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CHAPTER 22:  Gauss’s Law 
 
Responses to Questions 
 
1.  No. If the net electric flux through a surface is zero, then the net charge contained in the surface is 

zero.  However, there may be charges both inside and outside the surface that affect the electric field 
at the surface. The electric field could point outward from the surface at some points and inward at 
others. Yes. If the electric field is zero for all points on the surface, then the net flux through the 
surface must be zero and no net charge is contained within the surface. 

 
2.   No. The electric field in the expression for Gauss’s law refers to the total electric field, not just the 

electric field due to any enclosed charge. Notice, though, that if the electric field is due to a charge 
outside the Gaussian surface, then the net flux through the surface due to this charge will be zero. 

  
3.  The electric flux will be the same. The flux is equal to the net charge enclosed by the surface divided 

by ε0. If the same charge is enclosed, then the flux is the same, regardless of the shape of the surface. 
 
4.  The net flux will be zero. An electric dipole consists of two charges that are equal in magnitude but 

opposite in sign, so the net charge of an electric dipole is zero. If the closed surface encloses a zero 
net charge, than the net flux through it will be zero. 

 

5.  Yes. If the electric field is zero for all points on the surface, then the integral of dE A


 over the 
surface will be zero, the flux through the surface will be zero, and no net charge will be contained in 
the surface. No. If a surface encloses no net charge, then the net electric flux through the surface will 
be zero, but the electric field is not necessarily zero for all points on the surface. The integral of 

dE A


 over the surface must be zero, but the electric field itself is not required to be zero. There may 
be charges outside the surface that will affect the values of the electric field at the surface. 

 
6. The electric flux through a surface is the scalar (dot) product of the electric field vector and the area 

vector of the surface. Thus, in magnitude, E cosEA   . By analogy, the gravitational flux 

through a surface would be the product of the gravitational field (or force per unit mass) and the 
area, or g cosgA   . Any mass, such as a planet, would be a “sink” for gravitational field. Since 

there is not “anti-gravity” there would be no sources. 
 
7.  No. Gauss’s law is most useful in cases of high symmetry, where a surface can be defined over 

which the electric field has a constant value and a constant relationship to the direction of the 
outward normal to the surface. Such a surface cannot be defined for an electric dipole. 

 
8. When the ball is inflated and charge is distributed uniformly over its surface, the field inside is zero. 

When the ball is collapsed, there is no symmetry to the charge distribution, and the calculation of the 
electric field strength and direction inside the ball is difficult (and will most likely give a non-zero 
result). 

 
9.  For an infinitely long wire, the electric field is radially outward from the wire, resulting from 

contributions from all parts of the wire. This allows us to set up a Gaussian surface that is 
cylindrical, with the cylinder axis parallel to the wire. This surface will have zero flux through the 
top and bottom of the cylinder, since the net electric field and the outward surface normal are 
perpendicular at all points over the top and bottom. In the case of a short wire, the electric field is not 
radially outward from the wire near the ends; it curves and points directly outward along the axis of 
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the wire at both ends. We cannot define a useful Gaussian surface for this case, and the electric field 
must be computed directly. 

 
10. In Example 22-6, there is no flux through the flat ends of the cylindrical Gaussian surface because 

the field is directed radially outward from the wire. If instead the wire extended only a short distance 
past the ends of the cylinder, there would be a component of the field through the ends of the 
cylinder. The result of the example would be altered because the value of the field at a given point 
would now depend not only on the radial distance from the wire but also on the distance from the 
ends. 

 
11.  The electric flux through the sphere remains the same, since the same charge is enclosed. The 

electric field at the surface of the sphere is changed, because different parts of the sphere are now at 
different distances from the charge. The electric field will not have the same magnitude for all parts 
of the sphere, and the direction of the electric field will not be parallel to the outward normal for all 
points on the surface of the sphere. The electric field will be stronger on the side closer to the charge 
and weaker on the side further from the charge. 

 
12. (a) A charge of (Q – q) will be on the outer surface of the conductor. The total charge Q is placed  

on the conductor but since +q will reside on the inner surface, the leftover, (Q – q), will reside 
on the outer surface.   

 (b) A charge of +q will reside on the inner surface of the conductor since that amount is attracted  
by the charge –q in the cavity. (Note that E must be zero inside the conductor.) 

 
13.  Yes. The charge q will induce a charge –q on the inside surface of the thin metal shell, leaving the 

outside surface with a charge +q. The charge Q outside the sphere will feel the same electric force as 
it would if the metal shell were not present. 

 
14.  The total flux through the balloon’s surface will not change because the enclosed charge does not 

change. The flux per unit surface area will decrease, since the surface area increases while the total 
flux does not change. 

 
 

Solutions to Problems 
 
1. The electric flux of a uniform field is given by Eq. 22-1b. 

(a)    2 2

E cos 580 N C 0.13m 31N m Ccos0EA      E A

   

(b)    2 2

E cos 580N C 0.13m cos45 22 N m CEA       E A

   

(c)    2

E cos 580 N C 0.13m cos90 0EA       E A

  

 
2. Use Eq. 22-1b for the electric flux of a uniform field.  Note that the surface area vector points 

radially outward, and the electric field vector points radially inward.  Thus the angle between the two 
is 180 .  

     E

2

22 6
E

16

cos 150 N C 4 150 N C

7.7 10 N m C

4 cos180 6.38 10 m

    

EA R       

 

 



E A




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3. (a) Since the field is uniform, no lines originate or terminate inside the cube, and so the net flux is  

net 0 .   

 (b) There are two opposite faces with field lines perpendicular to the faces.  The other four faces  
have field lines parallel to those faces.  For the faces parallel to the field lines, no field lines 

enter or exit the faces.  Thus parallel 0 .   
 

Of the two faces that are perpendicular to the field lines, one will have field lines entering the 
cube, and so the angle between the field lines and the face area vector is 180 .   The other will 
have field lines exiting the cube, and so the angle between the field lines and the face area 

vector is 0 .   Thus we have 2

entering 0 0cos180E A E A E      l

  and 

2

leaving 0 0cos0 .E A E A E     l

  

 
4. (a) From the diagram in the textbook, we see that the flux outward through the hemispherical  

surface is the same as the flux inward through the circular surface base of the hemisphere.  On 
that surface all of the flux is perpendicular to the surface.  Or, we say that on the circular base, 

.E A

   Thus 2

E .r E  E A

  

(b)  E


 is perpendicular to the axis, then every field line would both enter through the hemispherical  

surface and leave through the hemispherical surface, and so E 0 .   
 
5. Use Gauss’s law to determine the enclosed charge.      

   2 12 2 2 8encl
E encl E    1840N m C 8.85 10 C N m 1.63 10 Co

o

Q
Q 


            

 
6. The net flux through each closed surface is determined by the net charge inside.  Refer to the picture 

in the textbook. 

  
   

 
1 0 0 2 0

3 0 0 4 5 0

3 2   ;  2 3 0   ;  

2 3   ;  0   ;  2

Q Q Q Q Q Q

Q Q Q Q

  

  

           

          
 

 
7. (a) Use Gauss’s law to determine the electric flux. 

   
6

5 2encl
E 12 2 2

1.0 10 C
1.1 10 N m C

8.85 10 C N mo

Q







 
      

 
 

 (b) Since there is no charge enclosed by surface A2, E 0  . 

 
8. The net flux is only dependent on the charge enclosed by the surface.  Since both surfaces enclose 

the same amount of charge, the flux through both surfaces is the same.  Thus the ratio is 1:1 .  
 
9. The only contributions to the flux are from the faces perpendicular to the electric field.  Over each of 

these two surfaces, the magnitude of the field is constant, so the flux is just E A

  on each of these 

two surfaces.   

      2 2 encl
E right leftright left

0

 
Q

E E


      E A E A
  
  l l  
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         22 12 2 2 7

encl right left 0 410 N C 560 N C 25m 8.85 10 C N m 8.3 10 CQ E E           l  

 
10. Because of the symmetry of the problem one sixth of the total flux will pass through each face. 

encl encl1 1
face total6 6

0 06

Q Q

 
      

Notice that the side length of the cube did not enter into the calculation. 
 
11. The charge density can be found from Eq. 22-4, Gauss’s law.  The charge is the charge density times 

the length of the rod. 

  
   5 2 12 2 2

5encl 0

0 0

7.3 10 N m C 8.85 10 C N m
    4.3 10 C m

0.15m

Q  


 




   

        
l

l
 

 
12.  
 
 
 
 
 
 
 
 
 
13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the  

charge. 

  
   22 22

11

2 9 2 2

6.25 10 N C 3.50 10 m
    8.52 10 C

8.988 10 N m C

Q Er
E k Q

r k




 

     
 

 

This corresponds to about 85 10  electrons.  Since the field points toward the ball, the charge must 

be negative.  Thus 118.52 10 CQ    . 
 
14. The charge on the spherical conductor is uniformly distributed over the surface area of the sphere, so  

24
.

Q

R



   The field at the surface of the sphere is evaluated at r = R. 

   
2

2 2

0 0 0

1 1 4

4 4

Q R
E r R

R R

  
  

     

 

15. The electric field due to a long thin wire  is given in Example 22-6 as 
0

1
.

2
E

R




  

 (a)    
 

6

9 2 2 4

0 0

2 7.2 10 C m1 1 2
8.988 10 N m C 2.6 10 N C

2 4 5.0m
E

R R

 
 

 
         

  The negative sign indicates the electric field is pointed towards the wire. 
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 (b)    
 

6

9 2 2 4

0 0

2 7.2 10 C m1 1 2
8.988 10 N m C 8.6 10 N C

2 4 1.5m
E

R R

 
 

 
         

  The negative sign indicates the electric field is pointed towards the wire. 
 
16. Because the globe is a conductor, the net charge of -1.50 mC will 

be arranged symmetrically around the sphere. 
 
 
 
 
 
 
 
 
 
17. Due to the spherical symmetry of the problem, the electric field can be evaluated using Gauss’s law 

and the charge enclosed by a spherical Gaussian surface of radius r. 

   2

2

0 0

encl encl1
4     

4

Q Q
d E r E

r


 
    E A


  

 Since the charge densities are constant, the charge enclosed is found by multiplying the appropriate 
charge density times the volume of charge enclosed by the Gaussian sphere.  Let 1 6.0cmr   and 

2 12.0cm.r   

 (a) Negative charge is enclosed for 1.r r  

   

       
 

 

3 34
3encl

2 2 12 2 2

0 0 0

11

5.0C m1 1

4 4 3 3 8.85 10 C N m

1.9 10 N C m

r rrQ
E

r r

r

  

  
 




   

 

   

 

(b) In the region  1 2 ,r r r  all of the negative charge and part of the positive charge is  

enclosed. 

 

                

     
 

 
 

   

3 3 3 34 4
3 31 1 1encl

2 2 2

0 0 0 0

33 3 3

12 2 2 2 12 2 2

8 2

11

2

1 1

4 4 3 3

5.0C m 8.0C m 0.060m 8.0C m

3 8.85 10 C N m 3 8.85 10 C N m

1.1 10 N m C
3.0 10 N C m

r r r r rQ
E

r r r

r

r

r
r

      

   
    

 

  
   

 
 

   

 
  

  

  




 

 (c) In the region 2 ,r r  all of the charge is enclosed. 

   

                  

         
 

 

3 3 3 3 34 4
3 31 2 1 1 2encl

2 2 2

0 0 0

3 33 3 3 8 2

12 2 2 2 2

1 1

4 4 3

5.0C m 8.0C m 0.060m 8.0C m 0.120m 4.1 10 N m C

3 8.85 10 C N m

r r r r rQ
E

r r r

r r

      

  
    



   
   

   
 

 

  

   
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 (d) See the adjacent plot.  The field is  
continuous at the edges of the layers. 
The spreadsheet used for this problem 
can be found on the Media Manager, 
with filename “PSE4_ISM_CH22.XLS,” 
on tab “Problem 22.17d.” 

 
 
 
 
 
 
 
18. See Example 22-3 for a detailed discussion related to this problem. 

(a) Inside a solid metal sphere the electric field is  0 . 
 (b) Inside a solid metal sphere the electric field is  0 . 
 (c) Outside a solid metal sphere the electric field is the same as if all the charge were concentrated  

at the center as a point charge. 

      
 

6

9 2 2

22

0

5.50 10 C1
8.988 10 N m C 5140N C

4 3.10m

Q
E

r


      

  The field would point towards the center of the sphere. 
 (d) Same reasoning as in part (c). 

      
 

6

9 2 2

22

0

5.50 10 C
8.988 10 N m C 772 N C

8.00m

1

4

Q
E

r


      

  The field would point towards the center of the sphere. 
 (e) The answers would be  no different  for a thin metal shell. 
 (f) The solid sphere of charge is dealt with in Example 22-4.  We see from that Example that the  

field inside the sphere is given by 
3

0 0

1
.

4

Q
E r

r
   Outside the sphere the field is no different.   

So we have these results for the solid sphere. 

      
 

 
6

9 2 2

3

5.50 10 C
0.250m 8.988 10 N m C 0.250m 458N C

3.00m
E r


      

      
 

 
6

9 2 2

3

5.50 10 C
2.90m 8.988 10 N m C 2.90m 5310N C

3.00m
E r


      

      
 

6
9 2 2

2

5.50 10 C
3.10m 8.988 10 N m C 5140N C

3.10m
E r


      

      
 

6
9 2 2

2

5.50 10 C
8.00m 8.988 10 N m C 772 N C

3.10m
E r


      

  All point towards the center of the sphere. 
 

-2.0

-1.0

0.0

1.0

2.0

3.0

0 10 20 30 40 50

r  (cm)

E
le

ct
ri

c 
fi
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d 

(1
010

 N
/C

)
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19. For points inside the nonconducting 
spheres, the electric field will be 
determined by the charge inside the 
spherical surface of radius r. 

334
3

encl 34
3 0 0

r r
Q Q Q

r r




 
   
   
   

 

The electric field for 0r r  can be 

calculated from Gauss’s law. 

encl
0 2

0

( )
4

Q
E r r

r
   

3

2 3

0 0 0 0

1

4 4
             

r Q
Q r

r r r 
 

   
   
   

 

The electric field outside the sphere is calculated from Gauss’s law with encl .Q Q  

  encl
0 2 2

0 04 4

Q Q
E r r

r r 
    

 The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH22.XLS,” on tab “Problem 22.19.” 

 
20. (a) When close to the sheet, we approximate it as an infinite sheet, and use the result of Example  

22-7.  We assume the charge is over both surfaces of the aluminum. 

 
 

 

9

2

5

12 2 2

275 10 C

0.25m
2.5 10 N C, away from the sheet

2 2 8.85 10 C N mo

E









   
 

  

 (b) When far from the sheet, we approximate it as a point charge. 

    
 

9
9 2 2

22

0

1 275 10 C
8.988 10 N m C 11N C, away from the sheet

4 15m

Q
E

r


      

 
21. (a) Consider a spherical gaussian surface at a radius of 3.00 cm.  It encloses all of the charge. 

   

 

 
 

2

0

6
9 2 2 7

22 2
0

4   

1 5.50 10 C
8.988 10 N m C 5.49 10 N C, radially outward

4 3.00 10 m

Q
d E r

Q
E

r










  


     



 E A



 

(b) A radius of 6.00 cm is inside the conducting material, and so the field must be 0.  Note that  

there must be an induced charge of 65.50 10 C   on the surface at  r = 4.50 cm, and then an 

induced charge of 65.50 10 C  on the outer surface of the sphere. 
(c) Consider a spherical gaussian surface at a radius of 3.00 cm.  It encloses all of the charge. 

   

 

 
 

2

0

6
9 2 2 5

22 2
0

4   

1 5.50 10 C
8.988 10 N m C 5.49 10 N C, radially outward

4 30.0 10 m

Q
d E r

Q
E

r










  


     



 E A



 

0.0
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22. (a) Inside the shell, the field is that of the point charge, 
2

0

1

4
.

Q
E

r
  

 (b) There is no field inside the conducting material: 0 .E   

(c) Outside the shell, the field is that of the point charge, 
2

0

1

4
.

Q
E

r
  

 (d) The shell does not affect the field due to Q alone, except in the shell material, where the field is  
0.  The charge Q does affect the shell – it polarizes it.  There will be an induced charge of –Q  
uniformly distributed over the inside surface of the shell, and an induced charge of +Q  
uniformly distributed over the outside surface of the shell. 

 
23. (a) There can be no field inside the conductor, and so there must be an induced charge of  

8.00 C  on the surface of the spherical cavity. 

(b) Any charge on the conducting material must reside on its boundaries.  If the net charge of the  
cube is 6.10 C,  and there is a charge of 8.00 C on its inner surface, there must be a charge 

of 1.90 C on the outer surface.  

 
24. Since the charges are of opposite sign, and since the charges are free to move since they are on 

conductors, the charges will attract each other and move to the inside or facing edges of the plates.  
There will be no charge on the outside edges of the plates.  And there cannot be charge in the plates 
themselves, since they are conductors.  All of the charge must reside on surfaces.  Due to the 
symmetry of the problem, all field lines must be perpendicular to the plates, as discussed in Example 
22-7. 
(a) To find the field between the plates, we choose a gaussian cylinder, 

perpendicular to the plates, with area A for the ends of the cylinder.  We 
place one end inside the left plate (where the field must be zero), and the 
other end between the plates.  No flux passes through the curved surface 
of the cylinder. 

   

encl

0ends side right
end

between between

0 0

 

    

Q
d d d d

A
E A E



 
 

    

  

   E A E A E A E A
      

   
 

The field lines between the plates leave the inside surface of the left plate, and terminate on the 
inside surface of the right plate.  A similar derivation could have been done with the right end of 
the cylinder inside of the right plate, and the left end of the cylinder in the space between the 
plates. 

 (b) If we now put the cylinder from above so that the right end is  
inside the conducting material, and the left end is to the left of 
the left plate, the only possible location for flux is through the 
left end of the cylinder.  Note that there is NO charge enclosed 
by the Gaussian cylinder. 

 encl

0ends side left
end

 
Q

d d d d


       E A E A E A E A
      

     

+

+

+

+

–

–

–

–

 

betweenE


+

+

+

+

–

–

–

–

 

outsideE

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 outside outside

0 0

0 0
    E A E

 
    

 (c) If the two plates were nonconductors, the results would not change.  The charge would be  
distributed over the two plates in a different fashion, and the field inside of the plates would not 
be zero, but the charge in the empty regions of space would be the same as when the plates are 
conductors. 

 
25.  Example 22-7 gives the electric field from a positively charged 

plate as 0/ 2E    with the field pointing away from the plate.  

The fields from the two plates will add, as shown in the figure.   
(a) Between the plates the fields are equal in magnitude, but 

point in opposite directions. 

between

0 0

0
2 2

E
 
 

    

(b) Outside the two plates the fields are equal in magnitude and  
point in the same direction. 

outside

0 0 02 2
E

  
  

    

(c) When the plates are conducting the charge lies on the surface of the plates.  For nonconducting  
plates the same charge will be spread across the plate.  This will not affect the electric field 
between or outside the two plates.  It will, however, allow for a non-zero field inside each plate. 

 
26. Because 3.0 cm << 1.0 m, we can consider the plates to be infinite in size, and ignore any edge 

effects.  We use the result from Problem 24(a). 

       2 12 2 2 9

0

0 0

   160 N C 1.0 m 8.85 10 C N m 1.4 10 C
Q A

E Q EA



 

            

 
27. (a) In the region 10 ,r r   a gaussian surface would enclose no charge.  Thus, due to the spherical  

symmetry, we have the following. 

 2 encl

0

4 0    0
Q

d E r E


     E A


  

(b) In the region 21 ,r r r  only the charge on the inner shell will be enclosed. 

   
2 2

2 encl 1 1 1 1

2

0 0 0

4
4     

Q r r
d E r E

r

  


  
     E A


  

(c) In the region 2 ,r r  the charge on both shells will be enclosed. 

   
2 2 2 2

2 encl 1 1 2 2 1 1 2 2

2

0 0 0

4 4
4     

Q r r r r
d E r E

r

     


  
 

     E A


  

(d) To make 0E   for 2 ,r r  we must have 2 2

1 1 2 2 0 .r r     This implies that the shells are of  

opposite charge. 

(e) To make 0E   for 21 ,r r r  we must have 1 0 .    Or, if a charge 2

1 14Q r   were placed  

at the center of the shells, that would also make 0.E   
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28. If the radius is to increase from 0r  to 02r  linearly during an elapsed time of T, then the rate of 

increase must be 0 .r T   The radius as a function of time is then 0
0 0 1 .

r t
r r t r

T T
    

 
 

  Since the 

balloon is spherical, the field outside the balloon will have the same form as the field due to a point 
charge. 
(a) Here is the field just outside the balloon surface. 

  
22

20 0

0

1 1

4 4
1

Q Q
E

r t
r

T

 
 

 
 
 

 

(b) Since the balloon radius is always smaller than 03.2 ,r  the total charge enclosed in a gaussian  

surface at 03.2r r  does not change in time. 

  
 22

0 0 0

1 1

4 4 3.2

Q Q
E

r r 
   

 
29. Due to the spherical symmetry of the problem, Gauss’s law using a sphere of radius r leads to the 

following. 

 2 encl encl

2

0 0

4     
4

Q Q
d E r E

r


 
    E A


  

 (a) For the region 10 ,r r  the enclosed charge is 0. 

   encl

2

0

0
4

Q
E

r
   

(b) For the region 01 ,r r r  the enclosed charge is the product of the volume charge density times 

the volume of charged material enclosed.  The charge density is given by 
3 34 4

3 30 1

Q

r r


 



 

 3 3

0 1

3
.

4

Q

r r



 

  
   

 

3 34 4
3 3 13 3 3 3 3 34 4

3 3 1 0 1 1encl encl

2 2 2 2 2 3 3

0 0 0 0 0 0 1

3

4

4 4 4 4 4

Q
r r

r r r r r rQ V Q
E

r r r r r r r

 
   

    


  

    


      

 (c) For the region 0,r r  the enclosed charge is the total charge, Q. 

   
2

04

Q
E

r
  

 
30. By the superposition principle for electric fields (Section 21-6), we find the field for this problem by 

adding the field due to the point charge at the center to the field found in Problem 29.  At any 

location 0,r  the field due to the point charge is 
2

04
.

q
E

r
  
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 (a) 
2 2

0 0

0
4 4

q Q

q q
E E

r r
E

 
      

 (b) 
 
 

 
 

3 3 3 3

1 1

2 2 3 3 2 3 3

0 0 0 1 0 0 1

1

4 4 4
q Q

r r r rq Q
E E E q Q

r r r r r r r  

 
     

 

 
 
  

 

 (c) 
2 2 2

0 0 04 4 4
q Q

q Q q Q
E E E

r r r  


      

 
31. (a) Create a gaussian surface that just encloses the inner surface of the spherical shell.  Since the  

electric field inside a conductor must be zero, Gauss’s law requires that the enclosed charge be 
zero.  The enclosed charge is the sum of the charge at the center and charge on the inner surface 
of the conductor. 

  enc inner 0Q q Q    

  Therefore inner .Q q   

(b) The total charge on the conductor is the sum of the charges on the inner and outer surfaces. 

outer inner outer inner    Q Q Q Q Q Q Q q        

(c) A gaussian surface of radius 1r r  only encloses the center charge, q.  The electric field will  

therefore be the field of the single charge. 

  1 2

0

( )
4

q
E r r

r
   

(d) A gaussian surface of radius 1 0r r r   is inside the conductor so 0 .E   

(e) A gaussian surface of radius 0r r  encloses the total charge q Q .  The electric field will then  

be the field from the sum of the two charges. 

  0 2

0

( )
4

q Q
E r r

r


   

 
32. (a) For points inside the shell, the field will be due to the point charge only. 

    0 2

04

q
E r r

r
   

 (b) For points outside the shell, the field will be that of a point charge, equal to the total charge. 

    0 2

04

q Q
E r r

r


   

 (c) If ,q Q  we have  0 2

04

Q
E r r

r
   and  0 2

0

2

4
.

Q
E r r

r
   

 (d) If ,q Q   we have  0 2

04

Q
E r r

r


   and  0 0 .E r r   
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33. We follow the development of Example 22-6.  Because of the 
symmetry, we expect the field to be directed radially outward (no 
fringing effects near the ends of the cylinder) and to depend only on 
the perpendicular distance, R, from the symmetry axis of the shell.  
Because of the cylindrical symmetry, the field will be the same at all 
points on a gaussian surface that is a cylinder whose axis coincides 
with the axis of the shell.  The gaussian surface is of radius r and 

length l.  E


is perpendicular to this surface at all points.  In order to apply Gauss’s law, we need a 

closed surface, so we include the flat ends of the cylinder.  Since E


is parallel to the flat ends, there 
is no flux through the ends.  There is only flux through the curved wall of the gaussian cylinder. 

    encl encl encl

0 0 0

2
2

    
Q A A

d E R E
R

 


  
    E A l

l


  

 (a) For 0,R R  the enclosed surface area of the shell is encl 02 .A R l  

   encl 0 0

0 0 0

2
, radially outward

2 2

A R R
E

R R R

   
  

  
l

l l
 

 (b) For 0,R R  the enclosed surface area of the shell is encl 0,A   and so 0 .E   

(c) The field for 0R R due to the shell is the same as the field due to the long line of charge, if we 

substitute 02 .R    

 
34. The geometry of this problem is similar to Problem 33, and so 

we use the same development, following Example 22-6.  See 
the solution of Problem 33 for details. 

    encl E encl E encl

0 0 0

2     
2

Q V V
d E R E

R

 


  
     E A l

l


  

 (a) For 0,R R  the enclosed volume of the shell is  
2

encl 0 .V R l  

   
2

E encl E 0

0 0

, radially outward
2 2

V R
E

R R

 
 

 
l

 

 (b) For 0,R R  the enclosed volume of the shell is 2

encl .V R l  

   E encl E

0 0

, radially outward
2 2

V R
E

R

 
 

 
l

 

 
35. The geometry of this problem is similar to Problem 33, and so we use the same development, 

following Example 22-6.  See the solution of Problem 33 for details.  We choose the gaussian 
cylinder to be the same length as the cylindrical shells. 

    encl encl

0 0

2
2

    
Q Q

d E R E
R


 

   E A
l


 l  

 (a) For 10 ,R R  no charge is enclosed, and so encl

0

0
2

.
Q

E
R

 
l

 

 

R 0  

¬  
R 

 
R0 

¬  

R   
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 (b) For 21 ,R R R  charge Q  is enclosed, and so 
0

, radially outward .
2

Q
E

R


l
 

 (c) For 2 ,R R both charges of Q  and Q  are enclosed, and so encl

0

0
2

.
Q

E
R

 
l

  

 (d) The force on an electron between the cylinders points in the direction opposite to the electric  
field, and so the force is inward.  The electric force produces the centripetal acceleration for the 
electron to move in the circular orbit. 

2
21

centrip 2

0 0

    
2 4

eQ v eQ
F eE m K mv

R R 
     

l l
 

  Note that this is independent of the actual value of the radius, as long as 21 .R R R   

 
36. The geometry of this problem is similar to Problem 33, and so we use the same development, 

following Example 22-6.  See the solution of Problem 33 for details.  We choose the gaussian 
cylinder to be the same length as the cylindrical shells. 

    encl encl

0 0

2
2

    
Q Q

d E R E
R


 

   E A l
l


  

(a) At a distance of 3.0cm,R  no charge is enclosed, and so encl

0

0
2

.
Q

E
R

 
l

 

(b) At a distance of 7.0cm,R  the charge on the inner cylinder is enclosed. 

     
   

6

9 2 2 4encl encl

0 0

0.88 10 C2
2 8.988 10 N m C 4.5 10 N C

2 4 0.070m 5.0m

Q Q
E

R R 

 
       

l l
 

 The negative sign indicates that the field points radially inward. 
(c) At a distance of 12.0cm,R  the charge on both cylinders is enclosed. 

     
   

6
9 2 2 4encl encl

0 0

1.56 0.88 10 C2
2 8.988 10 N m C 2.0 10 N C

2 4 0.120m 5.0m

Q Q
E

R R 

 
      

l l
 

 The field points radially outward. 
 
37. (a) The final speed can be calculated from the work-energy theorem, where the work is the integral  

of the force on the electron between the two shells. 

   2 21 1
02 2W F dr mv mv  

   

Setting the force equal to the electric field times the charge on the electron, and inserting the 
electric field from Problem 36 gives the work done on the electron. 

   
   
   

2

1

2

0 0 1

19

16

12 2 2

ln
2 2

1.60 10 C 0.88 C 9.0cm
ln 1.65 10  J

2 8.85 10 C /Nm 5.0 m 6.5cm

R

R

qQ qQ R
W dR

R R 











 

  
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

 
 
 

 
 
 


l l

 

  Solve for the velocity from the work-energy theorem. 

   
 16

7

31

2 1.65 10  J2
1.9 10 m/s

9.1 10  kg

W
v

m






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
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 (b) The electric force on the proton provides its centripetal acceleration.   

    
2

02
c

qQmv
F qE

R R
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l
  

   The velocity can be solved for from the centripetal acceleration. 

    
   

     

19

5

12 2 2 27

1.60 10 C 0.88 C
5.5 10 m/s

2 8.85 10 C /Nm 1.67 10 kg 5.0 m
v







 


  

 
 

Note that as long as the proton is between the two cylinders, the velocity is independent of the 
radius. 

 
38. The geometry of this problem is similar to Problem 33, and 

so we use the same development, following Example 22-6.  
See the solution of Problem 33 for details. 

    encl encl

0 0
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2

Q Q
d E R E

R


 
    E A l

l


  

 (a) For 10 ,R R  the enclosed charge is the volume of  

charge enclosed, times the charge density. 

   
2
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Q R R
E

R R

  
  
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l

l l
 

 (b) For 1 2 ,R R R   the enclosed charge is all of the charge on the inner cylinder. 

   
2 2

encl E 1 E 1

0 0 02 2 2

Q R R
E

R R R

  
  

  
l

l l
 

 (c) For 2 3,R R R   the enclosed charge is all of the charge on the inner cylinder, and the part of  

the charge on the shell that is enclosed by the gaussian cylinder. 

   
   2 2 2 2 2 2

E 1 E 2 E 1 2encl

0 0 02 2 2

R R R R R RQ
E

R R R

     
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   
  

l l l

l l
 

 (d) For 3,R R  the enclosed charge is all of the charge on both the inner cylinder and the shell. 
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l l l

l l
 

 (e) See the graph.  The spreadsheet used for  
this problem can be found on the Media 
Manager, with filename 
“PSE4_ISM_CH22.XLS,” on tab 
“Problem 22.38e.” 
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39. Due to the spherical symmetry of the geometry, we have the following to find the electric field at any  
radius r.  The field will point either radially out or radially in. 

 2 encl encl

2

0 0

4     
4

Q Q
d E r E

r


 
    E A


  

 (a) For 00 ,r r   the enclosed charge is due to the part of the charged sphere that has a radius  

smaller than r. 

   
 34

3Eencl E

2 2

0 0 04 4 3

rQ r
E

r r

  
  

    

 (b) For 0 1,r r r   the enclosed charge is due to the entire charged sphere of radius 0.r  

   
 34 3

3E 0encl E 0

2 2 2

0 0 04 4 3

rQ r
E

r r r

  
  

    

 (c) For 1 2 ,r r r   r is in the interior of the conducting spherical shell, and so 0 .E    This implies  

that encl 0,Q   and so there must be an induced charge of magnitude 34
E 03 r   on the inner 

surface of the conducting shell, at 1.r  

 (d) For 2 ,r r  the enclosed charge is the total charge of both the sphere and the shell. 

   
 34 3

3E 0encl E 0
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r r r
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
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 
 
 

 

 
40. The conducting outer tube is uncharged, and the electric field is 0 everywhere within the conducting 

material.  Because there will be no electric field inside the conducting material of the outer cylinder 
tube, the charge on the inner nonconducting cylinder will induce an oppositely signed, equal 
magnitude charge on the inner surface of the conducting tube.  This charge will NOT be uniformly 
distributed, because the inner cylinder is not in the center of the tube.  Since the conducting tube has 
no net charge, there will be an induced charge on the OUTER surface of the conducting tube, equal 
in magnitude to the charge on the inner cylinder, and of the same sign.  This charge will be 
uniformly distributed.  Since there is no electric field in the conducting material of the tube, there is 
no way for the charges in the region interior to the tube to influence the charge distribution on the 
outer surface.  Thus the field outside the tube is due to a cylindrically symmetric distribution of 
charge.  Application of Gauss’s law as in Example 22-6, for a Gaussian cylinder with a radius larger 

than the conducting tube, and a length l leads to   encl

0

2 .
Q

E R


l   The enclosed charge is the 

amount of charge on the inner cylinder. 

  
 

2
2 encl E 1

encl E 1

0 0

    
2 2

Q R
Q R E

R R


 

  
   l

l
 

 
41. We treat the source charge as a disk of positive charge of radius concentric with a disk of negative 

charge of radius 0.R   In order for the net charge of the inner space to be 0, the charge per unit area of 

the source disks must both have the same magnitude but opposite sign.  The field due to the annulus 
is then the sum of the fields due to both the positive and negative rings. 
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(a) At a distance of 00.25R  from the center of the ring, we can approximate both of the disks as  

infinite planes, each producing a uniform field.  Since those two uniform fields will be of the 
same magnitude and opposite sign, the net field is 0. 

(b) At a distance of 075R  from the center of the ring, it appears to be approximately a point charge, 

and so the field will approximate that of a point charge, 
 2

0 0

1

4 75

Q
E

R
  

 
42. The conducting sphere is uncharged, and the electric field is 0 everywhere within its interior, except 

for in the cavities.  When charge 1Q  is placed in the first cavity, a charge 1Q  will be drawn from the 

conducting material to the inner surface of the cavity, and the electric field will remain 0 in the 
conductor.  That charge 1Q  will NOT be distributed symmetrically on the cavity surface.  Since the 

conductor is neutral, a compensating charge 1Q will appear on the outer surface of the conductor 

(charge can only be on the surfaces of conductors in electrostatics).  Likewise, when charge 2Q  is 

placed in the second cavity, a charge 2Q  will be drawn from the conducting material, and a 

compensating charge 2Q  will appear on the outer surface.  Since there is no electric field in the 

conducting material, there is no way for the charges in the cavities to influence the charge 
distribution on the outer surface.  So the distribution of charge on the outer surface is uniform, just as 
it would be if there were no inner charges, and instead a charge 1 2Q Q  were simply placed on the 

conductor.  Thus the field outside the conductor is due to a spherically symmetric distribution of 

1 2Q Q .  Application of Gauss’s law leads to 1 2

2

0

1

4
.

Q Q
E

r


   If 1 2 0,Q Q   the field will point 

radially outward.  If  1 2 0,Q Q   the field will point radially inward. 

 
43. (a) Choose a cylindrical gaussian surface with the flat ends parallel to and equidistant from the  

slab.   By symmetry the electric field must point perpendicularly away from the slab, resulting 
in no flux passing through the curved part of the gaussian cylinder.  By symmetry the flux 
through each end of the cylinder must be equal with the electric field constant across the 

surface.     2E dA EA 


  

The charge enclosed by the surface is the charge density of the slab multiplied by the volume of 
the slab enclosed by the surface.   

    enc Eq Ad  

  Gauss’s law can then be solved for the electric field. 

0 0

2     
2

E EAd d
E dA EA E

 
 

    


  

Note that this electric field is independent of the distance from the slab. 
(b) When the coordinate system of this problem is changed to axes parallel  ẑ  and perpendicular  

 r̂  to the slab, it can easily be seen that the particle will hit the slab if the initial perpendicular 

velocity is sufficient for the particle to reach the slab before the acceleration decreases its 
velocity to zero.  In the new coordinate system the axes are rotated by 45.      

 0 0
0 0 0

ˆ ˆˆ ˆcos 45 sin 45
2 2

y y
r y y    r z r z

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   0 0
0 0 0

ˆ ˆˆ ˆsin 45 cos 45
2 2

v v
v v v       r z r z


 

ˆ/a qE m r


 
The perpendicular components are then inserted into Eq. 2-12c, with the final velocity equal to 
zero.  

  
2

2 0 0
0 0

0

0 2 ( ) 2 0
2 2 2

E
r

v q d y
v a r r

m




     
  

    
 

Solving for the velocity gives the minimum speed that the particle can have to reach the slab. 

  0
0

0

2 Eq dy
v

m




  

 
44. Due to the spherical symmetry of the problem, Gauss’s law using a sphere of radius r leads to the 

following. 

 2 encl encl
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4     
4

Q Q
d E r E

r


 
    E A


  

 (a) For the region 10 ,r r  the enclosed charge is 0. 

   encl

2

0

0
4

Q
E

r
   

(b) For the region 01 ,r r r  the enclosed charge is the product of the volume charge density times 

the volume of charged material enclosed.  The charge density is given by 1
0 .

r

r
    We must 

integrate to find the total charge.  We follow the procedure given in Example 22-5.  We divide 
the sphere up into concentric thin shells of thickness dr, as shown in Fig. 22-14.  We then 
integrate to find the charge. 
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 (c) For the region 0,r r  the enclosed charge is the total charge, found by integration in a similar  

fashion to part (b). 
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 (d) See the attached graph.  We  
have chosen 1

1 02 .r r   Let 

   2 2

0 1 0 1

0 0 2

0 0

.
2

r r r
E E r r

r






    

The spreadsheet used for this 
problem can be found on the 
Media Manager, with filename 
“PSE4_ISM_CH22.XLS,” on tab 
“Problem 22.44d.” 

 
 
 
45. (a) The force felt by one plate will be the charge on that plate multiplied by the electric field caused  

by the other plate.  The field due to one plate is found in Example 22-7.  Let the positive plate 
be on the left, and the negative plate on the right.  We find the force on the negative plate due to 
the positive plate. 

   

   

     
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a
on on due to b b a b b
plate plate plate 0
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2
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F q E A E A


 


 


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   
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



 

(b) Since the field due to either plate is constant, the force on the other plate is constant, and then  
the work is just the force times the distance.  Since the plates are oppositely charged, they will 
attract, and so a force equal to and opposite the force above will be required to separate them.  
The force will be in the same direction as the displacement of the plates. 

       312.71N cos0 5.0 10 m 0.064 JW      F x
   

 
46. Because the slab is very large, and we are considering only distances from the slab much less than its 

height or breadth, the symmetry of the slab results in the field being perpendicular to the slab, with a 
constant magnitude for a constant distance from the center.  We assume that E 0   and so the 

electric field points away from the center of the slab. 
(a) To determine the field inside the slab, choose a cylindrical  

gaussian surface, of length 2x d  and cross-sectional area A.  
Place it so that it is centered in the slab.  There will be no flux 
through the curved wall of the cylinder.  The electric field is 
parallel to the surface area vector on both ends, and is the 
same magnitude on both ends.  Apply Gauss’s law to find the 
electric field at a distance 1

2x d  from the center of the slab.  

See the first diagram. 

  
 encl

0 0ends side ends

2
0     2   

xAQ
d d d d EA


 

          E A E A E A E A
      

     

  1
inside 2

0

; 
x

E x d



   

 

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

r /r 0

E
/E

0

1
2 d1

2 d

xx

E


E




Chapter 22  Gauss’s Law 

 

© 2009 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved.  This material is protected under all copyright laws as they 
currently exist.  No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

55 

(b) Use a similar arrangement to  
determine the field outside the slab.  
Now let 2 .x d   See the second 
diagram. 
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2

dA d
EA E x d

 
 

     

   Notice that electric field is continuous at the boundary of the slab. 
 
47. (a) In Problem 46, it is shown that the field outside a flat slab of nonconducting material with a  

uniform charge density is given by 
02
.

d
E




   If the charge density is positive, the field points 

away from the slab, and if the charge density is negative, the field points towards the slab.  So 
for this problem’s configuration, the field outside of both half-slabs is the vector sum of the 
fields from each half-slab.  Since those fields are equal in magnitude and opposite in direction, 
the field outside the slab is 0. 

(b) To find the field in the positively charged half-slab, we use a  
cylindrical gaussian surface of cross sectional area A.  Place it so that 
its left end is in the positively charged half-slab, a distance x > 0 from 
the center of the slab.  Its right end is external to the slab.  Due to the 
symmetry of the configuration, there will be no flux through the 
curved wall of the cylinder.  The electric field is parallel to the surface 
area vector on the left end, and is 0 on the right end.  We assume that 
the electric field is pointing to the left.  Apply Gauss’s law to find the 
electric field a distance 0 x d   from the center of the slab.  See the diagram. 
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  Since the field is pointing to the left, we can express this as 
 0

0

0

ˆ .x

d x
E





  i  

 (c) To find the field in the negatively charged half-slab, we use a cylindrical gaussian surface of  
cross sectional area A.  Place it so that its right end is in the negatively 
charged half-slab, a distance x < 0 from the center of the slab.  Its left 
end is external to the slab.  Due to the symmetry of the configuration, 
there will be no flux through the curved wall of the cylinder.  The 
electric field is parallel to the surface area vector on the left end, and 
is 0 on the right end.  We assume that the electric field is pointing to 
the right.  Apply Gauss’s law to find the electric field at a distance 

0d x    from the center of the slab.  See the diagram. 
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    x

d x A d x
EA E

 
 

   
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  Since the field is pointing to the left, we can express this as 
 0

0

0

ˆ .x

d x
E





  i  

Notice that the field is continuous at all boundaries.  At the left edge   ,x d  0 outside .xE E   At 

the center  0 ,x  0 >0.xE E   And at the right edge   ,x d 0 outside .xE E   

  
48. We follow the development of Example 22-6.  Because of the 

symmetry, we expect the field to be directed radially outward 
(no fringing effects near the ends of the cylinder) and to depend 
only on the perpendicular distance, R, from the symmetry axis 
of the cylinder.  Because of the cylindrical symmetry, the field 
will be the same at all points on a gaussian surface that is a 
cylinder whose axis coincides with the axis of the cylinder.  

The gaussian surface is of radius r and length l.  E


is perpendicular to this surface at all points.  In 
order to apply Gauss’s law, we need a closed surface, so we include the flat ends of the cylinder.  

Since E


is parallel to the flat ends, there is no flux through the ends.  There is only flux through the 
curved wall of the gaussian cylinder. 
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 To find the field inside the cylinder, we must find the charge enclosed in the gaussian cylinder.  We 
divide the gaussian cylinder up into coaxial thin cylindrical shells of length l and thickness dR.  That 
shell has volume 2 .dV R dR l   The total charge in the gaussian cylinder is found by integration. 
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49. The symmetry of the charge distribution allows the electric field inside the 

sphere to be calculated using Gauss’s law with a concentric gaussian 
sphere of radius 0.r r   The enclosed charge will be found by integrating 

the charge density over the enclosed volume. 
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The enclosed charge can be written in terms of the total charge by setting 
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0r r   and solving for the charge density in terms of the total charge. 
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 The electric field is then found from Gauss’s law    

   
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2encl
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   
 
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 E A
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  

 The electric field points radially outward since the charge distribution is positive. 
 
50. By Gauss’s law, the total flux through the cylinder is 0.Q    We find 

the flux through the ends of the cylinder, and then subtract that from 
the total flux to find the flux through the curved sides.  The electric 
field is that of a point charge.  On the ends of the cylinder, that field 
will vary in both magnitude and direction.  Thus we must do a 
detailed integration to find the flux through the ends of the cylinder.  
Divide the ends into a series of concentric circular rings, of radius R 
and thickness dR.  Each ring will have an area of 2 .RdR   The angle 

between E


and dA


is , where 0tan .R R   See the diagram of the 

left half of the cylinder. 
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The flux integral has three variables: r, R, and .   We express r and   in terms of R in order to 
integrate.  The anti-derivative is found in Appendix B-4. 
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51. The gravitational field a distance r from a point mass M is given by Eq. 6-8, 
2

ˆ,
GM

r
 g r


 where r̂  

is a unit vector pointing radially outward from mass M.  Compare this to the electric field of a point 

charge, 
2

0

1
ˆ.

4

Q

r
E r


  To change the electric field to the gravitational field, we would make these 

changes: 0  ;  4 .Q GM   E g
 

  Make these substitutions in Gauss’s law. 
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52. (a) We use Gauss’s law for a spherically symmetric charge distribution, and assume that all the  
charge is on the surface of the Earth.  Note that the field is pointing radially inward, and so the 
dot product introduces a negative sign. 
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 E A
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(b) Find the surface density of electrons.  Let n be the total number of electrons. 
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53. The electric field is strictly in the y direction.  So, referencing the diagram, there is no  

flux through the top, bottom, front, or back faces of the cube.  Only the “left” and 
“right” faces will have flux through them.  And since the flux is only dependent  
on the y coordinate, the flux through each of those two faces is particularly  
simple.  Calculate the flux and use Gauss’s law to find the enclosed charge. 
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54. (a) Find the value of b by integrating the charge density over the entire sphere.  Follow the  

development given in Example 22-5. 
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 (b) To find the electric field inside the sphere, we apply Gauss’s law to an imaginary sphere of  
radius r, calculating the charge enclosed by that sphere.  The spherical symmetry allows us to 
evaluate the flux integral simply. 
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 (c) As discussed in Example 22-4, the field outside a spherically symmetric distribution of charge  
is the same as that for a point charge of the same magnitude located at the center of the sphere. 
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55. The flux through a gaussian surface depends only on the charge enclosed by the surface.  For both of  
these spheres the two point charges are enclosed within the sphere.  Therefore the flux is the same 
for both spheres. 

   9 9

2encl

12 2 2

0

9.20 10 C 5.00 10 C
475 N m /C

8.85 10 C N m

Q



 



   
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



 

 
56. (a) The flux through any closed surface containing the total charge must be the same, so the flux  

through the larger sphere is the same as the flux through the smaller sphere, 2235 N m /C .   

(b) Use Gauss’s law to determine the enclosed charge. 

  12 2 2 2 9encl
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Q

Q 


             

 
57. (a) There is no charge enclosed within the sphere, and so no flux lines can  

originate or terminate inside the sphere.  All field lines enter and leave 
the sphere.  Thus the net flux is 0. 

 (b) The maximum electric field will be at the point on the sphere closest  
to Q, which is the top of the sphere.  The minimum electric field will be 
at the point on the sphere farthest from Q, which is the bottom of the 
sphere. 
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surface0 0 0 0
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25
.

Q Q
E

r r 
   

(c) E


 is not perpendicular at all points.  It is only perpendicular at the two points already  
discussed: the point on the sphere closest to the point charge, and the point on the sphere 
farthest from the point charge. 

 (d) The electric field is not perpendicular or constant over the surface of the sphere.  Therefore  
Gauss’s law is not useful for obtaining E at the surface of the sphere because a gaussian surface 
cannot be chosen that simplifies the flux integral. 

 
58. The force on a sheet is the charge on the sheet times the average 

electric field due to the other sheets:  But the fields due to the 
“other” sheets is uniform, so the field is the same over the entire 
sheet.  The force per unit area is then the charge per unit area, times 
the field due to the other sheets. 
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 The uniform fields from each of the three sheets are indicated on the diagram.  Take the positive 
direction as upwards.  We take the direction from the diagram, and so use the absolute value of each 
charge density.  The electric field magnitude due to each sheet is given by 02 .E    
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59. (a) The net charge inside a sphere of radius 0a will be made of two parts – the positive point charge  

at the center of the sphere, and some fraction of the total negative charge, since the negative 
charge is distributed over all space, as described by the charge density.  To evaluate the portion 
of the negative charge inside the sphere, we must determine the coefficient A.  We do that by 
integrating the charge density over all space, in the manner of Example 22-5.  Use an integral 
from Appendix B-5. 
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Now we find the negative charge inside the sphere of radius 0 ,a  using an integral from 

Appendix B-4.  We are indicating the elementary charge by   ,e  so as to not confuse it with the 

base of the natural logarithms. 
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(b) The field at a distance 0r a  is that of a point charge of magnitude netQ at the origin, because of  

the spherical symmetry and Gauss’s law. 
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60. The field due to the plane is plane

0

,
2

E



 as discussed in Example 22-7.  Because the slab is very 

large, and we assume that we are considering only distances from the slab much less than its height 
or breadth, the symmetry of the slab results in its field being perpendicular to the slab, with a 
constant magnitude for a constant distance from its center.  We also assume that E 0   and so the 

electric field of the slab points away from the center of the slab. 
 (a) To determine the field to the left of the plane, we  

choose a cylindrical gaussian surface, of  
length x d and cross-sectional area A.  Place it so 
that the plane is centered inside the cylinder.    See 
the diagram.  There will be no flux through the 
curved wall of the cylinder.  From the symmetry, 
the electric field is parallel to the surface area 
vector on both ends.   We already know that the 
field due to the plane is the same on both ends, and by the symmetry of the problem, the field 
due to the slab must also be the same on both ends.  Thus the total field is the same magnitude 
on both ends. 
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(b) As argued above, the field is symmetric on the outside of the charged matter. 

E
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d
E
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
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(c) To determine the field inside the slab, we choose a cylindrical  
gaussian surface of cross-sectional area A with one face to the  
left of the plane, and the other face inside the slab, a distance x  
from the plane.  Due to symmetry, the field again is parallel 
to the surface area vector on both ends, has a constant  
value on each end, and no flux pierces the curved walls. 
 Apply Gauss’s law. 
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Notice that the field is continuous from “inside” to “outside” at the right edge of the slab, but 
not at the left edge of the slab.  That discontinuity is due to the surface charge density. 
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61. Consider this sphere as a combination of two spheres.  Sphere 1 is a solid sphere of radius 0r  and  

charge density E centered at A and sphere 2 is a second sphere of radius 0 / 2r  and density E  

centered at C. 
(a) The electric field at A will have zero contribution from sphere 1 due to its symmetry about point  

A.   The electric field is then calculated by creating a gaussian surface centered at point C with 
radius 0 / 2.r  
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  

Since the electric field points into the gaussian surface (negative) the electric field at point A 
points to the right. 

(b) At point B the electric field will be the sum of the electric fields from each sphere.  The electric  
field from sphere 1 is calculated using a gaussian surface of radius 0r  centered at A. 
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At point B the field from sphere 1 points toward the left.  The electric field from sphere 2 is 
calculated using a gaussian surface centered at C of radius 03 / 2.r  
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At point B, the electric field from sphere 2 points toward the right.  The net electric field is the 
sum of these two fields.  The net field points to the left. 
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62. We assume the charge is uniformly distributed, and so the field of the pea is that of a point charge. 
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63. (a) In an electrostatic situation, there is no electric field inside a  

conductor.  Thus 0E   inside the conductor. 
(b) The positive sheet produces an electric field, external to  

itself, directed away from the plate with a magnitude as 

given in Example 22-7, of 1
1

0

.
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   The negative sheet 

produces an electric field, external to itself, directed towards 

the plate with a magnitude of 2
2
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.
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E
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   Between the left 

and middle sheets, those two fields are parallel and so add to each other. 
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(c) The same field is between the middle and right sheets.  See the diagram. 

  5

middle
right

5.65 10 N C , to the rightE    

(d) To find the charge density on the surface of the left side of the middle sheet, choose a gaussian  
cylinder with ends of area A.  Let one end be inside the conducting sheet, where there is no 
electric field, and the other end be in the area between the left and middle sheets.  Apply 
Gauss’s law in the manner of Example 22-16.  Note that there is no flux through the curved 
sides of the cylinder, and there is no flux through the right end since it is in conducting material.  
Also note that the field through the left end is in the opposite direction as the area vector of the 
left end. 

encl left
left
middle 0 0left right side

end end

6 21 2
left 0 left 0

middle 0

0 0   

5.00 10 C m
2

Q A
d d d d E A

E


 

 
  




         


      

 
 
 

   E A E A E A E A
      

   
 

(e) Because the middle conducting sheet has no net charge, the charge density on the right side 
must be the opposite of the charge density on the left side. 

  6 2

right left 5.00 10 C m       

Alternatively, we could have applied Gauss’s law on the right side in the same manner that we 
did on the left side.  The same answer would result. 

 
64. Because the electric field has only x and y components, there will be no flux 

through the top or bottom surfaces.  For the other faces, we choose a 
horizontal strip of height dz and width a for a differential element and 
integrate to find the flux.  The total flux is used to determine the enclosed 
charge. 

  
 

 front 0 0

0

2
23
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65. (a) Because the shell is a conductor, there is no electric field in the conducting material, and all  
charge must reside on its surfaces.  All of the field lines that originate from the point charge at 
the center must terminate on the inner surface of the shell.  Therefore the inner surface must 
have an equal but opposite charge to the point charge at the center.  Since the conductor has the 
same magnitude of charge as the point charge at the center, all of the charge on the conductor is 
on the inner surface of the shell, in a spherically symmetric distribution. 

 (b) By Gauss’s law and the spherical symmetry of the problem, the electric field can be calculated  

by 
2

0

encl1

4

Q
E

r
 . 

   

   9 2 2 6 4 2

encl

2 2 2

0

8.988 10 N m C 3.0 10 C1 2.7 10 N m C
0.10 m:  

4

0.15m:  0

Q
r E

r r r

r E



    
   

 

 

  And since there is no electric field in the shell, we could express the second answer as  

0.10 m:  0 .r E   
 

66. (a) At a strip such as is marked in the textbook diagram, dA


is perpendicular to the surface, and  E


  
is inclined at an angle    relative to dA


. 
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 
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/ 2
/ 22 2 2 21

2 0
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cos 2 sin

2 cos sin 2 sin

d E R d

R E d R E R E






   

      

  

  

 



E A



 

(b) Choose a closed gaussian surface consisting of the hemisphere and the circle of radius R at the  
base of the hemisphere.  There is no charge inside that closed gaussian surface, and so the total 
flux through the two surfaces (hemisphere and base) must be zero.  The field lines are all 
perpendicular to the circle, and all of the same magnitude, and so that flux is very easy to 
calculate. 

  
  2

circle

2 2
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cos180

0     

d E d EA E R
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 
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67. The flux is the sum of six integrals, each of the form .dE A


   Because 

the electric field has only x and y components, there will be no flux 
through the top or bottom surfaces.  For the other faces, we choose a 
vertical strip of height a and width dy (for the front and back faces) or dx 
(for the left and right faces).  See the diagram for an illustration of a strip 
on the front face.  The total flux is then calculated, and used to determine 
the enclosed charge. 

  
 

2 2 2
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x y x
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  
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     
        

 
  
 
 i j i  

 This integral does not have an analytic anti-derivative, and so must be integrated numerically.  We 

approximate the integral by a sum: 
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       The region of integration is divided 
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into n elements, and so 
0a

y
n


   and .iy i y    We initially evaluate the sum for n = 10.  Then we 

evaluate it for n = 20.  If the two sums differ by no more than 2%, we take that as the value of the 
integral.  If they differ by more than 2%, we choose a larger n, compute the sum, and compare that to 
the result for n = 20.  We continue until a difference of 2% or less is reached.  This integral, for n = 
100 and a = 1.0 m, is 0.1335 m.  So we have this intermediate result. 

  
 

     
2

2
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aE e y



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 
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 Now do the integral over the back face. 
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We again get an integral that cannot be evaluated analytically.  A similar process to that used for the 

front face is applied again, and so we make this approximation: 
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0 0
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.
iyya n

aa
x x

i

aE e dy aE e y




  
   
        

 The numeric integration gives a value of 0.7405 m. 
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 Now consider the right side. 
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 Notice that the same integral needs to be evaluated as for the front side.  All that has changed is the 
variable name.  Thus we have the following. 
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Finally, do the left side, following the same process.  The same integral arises as for the back face. 
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Sum to find the total flux, and multiply by 0 to find the enclosed charge. 

  

   

total front back right left top bottom

2 2 2

12 2 2 2 10

encl 0 total

6.675 37.025 3.3375 18.5125 N m C 45.525 N m C 46 N m C
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       

       

       

  

 

 

The spreadsheet used for this problem can be found on the Media Manager, with filename 
“PSE4_ISM_CH22.XLS,” on tab “Problem 22.67.” 


