
Shear Stress and Shear Flow

1 The Shear Stress Equation

Now we have expressions for the normal stress caused by bending moments and normal forces. It would
be nice if we can also find an expression for the shear stress due to a shear force. So let’s do that.

Figure 1: An example cross-section, where a cut has been made.

We want to know the shear stress at a certain point. For that, we need to look at the cross-section of the
beam. One such cross-section is shown in figure 1. To find the shear stress at a given point, we make a
cut. We call the thickness of the cut t. We take the area on one side of the cut (it doesn’t matter which
side) and call this area A′. Now it can be shown that
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Here y is the vertical distance from the center of gravity of the entire cross-section. (Not just the part
A′!) Let’s evaluate this integral for the cross-section. We find that
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Note that we have used the thin-walled structure principle in the last step.

So now we have found the shear stress. Note that this is the shear stress at the position of the cut! At
different places in the cross-section, different shear stresses are present.

One thing we might ask ourselves now is: Where does maximum shear stress occur? Well, it can be
shown that this always occurs in the center of gravity of the cross-section. So if you want to calculate
the maximum shear stress, make a cut through the center of gravity of the cross-section. (An exception
may occur if torsion is involved, but we will discuss that in a later chapter.)

2 A Slight Simplification

Evaluating the integral of (1.1) can be a bit difficult in some cases. To simplify things, let’s define Q as

Q =
∫

A′
y dA, (2.1)

implying that

τ =
V Q

It
. (2.2)
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We have seen this quantity Q before. It was when we were calculating the position of the center of gravity.
And we had a nice trick back then to simplify calculations. We split A′ up in parts. Now we have

Q =
∑

yiA
′
i, (2.3)

with A′
i the area of a certain part and yi the position of its center of gravity. We can apply this to the

cross-section of figure 1. We would then get
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Note that this is exactly the same as what we previously found (as it should be).

3 Shear Flow

Let’s define the shear flow q as

q = τt =
V Q

I
. (3.1)

Now why would we do this? To figure that out, we take a look at the shear stress distribution and the
shear flow distribution. They are both plotted in figure 2.

Figure 2: Distribution of the shear stress and the shear flow over the structure.

We see that the shear stress suddenly increases if the thickness decreases. This doesn’t occur for the shear
flow. The shear flow is independent of the thickness. You could say that, no matter what the thickness
is, the shear flow flowing through a certain part of the cross-section stays the same.

4 Bolts

Suppose we have two beams, connected by a number of n bolts. In the example picture 3, we have n = 2.
These bolts are placed at intervals of s meters in the longitudinal direction, with s being the spacing of
the bolts.

Figure 3: Example of a cross-section with bolts.
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Suppose we can measure the shear force Vb in every bolt. Let’s assume that these shear forces are equal
for all bolts. (In asymmetrical situations things will be a bit more complicated, but we won’t go into
detail on that.) The shear flow in all the bolts together will then be

qb =
nVb

s
. (4.1)

Now we can reverse the situation. We can calculate the shear flow in all bolts together using the methods
from the previous paragraph. In our example figure 3, we would have to make a vertical cut through
both bolts. Now, with the above equation, the shear force per bolt can be calculated.

5 The Value of Q for Common Cross-Sectional Shapes

It would be nice to know the maximum values of Q for some common cross-sectional shapes. This could
save us some calculations. If you want to know Qmax for a rather common cross-section, just look it up
in the list below.

• A rectangle, with width w and height h.
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• A circle with radius R.
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• A tube with inner radius R1 and outer radius R2.
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• A thin-walled tube with radius R and thickness t.

Qmax = 2R2t and τmax = 2
V
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πRt
. (5.4)
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