continuous 

charge distribution. 
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
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 

   
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36. All of the charge is the same distance from the center of the semicircle – the radius of the semicircle.  

Use Eq 23-6b to calculate the potential. 

  0 0

0 0 0 0
0

1 1
      ;  

4 4 44

dq Q Q
r r V dq

r r


   


       
l

l
l l

 

 
37. The electric potential energy is the product of the point charge and the electric potential at the 

location of the charge.   Since all points on the ring are equidistant from any point on the axis, the 
electric potential integral is simple. 

2 2 2 2 2 2

0 0 04 4 4

dq q qQ
U qV q dq

r x r x r x  
   

  
   

Energy conservation is used to obtain a relationship between the potential and kinetic energies at the 
center of the loop and at a point 2.0 m along the axis from the center. 
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1
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This is equation is solved to obtain the velocity at x = 2.0 m. 
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38. Use Eq. 23-6b to find the potential of a continuous charge 
distribution.  Choose a differential element of length dx  at position 

x  along the rod.  The charge on the element is ,
2

Q
dq dx

l
and the 

element is a distance 2 2r x y   from a point on the y axis.  Use 

an indefinite integral from Appendix B-4, page A-7. 

  axis 2 2
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1 1 2
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y
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V
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

            

l

l

l l

l l l l

 

 
39. Use Eq. 23-6b to find the potential of a continuous charge 

distribution.  Choose a differential element of length dx  at 
position x  along the rod.  The charge on the element is 

,
2

Q
dq dx

l
and the element is a distance x x  from a point 

outside the rod on the x axis.   

     
0 0 0 0

1 1 12 ln ln , 
4 4 4 2 8

Q
dxdq Q Q x

V x x x
r x x x   




      

 
  

     
l

l

l

l

ll l
l l l

 

 
40. For both parts of the problem, use Eq. 23-6b to find the potential of a continuous charge distribution.  

Choose a differential element of length dx  at position x  along the rod.  The charge on the element 
is .dq dx ax dx      

(a) The element is a distance 2 2r x y   from a point on the y 

axis. 
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1 1
0

4 4

dq ax dx
V

r x y  

 
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The integral is equal to 0 because the region of integration is 
“even” with respect to the origin, while the integrand is “odd.”  
Alternatively, the antiderivative can be found, and the integral 
can be shown to be 0.  This is to be expected since the potential 
from points symmetric about the origin would cancel on the y axis. 

 
 (b) The element is a distance x x  from a point outside  

the rod on the x axis. 
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  A substitution of z x x  can be used to do the integration. 

r 
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41. We follow the development of Example 23-9, with Figure 23-15.  The charge on a thin ring of radius 

R and thickness dR will now be    2 2 .dq dA aR RdR     Use Eq. 23-6b to find the potential of 

a continuous charge distribution. 
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 A substitution of 2 2 2x R u  can be used to do the integration. 
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42. 
 
 
 
 
 
 
 
 
43. The electric field from a large plate is uniform with magnitude 02 ,E    with the field pointing 

away from the plate on both sides.   Equation 23-4(a) can be integrated between two arbitrary points 
to calculate the potential difference between those points. 

1
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0 1

0 0

( )

2 2

x

x

x x
V dx

 
 


     

Setting the change in voltage equal to 100 V and solving for 0 1x x  gives the distance between field 

lines. 
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44. The potential at the surface of the sphere is 0

0 0

1
.

4

Q
V

r
   The potential outside the sphere is  

0
0

0

1
,

4

Q r
V V

r r
   and decreases as you move away from the surface.  The difference in potential 

between a given location and the surface is to be a multiple of 100 V. 
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V
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V
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
  

Note that to within the appropriate number of significant figures, this location is at the 
surface of the sphere.  That can be interpreted that we don’t know the voltage well enough 
to be working with a 100-V difference. 
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  (c) 
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45. The potential due to the dipole is given by Eq. 23-7. 
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46. (a) We assume that 1p


 and 2p


 are equal in magnitude, and that each makes a 52  angle with p


.   

The magnitude of 1p


 is also given by 1p qd , where q  is the net charge on the hydrogen 

atom, and d is the distance between the H and the O. 
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  This is about 0.32 times the charge on an electron. 
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(b) Since we are considering the potential far from the 
dipoles, we will take the potential of each dipole to be 
given by Eq. 23-7.  See the diagram for the angles 

involved.  From part (a), 1 2 .
2cos52

p
p p 


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47. 
2 2

0 0 0 0

1 1 1 1

4 4 4 4

dV d q q d q q
E

dr dr r dr r r r   
         

     
         

 

 
48. The potential gradient is the negative of the electric field.  Outside of a spherically symmetric charge 

distribution, the field is that of a point charge at the center of the distribution. 
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49. The electric field between the plates is obtained from the negative derivative of the potential. 

 (8.0 V/m)   5.0 V 8.0 V/m
dV d

E x
dx dx

        

The charge density on the plates (assumed to be conductors) is then calculated from the electric field 
between two large plates, 0/ .E    
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The plate at the origin has the charge 11 27.1 10 C/m   and the other plate, at a positive x, has charge 
11 27.1 10 C/m   so that the electric field points in the negative direction. 

 
50. We use Eq. 23-9 to find the components of the electric field. 
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51. We use Eq. 23-9 to find the components of the electric field. 

  

     

2.5 3.5   ;  2 2.5 3.5  ; 3.5

ˆ ˆ ˆ2.5 3.5 2 2.5 3.5 3.5

x y z

V V V
E y yz E y x xz E xy

x y z

y yz y x xz xy

  
             

  

       E i j k


 

 
52. We use the potential to find the electric field, the electric field to find the force, and the force to find 

the acceleration. 

  

         
6

22 3 2

5

  ;    ;  

2.0 10 C
2.0 m 2 2.0 V m 2.0 m 3 3.0 V m 2.0 m 1.1m s

5.0 10 kg

x x
x x x x

x

V F qE q V q V
E F qE a

x m m m x m x

a x




  
        

  


    


  

 

 
53. (a) The potential along the y axis was derived in Problem 38. 

   

   
   

2 2
2 2 2 2

axis 2 2
0 0

1/ 2 1/ 22 2 2 21 1
2 2

2 2 2 2 2 2
0 0

ln ln ln
8 8

2 2

8 4

y

y

yQ Q
V y y

y

y y y yV Q Q
E

y y y y y

 

 

 

 
      

 

 
     

     

            
 
 
  

l l
l l l l

l ll l

l l

l l l l l l

 

  From the symmetry of the problem, this field will point along the y axis. 

   
2 2

0

1 ˆ
4

Q

y y



E j

l


 

  Note that for ,y l  this reduces to the field of a point charge at the origin. 
(b) The potential along the x axis was derived in Problem 39. 

  

    axis

0 0

2 2

0 0

ln ln ln
8 8

1 1 1

8 4

x

x

Q x Q
V x x

x

V Q Q
E

x x x x

 

 


    




     

   

  
    

   
     

l
l l

l l l

l l l l

 

  From the symmetry of the problem, this field will point along the x axis. 

  
2 2

0

1 ˆ
4

Q

x



 
 
 

E i
l


 

  Note that for ,x l  this reduces to the field of a point charge at the origin. 
 
54. Let the side length of the equilateral triangle be L.  Imagine bringing the 

electrons in from infinity one at a time.  It takes no work to bring the first 
electron to its final location, because there are no other charges present.  
Thus  1 0W  .  The work done in bringing in the second electron to its 

final location is equal to the charge on the electron times the potential 
(due to the first electron) at the final location of the second electron.  

Thus  
2

2

0 0

1 1

4 4

e e
W e

L 
   

 
 
 l

.  The work done in bringing the third electron to its final  

l

e e

e

l

l



Physics for Scientists & Engineers with Modern Physics, 4th Edition Instructor Solutions Manual 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

86 

location is equal to the charge on the electron times the potential (due to the first two electrons).  

Thus  
2

3

0 0 0

1 1 1 2

4 4 4

e e e
W e

  
    

 
 
 l l l

.  The total work done is the sum 1 2 3W W W  . 

   
 

29 2 2 192 2 2

1 2 3 10

0 0 0

18 18

19

3 8.99 10 N m C 1.60 10 C1 1 2 1 3
0

4 4 4 1.0 10 m

1eV
   6.9 10 J 6.9 10 J 43eV

1.60 10 J

e e e
W W W W

  





 



 
       



    


 
 
 

l l l



 

 
55. The gain of kinetic energy comes from a loss of potential energy due to conservation of energy, and  

the magnitude of the potential difference is the energy per unit charge.  The helium nucleus has a 
charge of 2e.   

 
3125 10 eV

62.5kV
2

U K
V

q q e

  
         

 The negative sign indicates that the helium nucleus had to go from a higher potential to a lower 
potential. 

 
56. The kinetic energy of the particle is given in each case.  Use the kinetic energy to find the speed. 

 (a) 
   19

2 71
2 31

2 1500eV 1.60 10 J eV2
    2.3 10 m s

9.11 10 kg

K
mv K v

m






     


 

 (b) 
   19

2 51
2 27

2 1500eV 1.60 10 J eV2
    5.4 10 m s

1.67 10 kg

K
mv K v

m






     


 

 
57. The potential energy of the two-charge configuration (assuming they are both point charges) is given 

by Eq. 23-10. 

  

   

2

1 2

0 0

2

final initial

0 initial final

29 2 2 19

9 9 19

1 1

4 4

1 1

4

1 1 1eV
8.99 10 N m C 1.60 10 C

0.110 10 m 0.100 10 m 1.60 10 J

1.31eV

Q Q e
U

r r

e
U U U

r r

 





  

  

    

   
  

 

 
 
 

  
  
  



 

Thus 1.3 eV of potential energy was lost. 
 
58. The kinetic energy of the alpha particle is given.  Use the kinetic energy to find the speed. 

  
   6 19

2 71
2 27

2 5.53 10 eV 1.60 10 J eV2
    1.63 10 m s

6.64 10 kg

K
mv K v

m





 
     


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59. Following the same method as presented in Section 23-8, we get the following results. 
 (a) 1 charge:  No work is required to move a single charge into a position, so 1 0.U   

 2 charges: This represents the interaction between 1Q  and 2.Q  

1 2

0 12

2

1

4

Q Q
U

r
   

3 charges:  This now adds the interactions between 1 3&Q Q  and 2 3& .Q Q  

1 2 1 3 2 3

0 12 13 23

3

1

4

Q Q Q Q Q Q
U

r r r


 
  

 
  

 4 charges: This now adds the interaction between 1 4& ,Q Q  2 4& ,Q Q  and 3 4& .Q Q  

  1 2 1 3 1 4 2 3 2 4 3 4

0 12 13 14 23 24 34

4

1

4

Q Q Q Q Q Q Q Q Q Q Q Q
U

r r r r r r


 
     

 
 

 
 
 
 
 
 
 
 
 
 

(b) 5 charges: This now adds the interaction between 1 5& ,Q Q  2 5& ,Q Q  3 5& ,Q Q and 4 5& .Q Q  

  1 2 1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5 4 5

0 12 13 14 15 23 24 25 34 35 45

5

1

4

Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
U

r r r r r r r r r r


 
         

 
 

 
 
  
 
 
 
 
 
 
 
 
60. (a) The potential energy of the four-charge configuration was derived in Problem 59.  Number the  

charges clockwise, starting in the upper right hand corner of the square. 

   

 
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

 
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 
 
 
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 
 
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(b) The potential energy of the fifth charge is due to the interaction between the fifth charge and 
each of the other four charges.  Each of those interaction terms is of the same magnitude since 
the fifth charge is the same distance from each of the other four charges. 

    
2

5th
charge 0

4 2
4

Q
U

b
  

(c) If the center charge were moved away from the center, it would be moving closer to 1 or 2 of 
the other charges.  Since the charges are all of the same sign, by moving closer, the center 
charge would be repelled back towards its original position.  Thus it is in a place of stable 
equilibrium. 

 (d) If the center charge were moved away from the center, it would be moving closer to 1 or 2 of  
the other charges.  Since the corner charges are of the opposite sign as the center charge, the 
center charge would be attracted towards those closer charges, making the center charge move 
even farther from the center.  So it is in a place of unstable equilibrium. 

 
61. (a) The electron was accelerated through a potential difference of 1.33 kV (moving from low  

potential to high potential) in gaining 1.33 keV of kinetic energy.  The proton is accelerated 
through the opposite potential difference as the electron, and has the exact opposite charge.  
Thus the proton gains the same kinetic energy,  1.33 keV . 

 (b) Both the proton and the electron have the same KE.  Use that to find the ratio of the speeds. 

   
27

p2 2 e1 1
p p e e2 2 31

p

1.67 10 kg
    42.8

9.11 10 kge

mv
m v m v

v m






    


  

  The lighter electron is moving about 43 times faster than the heavier proton. 
 
62. We find the energy by bringing in a small amount of charge at a time, similar to the method given  

in Section 23-8.  Consider the sphere partially charged, with charge q < Q.  The potential at the 

surface of the sphere is 
0 0

1
,

4

q
V

r
  and the work to add a charge dq to that sphere will increase the 

potential energy by .dU Vdq   Integrate over the entire charge to find the total potential energy. 

  
2

0 0 0 00

1 1

4 8

Q q Q
U dU dq

r r 
     

 
63. The two fragments can be treated as point charges for purposes of calculating their potential energy.  

Use Eq. 23-10 to calculate the potential energy.  Using energy conservation, the potential energy is 
all converted to kinetic energy as the two fragments separate to a large distance. 

         
   

1 2
initial final initial final

0

219

9 2 2 6

15 15 19

1
    

4

38 54 1.60 10 C 1eV
   8.99 10 N m C 250 10 eV

5.5 10 m 6.2 10 m 1.60 10 J

   250 MeV

q q
E E U K V

r


  

   


   

   



 
 
 

  

This is about 25% greater than the observed kinetic energy of 200 MeV. 
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64. We find the energy by bringing in a small amount of spherically symmetric charge at a time, similar 
to the method given in Section 23-8.  Consider that the sphere has been partially constructed, and so 
has a charge q < Q, contained in a radius 0.r r   Since the sphere is made of uniformly charged 

material, the charge density of the sphere must be E 34
3 0

.
Q

r



   Thus the partially constructed sphere 

also satisfies E 4
3

3
,

q

r



  and so 

3

3 3 34 4
3 3 0 0

   .
q Q Qr

q
r r r 

     The potential at the surface of that 

sphere can now found. 

 

3

23

0

3

0 0 0 0

1 1 1

4 4 4

Qr

q Qrr
V

r r r  
    

We now add another infinitesimally thin shell to the partially constructed sphere.  The charge of that 

shell is 2

E 4 .dq r dr    The work to add charge dq to the sphere will increase the potential energy 

by .dU Vdq   Integrate over the entire sphere to find the total potential energy. 

   
0 02 2

2 4E
E3 3

0 0 0 0 0 00 0

1 3
4

4 20

r r
Qr Q Q

U dU Vdq r dr r dr
r r r


 

  
         

 

65. The ideal gas model, from Eq. 18-4, says that 2 31
rms2 2 .K mv kT   

  

   

   

23

2 531
rms rms2 2 31

273 K

23

5

rms 31
2700 K

3 1.38 10 J K 273K3
    1.11 10 m s

9.11 10 kg

3 1.38 10 J K 2700 K3
3.5 10 m s

9.11 10 kg

kT
K mv kT v

m

kT
v

m










      




   



  

 
66. If there were no deflecting field, the electrons would hit the 

center of the screen.  If an electric field of a certain direction 
moves the electrons towards one extreme of the screen, then the 
opposite field will move the electrons to the opposite extreme 
of the screen.  So we solve for the field to move the electrons to 
one extreme of the screen.  Consider three parts to the 

electron’s motion, and see the diagram, which is a top view.  
First, during the horizontal acceleration phase, energy will be 
conserved and so the horizontal speed of the electron xv  can 

be found from the accelerating potential V .  Secondly, during the deflection phase, a vertical force 
will be applied by the uniform electric field which gives the electron a leftward velocity, yv .  We 

assume that there is very little leftward displacement during this time.  Finally, after the electron 
leaves the region of electric field, it travels in a straight line to the left edge of the screen. 

Acceleration:  

   21
initial final 2

2
        x x

eV
U K eV mv v

m
       

 
 

E


field 2.6 cmx 

xv

screen  14cmy 

screen 34cmx 
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  Deflection: 

   

field
field field field

field
0 field

time in field:      

         0

x

x

y y y y y

x

x
x v t t

v

eE xeE
F eE ma a v v a t

m mv


   


       

 

  Screen: 

   screen screen
screen screen screen screen screen         x y y

x x

x x
x v t t y v t v

v v

 
        

   

field

screen field

2

screen

 y x

x x x

eE x

vy mv eE x

x v v mv


 

   


 

   
   
   

32 screen
screen screen

screen field screen field screen field

5 5

2
2 6.0 10 V 0.14 m2

0.34 m 0.026 m

   1.90 10 V m 1.9 10 V m

x

eV
y my mv V ymE

x e x x e x x x

  
   
     

   

 

 As a check on our assumptions, we calculate the upward distance that the electron would move while 
in the electric field. 

  

   

  
 

2 2 2

2 field fieldfield1 1
0 field field2 2

25

3

0
2 42

1.90 10 V m 0.026 m
    5.4 10 m

4 6000 V

y

x

eE x E xeE x
y v t a t

eVm v Vm
m



 
      


  

  
        

   

 This is about 4% of the total 15 cm vertical deflection, and so for an estimation, our approximation is 

acceptable.  And so the field must vary from 5 51.9 10 V m  to 1.9 10 V m     

 
67. Consider three parts to the electron’s motion.  First, during the 

horizontal acceleration phase, energy will be conserved and so 
the horizontal speed of the electron xv  can be found from the 

accelerating potential, V .  Secondly, during the deflection 
phase, a vertical force will be applied by the uniform 

electric field which gives the electron an upward velocity, yv .  

We assume that there is very little upward displacement during this time.  Finally, after the electron 
leaves the region of electric field, it travels in a straight line to the top of the screen. 

  Acceleration:  

   21
initial final 2

2
        x x

eV
U K eV mv v

m
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  Deflection: 

   

field
field field field

field
0 field

time in field:      

         0

x

x

y y y y y

x

x
x v t t

v

eE xeE
F eE ma a v v a t

m mv


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
       

 

  Screen: 

   screen screen
screen screen screen screen screen         x y y
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x x
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v v

 
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2
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   
   

2 screen
screen screen

screen field screen field screen field

5 5

2
2 7200 V 0.11m2

0.22 m 0.028m
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x

eV
y my mv V ymE

x e x x e x x x

 
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     
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 As a check on our assumptions, we calculate the upward distance that the electron would move while 
in the electric field. 
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2 field fieldfield1 1
0 field field2 2

25

3

0
2 42

2.97 10 V m 0.028m
    8.1 10 m

4 7200 V

y

x

eE x E xeE x
y v t a t

eVm v Vm
m



 
      


  

  
        

   

 This is about 7% of the total 11 cm vertical deflection, and so for an estimation, our approximation is 
acceptable. 

 
68. The potential of the earth will increase because the “neutral” Earth will now be charged by the 

removing of the electrons.  The excess charge will be the elementary charge times the number of 
electrons removed.  We approximate this change in potential by using a spherical Earth with all the 
excess charge at the surface. 

  

 

 

19 23
34

33

2

9 2 2 6

6

0 Earth

1.602 10 C 10 6.02 10 molecules 1000 kg
0.00175m

H O molecule 0.018 kg m

1203C

1 1203C
8.99 10 N m C 1.7 10 V

4 6.38 10 m

e
Q

e

Q
V

R





 



 




    


     
          



 

 
69. The potential at the surface of a charged sphere is that of a point charge of the same magnitude, 

located at the center of the sphere. 

     
 

8

9 2 2

0

1 10 C1
8.99 10 N m C 599.3V 600 V

4 0.15m

q
V

r


      
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70.
  
 
 
 
 
 
 
 
 
  
  
 
71. Let 1d  represent the distance from the left charge to point b, and let 2d  represent the distance from 

the right charge to point b.  Let Q represent the positive charges, and let q represent the negative 
charge that moves.  The change in potential energy is given by Eq. 23-2b. 

  

 

2 2 2 2

1 2

b a b a

0

0

12 14 cm 18.44 cm          14 24 cm 27.78 cm

1

4 0.1844 m 0.2778m 0.12 m 0.24 m

1 1 1 1 1
             

4 0.1844 m 0.2778m 0.12 m 0.24 m

          

d d

Q Q Q Q
U U q V V q

Qq





     

      

   

    
   
    

    
   
    

      9 2 2 6 6 1   8.99 10 N m C 1.5 10 C 33 10 C 3.477 m 1.547 J 1.5J         

 

 
72. (a) All eight charges are the same distance from the center of the cube.  Use Eq. 23-5 for the  

potential of a point charge. 

   center

0 0 0

1 16 1 1
8 9.24

4 4 43 3

2

Q Q Q
V

  
  

l l
l

    

(b) For the seven charges that produce the potential at a corner, three are a distance l  away from  

that corner, three are a distance 2l  away from that corner, and one is a distance 3l away 
from that corner.  

  corner

0 0 0 0 0

1 1 1 3 1 1 1
3 3 3 5.70

4 4 4 4 42 3 2 3

Q Q Q Q Q
V

    
       

 
 l l ll l

 

(c) The total potential energy of the system is half the energy found by multiplying each charge  
times the potential at a corner.  The factor of half comes from the fact that if you took each 
charge times the potential at a corner, you would be counting each pair of charges twice. 

   
2 2

1
corner2

0 0

3 1 1 1
8 4 3 22.8

4 42 3

Q Q
U QV

 
     

 
  l l
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73. The electric force on the electron must be the same magnitude as the weight of the electron.  The 
magnitude of the electric force is the charge on the electron times the magnitude of the electric field.  
The electric field is the potential difference per meter:  E V d . 

       
E E

31 2

12

19

  ;        

9.11 10 kg 9.80 m s 0.035m
2.0 10 V

1.60 10 C

F mg F q E eV d eV d mg

mgd
V

e







     


   



 

 Since it takes such a tiny voltage to balance gravity, the thousands of volts in a television set are 
more than enough (by many orders of magnitude) to move electrons upward against the force of 
gravity. 

 
74. From Problem 59, the potential energy of a configuration of four  

charges is 1 2 1 3 1 4 2 3 2 4 3 4

0 12 13 14 23 24 34

1

4
.

Q Q Q Q Q Q Q Q Q Q Q Q
U

r r r r r r
     

 
 
 

 

Let a side of the square be l, and number the charges clockwise starting 
with the upper left corner. 

  1 2 1 3 1 4 2 3 2 4 3 4

0 12 13 14 23 24 34

1

4

Q Q Q Q Q Q Q Q Q Q Q Q
U

r r r r r r
     

 
 
 

 

                 

   
0

262
9 2 2

0

2 3 2 2 3 2 2 3 21
   

4 2 2

3.1 10 C1 1
   8 8.99 10 N m C 8 7.9J

4 0.080m2 2

Q Q Q Q Q Q Q Q Q Q Q Q

Q







  
     


      

 
 
 

   
   
   

l l l ll l

l


 

 
75. The kinetic energy of the electrons (provided by the UV light) is converted completely to potential 

energy at the plate since they are stopped.  Use energy conservation to find the emitted speed, taking 
the 0 of PE to be at the surface of the barium. 

    

21
initial final 2

19

6

31

KE PE       

2 1.60 10 C 3.02 V2
1.03 10 m s

9.11 10 kg

mv qV

qV
v

m





   

  
   



 

 
76. To find the angle, the horizontal and vertical components of the velocity are needed.  The horizontal 

component can be found using conservation of energy for the initial acceleration of the electron.  
That component is not changed as the electron passes through the plates.  The vertical component 
can be found using the vertical acceleration due to the potential difference of the plates, and the time 
the electron spends between the plates. 

  Horizontal: 

   21
inital final 2

PE KE              x

x

x
qV mv t

v


     

  Vertical: 

   
 0

E     
y y y y

y y

x

v v qE t qE x
F qE ma m v

t m mv

 
       

 
 

+ 

Q 2Q

-3Q2Q 
–

l+ +

l

l l
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  Combined: 

   

 

 2

1

250 V
0.065m

0.013m
tan 0.1136

2 2 2 5500 V

tan 0.1136 6.5

y

y y y yx

x x x

qE x

v qE x qE x E xmv

v v mv qV V


 


  

      

  

 
 
 

 

 
77. Use Eq. 23-5 to find the potential due to each charge.  Since the triangle is 

equilateral, the 30-60-90 triangle relationship says that the distance from a 

corner to the midpoint of the opposite side is 3 2l . 

  

     

     

A

0 0 0 0

0

B

0 0 0 0 0

31 1 1 1 2 1
4

4 2 4 2 4 43 2 3

3
2

6

31 1 1 1 6 3

4 2 4 2 4 4 23 2 3

Q Q Q Q
V

Q

Q Q Q Q Q
V

   



    

 
     

 

 
      

 
 
 

 
 
 

l l ll

l

l l ll l

 

  
     

C

0 0 0 0 0

31 1 1 1 2 1 3
2 1

4 2 4 2 4 4 63 2 3

Q Q Q Q Q
V

    
 

        
  
  

   l l l ll
 

 
78. Since the E-field points downward, the surface of the Earth is a lower potential than points above the 

surface.  Call the surface of the Earth 0 volts.  Then a height of 2.00 m has a potential of 300 V.   We 
also call the surface of the Earth the 0 location for gravitational PE.  Write conservation of energy 
relating the charged spheres at 2.00 m (where their speed is 0) and at ground level (where their 
electrical and gravitational potential energies are 0). 

  

       
 

21
initial final 2

4

2

        2

4.5 10 C 300 V
2 9.80 m s 2.00 m 6.3241m s

0.340 kg

qV
E E mgh qV mv v gh

m

v




      


  

 
 
 

 
 
  

 

  
       

 

4

2
4.5 10 C 300 V

2 9.80 m s 2.00 m 6.1972 m s
0.340 kg

6.3241m s 6.1972 m s 0.13m s

v

v v





 

 
  

   

 
 
    

 
79. (a) The energy is related to the charge and the potential difference by Eq. 23-3. 

   
6

64.8 10 J
    1.2 10 V

4.0C

U
U q V V

q

 
          

 (b) The energy (as heat energy) is used to raise the temperature of the water and boil it.  Assume  
that room temperature is 20oC. 

   f   Q mc T mL     

A

B

C

Q Q

3Q
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 

6

5f

4.8 10 J
1.8kg

J J
4186 80C 22.6 10

kg C kg

Q
m

c T L


  

 
  


   
   
   

 

 
80. Use Eq. 23-7 for the dipole potential, and use Eq. 23-9 to determine the electric field. 

  

 
 

   
   

 

1/ 22 2

3 / 22 2 2 2 2
0 0 0

3 / 2 1/ 22 2 2 23 2 2
2

3 5 / 22 2 2 2
0 0

2 2

3

0

5 / 22 23
2 2

0 0

1 cos

4 4 4

2 2

4 4

2cos sin

4

3
2

4 4

x

y

x

x yp p p x
V

r x y x y

x y x x y xV p p x y
E

x x y x y

p

r

V px p xy
E x y y

y x


  

 

 


 



  

 

   
    

  





      

 

   
   
      

 
 
 

 
   5 / 2 32

0

3cos sin

4

p

ry

 


         

 

 Notice the 
3

1

r
dependence in both components, which is indicative of a dipole field. 

 
81. (a) Since the reference level is given as V = 0 at ,r    the potential outside the shell is that of a  

point charge with the same total charge. 

   
   3 3 3 34 4

E 2 1 2 13 3 E
2

0 0 0

1 1
, 

4 4 3

r r r rQ
V r r

r r r

   
  

 
      

  Note that the potential at the surface of the shell is 
2

3
2E 1

2

0 2

.
3

r

r
V r

r




 
 
 
 

 

(b) To find the potential in the region 1 2 ,r r r   we need the electric field in that region.  Since the 

charge distribution is spherically symmetric, Gauss’s law may be used to find the electric field. 

       3 3 3 34 4
3 3E 1 12 encl encl E

2 2 2

0 0 0 0

1 1
4     

4 4 3

r r r rQ Q
d E r E

r r r

   


   

 
      E A


  

The potential in that region is found from Eq. 23-4a.  The electric field is radial, so we integrate 

along a radial line so that .d EdrE


 l  

   

 
2

2 2 2 2 2

2

2

3 3 3 3
1 2E E 1 E 11

22 2

0 0 0

3 3 3
2 2 2 2 2E 1 E 1 E 131 1 1 1 1

2 2 12 2 2 2 6 3

0 0 0

3 3 3

, 
3 3

rr r r r

r r

r r r r r

r

r r

r

r r r r
V V d E dr dr r dr r

r r r

r r r
V V r r r r r r r

r r r

  
  

  
  


            

           

   
   
   

      
      

       

   E


 l

2r
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(c) Inside the cavity there is no electric field, so the potential is constant and has the value that it 
has on the cavity boundary. 

  
1

3
2 2 2 2E 1 E1 1 1

2 1 2 1 12 6 3

0 1 0

,  
2

r

r
V r r r r r r

r

 
 

     
 
 
 

 

The potential is continuous at both boundaries. 
 
82. We follow the development of Example 23-9, with Figure 23-15.  The charge density of the ring is 

 2 22 1
020 0

4
.

3

Q Q

RR R


 
 



 
 
 

  The charge on a thin ring of radius R and thickness dR is 

dq dA    
2

0

4
2 .

3

Q
RdR

R



  Use Eq. 23-6b to find the potential of a continuous charge 

distribution. 

  

 
 

 

0 0
0

1
1 1 02

0 02 2

2
1/ 22 20

2 22 2 2 2
0 0 0 0 0 0

2 2 2 21
0 042

0 0

4
2

1 1 2 23

4 4 3 3

2

3

R R R

R
R R

Q
RdR

dq Q R QR
V dR x R

r R Rx R x R

Q
x R x R

R




     

 

    
 

   

  
 

 
83. From Example 22-6, the electric field due to a long wire is radial relative to the wire, and is of 

magnitude 
0

1
.

2
E

R




   If the charge density is positive, the field lines point radially away from the 

wire.  Use Eq. 23-41 to find the potential difference, integrating along a line that is radially outward 
from the wire. 

     
a a

b b

b
a b a b

0 0 0 a

1
ln ln

2 2 2 R

R R

R R

R
V V d dR R R

R

  
  

         E


 l  

 
84. (a) We may treat the sphere as a point charge located at the center of the field.  Then the electric  

field at the surface is surface 2

0 0

1
,

4

Q
E

r
  and the potential at the surface is surface

0 0

1
.

4

Q
V

r
  

     6 5

surface surface 0 breakdown 0

0 0

1
3 10 V m 0.20 m 6 10 V

4

Q
V E r E r

r
        

(b)  
   
 

5

5 5

surface 0 0 surface 9 2 2

0 0

0.20 m 6 10 V1
    4 1.33 10 C 1 10 C

4 8.99 10 N m C

Q
V Q rV

r



 


       

 
 

 
85. (a) The voltage at 0.20 mx   is obtained by inserting the given data directly into the voltage  
  equation. 

     
     

4

2 22 2 2 2

150 V m
0.20 m   23 kV

0.20 m 0.20 m

B
V

x R
  

   


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 (b) The electric field is the negative derivative of the potential. 

    
   2 32 2 2 2

ˆ4ˆ 
d B Bx

dx x R x R
x   

 

 
 
  

i
E i


 

  Since the voltage only depends on x the electric field points in the positive x direction. 
(c) Inserting the given values in the equation of part (b) gives the electric field at 0.20 mx   

   

   

4
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32 2
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0.20 m 0.20 m
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  

i
E i
 

 

 
86. Use energy conservation, equating the energy of charge 1q  at its initial position to its final position 

at infinity.  Take the speed at infinity to be 0, and take the potential of the point charges to be 0 at 
infinity. 

   

 

2 21 1
initial final initial initial final final 0 1 initial final 1 final2 2

point point

2 2 1 21
0 1 02 2 2 2 2

0 0

        

1 2 1
0 0    

4

E E K U K U mv q V mv q V

q q q
mv q v

ma b a b 
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     
 

 

 
87. (a) From the diagram, the potential at x is the potential of two  

point charges. 
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 (b) The approximate potential is given by Eq. 23-7, with 0,   2 ,p qd  and .r x   

 approx 2

0

1 2

4

qd
V

x
  

To make the difference at 
small distances more 
apparent, we have plotted 
from 2.0 cm to 8.0 cm. 
The spreadsheet used for 
this problem can be found 
on the Media Manager, with 
filename 
“PSE4_ISM_CH23.XLS,” 
on tab “Problem 23.87.” 
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88. The electric field can be determined from the potential by using Eq. 23-8, differentiating with respect 
to x. 

         1/ 2 1/ 22 2 2 21
0 022 2

0 0 0 0

2 1
2 2

dV x d Q Q
E x x R x x R x

dx dx R R 


         
         

 

 1/ 22 2 2
0 0 0

        1
2

Q x

R x R
 



 
 
  

 

Express V and E in terms of 0 .x R   Let 0 .X x R  

     

         

1/ 22 2 2

02

0 0 0 0

6

9 2 2 2 5 2

2
1

2 4

2 5.0 10 C
8.99 10 N m C 1 8.99 10 V 1

0.10 m

Q Q
V x x R x X X

R R

X X X X

 


     


       

 
 



 

 
 

   
 

 

1/ 22 2 22 2
0 0 0 00

6

9 2 2

2 2

6

2

2
1 1

2 4 1

2 5.0 10 C
8.99 10 N m C 1

0.10 m 1

8.99 10 V m 1
1

Q x Q X
E x

R R Xx R

X

X

X

X

 



   



  



  


   
   
    

 
 
 

 
 
 

  

 
The spreadsheet used for 
this problem can be found 
on the Media Manager, 
with filename 
“PSE4_ISM_CH23.XLS,” 
on tab “Problem 23.88.” 
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89. (a) If the field is caused by a point  
charge, the potential will have a graph 
that has the appearance of 1/r 
behavior, which means that the 
potential change per unit of distance 
will decrease as potential is measured 
farther from the charge.  If the field is 
caused by a sheet of charge, the 
potential will have a linear decrease 
with distance.  The graph indicates 
that the field is caused by a point 
charge.  The spreadsheet used for this problem can be found on the Media Manager, with 
filename “PSE4_ISM_CH23.XLS,” on tab “Problem 23.89a.” 

(b) Assuming the field is caused by a point charge, we assume the charge is at x d , and then the 

potential is given by 
0

1
.

4

Q
V

x d



  This can be rearranged to  the following. 
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If we plot x vs. 
1

V
, the slope is 

0

,
4

Q


 which can be used to 

determine the charge.  
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The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH23.XLS,” on tab “Problem 23.89b.” 

  

(c) From the above equation, the y intercept of the graph is the location of the charge, d.  So the  

charge is located at 0.0373m 3.7cm from the first measured position .x d     
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