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CHAPTER 8 

 

FAILURE 

 

PROBLEM SOLUTIONS 

 

 

 Principles of Fracture Mechanics 

 

 8.1  This problem asks that we compute the magnitude of the maximum stress that exists at the tip of an 

internal crack.  Equation 8.1 is employed to solve this problem, as 
 

  
σm = 2σ0

a
ρt
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=  2800 MPa  (400,000 psi)  
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 8.2  In order to estimate the theoretical fracture strength of this material it is necessary to calculate σm 

using Equation 8.1 given that σ0 = 1035 MPa, a = 0.5 mm, and ρt = 5 x 10-3 mm.  Thus, 

 

  
σm = 2σ0

a
ρt
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1/2
 

 

  
=  (2)(1035 MPa) 0.5 mm

5 x 10−3 mm
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1/2
= 2.07 x 104  MPa = 207 GPa  (3 x 106  psi)  
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 8.3  We may determine the critical stress required for the propagation of an internal crack in aluminum 

oxide using Equation 8.3;  taking the value of 393 GPa (Table 12.5) as the modulus of elasticity, we get 

 

  
σc =

2E γs
π a

⎡ 
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⎢ 

⎤ 

⎦ 
⎥ 
1/2

 

 

  

= (2)(393 x 109 N /m2)(0.90  N /m)

(π) 0.4 x 10−3 m
2
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= 33.6  x106  N/m2 = 33.6 MPa  
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 8.4  The maximum allowable surface crack length for MgO may be determined using Equation 8.3;  taking 

225 GPa as the modulus of elasticity (Table 12.5), and solving for a, leads to 

 

    

a =
2 E γs
π σc

2 = (2)(225 x 109 N / m2)(1.0  N /m)

(π) (13.5 x 106 N / m2) 2  

 

= 7.9 x 10-4 m = 0.79 mm  (0.031 in.) 
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 8.5  This problem asks us to determine whether or not the 4340 steel alloy specimen will fracture when 
exposed to a stress of 1030 MPa, given the values of KIc, Y, and the largest value of a in the material.  This requires 

that we solve for σc from Equation 8.6.  Thus 

 

    
σc =

KIc
Y π a

=
54.8  MPa m

(1.0) (π)(0.5 x 10−3 m)
= 1380  MPa  (199,500 psi)  

 

Therefore, fracture will not occur because this specimen will tolerate a stress of 1380 MPa (199,500 psi) before 

fracture, which is greater than the applied stress of 1030 MPa (150,000 psi). 
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 8.6  We are asked to determine if an aircraft component will fracture for a given fracture toughness (40 

  MPa m), stress level (260 MPa), and maximum internal crack length (6.0 mm), given that fracture occurs for the 

same component using the same alloy for another stress level and internal crack length.  It first becomes necessary 

to solve for the parameter Y, using Equation 8.5, for the conditions under which fracture occurred (i.e., σ = 300 

MPa and a = 4.0 mm).  Therefore, 

 

    

Y =
KIc

σ π a
=

40  MPa m

(300  MPa) (π) 4 x 10−3 m
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

= 1.68 

 
Now we will solve for the product   Y σ πa   for the other set of conditions, so as to ascertain whether or not this 
value is greater than the KIc for the alloy.  Thus, 

 

    
Y σ π a = (1.68)(260 MPa) (π) 6 x 10−3 m

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟  ⎟  

 

  = 42.4 MPa m  (39 ksi in.) 

 
Therefore, fracture will occur since this value  (42.4 MPa m ) is greater than the KIc of the material,   40 MPa m . 
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 8.7  This problem asks us to determine the stress level at which an a wing component on an aircraft will 
fracture for a given fracture toughness   (26 MPa m ) and maximum internal crack length (6.0 mm), given that 

fracture occurs for the same component using the same alloy at one stress level (112 MPa) and another internal 

crack length (8.6 mm).  It first becomes necessary to solve for the parameter Y for the conditions under which 

fracture occurred using Equation 8.5.  Therefore, 

 

    

Y =
KIc

σ πa
=

26  MPa m

(112  MPa) (π) 8.6 x 10−3 m
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

= 2.0 

 
Now we will solve for σc using Equation 8.6 as 

 

    

σc =
KIc

Y πa
=

26  MPa m

(2.0) (π) 6 x 10−3 m
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

= 134  MPa  (19,300 psi)  
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 8.8  For this problem, we are given values of KIc  (82.4 MPa m ) , σ (345 MPa), and Y (1.0) for a large 

plate and are asked to determine the minimum length of a surface crack that will lead to fracture.  All we need do is 
to solve for ac using Equation 8.7;  therefore 

 

    
ac = 1

π

KIc
Y σ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

= 1
π

82.4  MPa m
(1.0)(345 MPa)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
2

= 0.0182  m = 18.2  mm  (0.72  in.)  
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 8.9  This problem asks us to calculate the maximum internal crack length allowable for the Ti-6Al-4V 

titanium alloy in Table 8.1 given that it is loaded to a stress level equal to one-half of its yield strength.  For this 
alloy,     KIc = 55 MPa m (50 ksi in. ) ;  also,  σ = σy/2 = (910 MPa)/2 = 455 MPa (66,000 psi).  Now solving for 

2ac using Equation 8.7 yields 

 

    
2ac = 2

π

KIc
Yσ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

= 2
π

55 MPa m
(1.5)(455 MPa)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
2

= 0.0041  m = 4.1 mm  (0.16  in.) 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 



 8-10 

 8.10  This problem asks that we determine whether or not a critical flaw in a wide plate is subject to 
detection given the limit of the flaw detection apparatus (3.0 mm), the value of KIc  (98.9 MPa m ), the design 

stress (σy/2 in which σy = 860 MPa), and Y = 1.0.  We first need to compute the value of ac using Equation 8.7;  

thus 

 

    

ac = 1
π

KIc
Yσ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

= 1
π

98.9  MPa m

(1.0) 860  MPa
2

⎛ 
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⎜ 

⎞ 
⎠ 
⎟ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

2

= 0.0168  m = 16.8  mm  (0.66  in.)  

 
Therefore, the critical flaw is subject to detection since this value of ac (16.8 mm) is greater than the 3.0 mm 

resolution limit. 
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 8.11  The student should do this problem on his/her own. 
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 Impact Fracture Testing 

 

 8.12  (a)  The plot of impact energy versus temperature is shown below. 

 

 
 

 (b)  The average of the maximum and minimum impact energies from the data is 

 

  
Average = 105 J + 24 J

2
= 64.5  J  

 

As indicated on the plot by the one set of dashed lines, the ductile-to-brittle transition temperature according to this 

criterion is about –100°C. 

 (c)  Also, as noted on the plot by the other set of dashed lines, the ductile-to-brittle transition temperature 

for an impact energy of 50 J is about –110°C. 
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 8.13  The plot of impact energy versus temperature is shown below. 

 

 
 

 (b)  The average of the maximum and minimum impact energies from the data is 

 

  
Average = 76 J + 1.5 J

2
= 38.8  J  

 

As indicated on the plot by the one set of dashed lines, the ductile-to-brittle transition temperature according to this 

criterion is about 10°C. 

 (c)  Also, as noted on the plot by the other set of dashed lines, the ductile-to-brittle transition temperature 

for an impact energy of 20 J is about –2°C. 
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 Cyclic Stresses (Fatigue) 
 The S-N Curve 

 
 8.14   (a)  Given the values of σm (70 MPa) and σa (210 MPa) we are asked to compute σmax and σmin.  

From Equation 8.14 

 

    
σm =

σmax + σmin
2

= 70  MPa  

Or, 
 

σmax + σmin = 140 MPa 

 

Furthermore, utilization of Equation 8.16 yields 

 

    
σa =

σmax − σmin
2

= 210  MPa  

 

Or, 
 

σmax – σmin = 420 MPa 

 

Simultaneously solving these two expressions leads to 

 

  σmax = 280  MPa  (40,000 psi)  

  σmin = −140  MPa  (−20,000 psi)  

 

 (b)  Using Equation 8.17 the stress ratio R is determined as follows: 

 

    
R =

σmin
σmax

= −140  MPa
280  MPa

= − 0.50 

 
 (c)  The magnitude of the stress range σr is determined using Equation 8.15 as 

 

    σr = σmax − σmin = 280 MPa −  (−140  MPa) = 420 MPa  (60,000  psi)  
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 8.15  This problem asks that we determine the minimum allowable bar diameter to ensure that fatigue 

failure will not occur for a 1045 steel that is subjected to cyclic loading for a load amplitude of 66,700 N (15,000 
lbf).  From Figure 8.34, the fatigue limit stress amplitude for this alloy is 310 MPa (45,000 psi).  Stress is defined in 

Equation 6.1 as 
    
σ = F

A0
.  For a cylindrical bar 

 

  
A0 = π

d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2
 

 
Substitution for A0 into the Equation 6.1 leads to 

 

    

σ =  F
A0

 =  F

π
d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2  =  4F

πd0
2  

 
 We now solve for d0, taking stress as the fatigue limit divided by the factor of safety.  Thus 

 

  

d0 = 4F

π
σ
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

 

 

  

= (4)(66,700  N)

(π) 310 x 106 N /m2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

= 23.4 x 10−3 m = 23.4 mm (0.92 in.)  
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 8.16  We are asked to determine the fatigue life for a cylindrical 2014-T6 aluminum rod given its diameter 

(6.4 mm) and the maximum tensile and compressive loads (+5340 N and –5340 N, respectively).  The first thing 
that is necessary is to calculate values of σmax and σmin using Equation 6.1.  Thus 

 

  

σmax =
Fmax

A0
=

Fmax

π
d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2  

 

  

 = 5340  N

(π) 6.4 x 10−3 m
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2 = 166  x  106  N/m2 = 166  MPa  (24, 400  psi)  

 

 

  

σmin =
Fmin

π
d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2  

 

  

= −5340  N

(π) 6.4 x 10−3 m
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2 = −166 x 106  N/m2 = −166  MPa  (−24, 400 psi)  

 

Now it becomes necessary to compute the stress amplitude using Equation 8.16 as 
 

    
σa =

σmax − σmin
2

= 166  MPa − (−166  MPa)
2

= 166  MPa  (24, 400  psi)  

 

From Figure 8.34, for the 2014-T6 aluminum, the number of cycles to failure at this stress amplitude is about 1 x 

107 cycles. 
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 8.17  This problem asks that we compute the maximum and minimum loads to which a 15.2 mm (0.60 in.) 

diameter 2014-T6 aluminum alloy specimen may be subjected in order to yield a fatigue life of 1.0 x 108 cycles;  

Figure 8.34 is to be used assuming that data were taken for a mean stress of 35 MPa (5,000 psi).  Upon consultation 

of Figure 8.34, a fatigue life of 1.0 x 108 cycles corresponds to a stress amplitude of 140 MPa (20,000 psi).  Or, 

from Equation 8.16 

 

    σmax − σmin = 2σa = (2)(140 MPa) = 280  MPa  (40,000  psi)  

 
Since σm = 35 MPa, then from Equation 8.14 

 

    σmax + σmin = 2σm = (2)(35 MPa) = 70  MPa  (10,000  psi)  

 
Simultaneous solution of these two expressions for σmax and σmin yields 

 
σmax = +175 MPa  (+25,000 psi)  

σmin = –105 MPa  (–15,000 psi) 

 

Now, inasmuch as 
    
σ = F

A0
 (Equation 6.1), and 

  
A0 = π

d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

  then 

 

    
Fmax =

σmaxπ d 0
2

4
= (175 x 106 N /m2) (π) (15.2 x 10−3 m)2

4
= 31,750  N  (7070  lbf )  

 

    
Fmin =

σminπ d 0
2

4
= (−105 x 106 N /m2) (π) (15.2 x 10−3 m)2

4
= −19,000  N  (−4240  lbf )  
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 8.18  (a)  The fatigue data for this alloy are plotted below. 

 

 
 

 (b)  As indicated by one set of dashed lines on the plot, the fatigue strength at 4 x 106 cycles [log (4 x 106) 

= 6.6] is about 100 MPa. 

 (c)  As noted by the other set of dashed lines, the fatigue life for 120 MPa is about 6 x 105 cycles (i.e., the 

log of the lifetime is about 5.8). 
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 8.19  We are asked to compute the maximum torsional stress amplitude possible at each of several fatigue 

lifetimes for the brass alloy the fatigue behavior of which is given in Problem 8.18.  For each lifetime, first compute 

the number of cycles, and then read the corresponding fatigue strength from the above plot. 

 (a)  Fatigue lifetime = (1 yr)(365 days/yr)(24 h/day)(60 min/h)(1800 cycles/min) = 9.5 x 108 cycles.  The 

stress amplitude corresponding to this lifetime is about 74 MPa. 

 (b) Fatigue lifetime = (30 days)(24 h/day)(60 min/h)(1800 cycles/min) = 7.8 x 107 cycles.  The stress 

amplitude corresponding to this lifetime is about 80 MPa. 

 (c) Fatigue lifetime = (24 h)(60 min/h)(1800 cycles/min) = 2.6 x 106 cycles.  The stress amplitude 

corresponding to this lifetime is about 103 MPa. 

 (d) Fatigue lifetime = (60 min/h)(1800 cycles/min) = 108,000 cycles.  The stress amplitude corresponding 

to this lifetime is about 145 MPa. 
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 8.20  (a)  The fatigue data for this alloy are plotted below. 

 

 
 

 (b)  The fatigue limit is the stress level at which the curve becomes horizontal, which is 290 MPa (42,200 

psi). 

 (c)  From the plot, the fatigue lifetimes at a stress amplitude of 415 MPa (60,000 psi) is about 50,000 

cycles (log N = 4.7).  At 275 MPa (40,000 psi) the fatigue lifetime is essentially an infinite number of cycles since 

this stress amplitude is below the fatigue limit. 

 (d)  Also from the plot, the fatigue strengths at 2 x 104 cycles (log N = 4.30) and 6 x 105 cycles (log N = 

5.78) are 440 MPa (64,000 psi) and 325 MPa (47,500 psi), respectively. 
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 8.21  This problem asks that we determine the maximum lifetimes of continuous driving that are possible at 

an average rotational velocity of 600 rpm for the alloy the fatigue data of which is provided in Problem 8.20 and at a 

variety of stress levels. 
 (a)  For a stress level of 450 MPa (65,000 psi), the fatigue lifetime is approximately 18,000 cycles.  This 
translates into (1.8 x 104 cycles)(1 min/600 cycles) = 30 min. 
 (b)  For a stress level of 380 MPa (55,000 psi), the fatigue lifetime is approximately 1.5 x 105 cycles.  This 
translates into (1.5 x 105 cycles)(1 min/600 cycles) = 250 min = 4.2 h. 
 (c)  For a stress level of 310 MPa (45,000 psi), the fatigue lifetime is approximately 1 x 106 cycles.  This 
translates into (1 x 106 cycles)(1 min/600 cycles) = 1667 min = 27.8 h. 
 (d)  For a stress level of 275 MPa (40,000 psi), the fatigue lifetime is essentially infinite since we are below 
the fatigue limit. 
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 8.22  For this problem we are given, for three identical fatigue specimens of the same material, σmax and 

σmin data, and are asked to rank the lifetimes from the longest to the shortest.  In order to do this it is necessary to 

compute both the mean stress and stress amplitude for each specimen.  Since from Equation 8.14 
 

  
σm =

σmax + σmin
2

 

 

    
σm(A) = 450 MPa + (−150 MPa)

2
= 150 MPa  

 

    
σm( B) = 300 MPa + (−300 MPa)

2
= 0 MPa  

 

    
σm(C) = 500 MPa + (−200 MPa)

2
= 150 MPa  

 

Furthermore, using Equation 8.16 
 

  
σa =

σmax − σmin
2

 

 

    
σa(A) = 450 MPa − (−150 MPa)

2
= 300 MPa  

 

    
σa( B) = 300 MPa − (−300 MPa)

2
= 300 MPa  

 

    
σa(C) = 500 MPa − (−200 MPa)

2
= 350 MPa  

 
On the basis of these results, the fatigue lifetime for specimen B will be greater than specimen A which in turn will 
be greater than specimen C.  This conclusion is based upon the following S-N plot on which curves are plotted for 
two σm values. 
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 8.23  Five factors that lead to scatter in fatigue life data are (1) specimen fabrication and surface 

preparation, (2) metallurgical variables, (3) specimen alignment in the test apparatus, (4) variation in mean stress, 

and (5) variation in test cycle frequency. 
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 Crack Initiation and Propagation 
 Factors That Affect Fatigue Life 

 

 8.24  (a)  With regard to size, beachmarks are normally of macroscopic dimensions and may be observed 

with the naked eye;  fatigue striations are of microscopic size and it is necessary to observe them using electron 

microscopy. 

 (b)  With regard to origin, beachmarks result from interruptions in the stress cycles;  each fatigue striation 

is corresponds to the advance of a fatigue crack during a single load cycle. 
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 8.25  Four measures that may be taken to increase the fatigue resistance of a metal alloy are: 

 (1)  Polish the surface to remove stress amplification sites. 

 (2)  Reduce the number of internal defects (pores, etc.) by means of altering processing and fabrication 

techniques. 

 (3)  Modify the design to eliminate notches and sudden contour changes. 

 (4)  Harden the outer surface of the structure by case hardening (carburizing, nitriding) or shot peening. 
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 Generalized Creep Behavior 

 
 8.26  Creep becomes important at about 0.4Tm, Tm being the absolute melting temperature of the metal.  

(The melting temperatures in degrees Celsius are found inside the front cover of the book.) 

 
 For Sn, 0.4Tm = (0.4)(232 + 273) = 202 K or -71°C (-96°F) 

 For Mo, 0.4Tm = (0.4)(2617 + 273) = 1156 K or 883°C (1621°F) 

 For Fe, 0.4Tm = (0.4)(1538 + 273) = 724 K or 451°C (845°F) 

 For Au, 0.4Tm = (0.4)(1064 + 273) = 535 K or 262°C (504°F) 

 For Zn, 0.4Tm = (0.4)(420 + 273) = 277 K or 4°C (39°F) 

 For Cr, 0.4Tm = (0.4)(1875 + 273) = 859 K or 586°C (1087°F) 
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 8.27  These creep data are plotted below 
 

 
 

The steady-state creep rate (∆ε/∆t) is the slope of the linear region (i.e., the straight line that has been superimposed 

on the curve) as 
 

    

∆ε
∆t

= 1.20 − 0.25
30  min − 0  min

= 3.2 x  10-2  min-1 
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 Stress and Temperature Effects 

 

 8.28  This problem asks that we determine the total elongation of a low carbon-nickel alloy that is exposed 

to a tensile stress of 70 MPa (10,000 psi) at 427°C for 10,000 h;  the instantaneous and primary creep elongations 

are 1.3 mm (0.05 in.). 
 From the 427°C line in Figure 8.31, the steady state creep rate  Ý ε s is about 4.7 x 10-7 h-1 at 70 MPa.  The 
steady state creep strain, εs, therefore, is just the product of  

Ý ε s  and time as 

 

  εs = Ý ε s x  (time) 

 

  = (4.7 x 10-7  h-1)(10,000  h) = 4.7 x10-3 

 
Strain and elongation are related as in Equation 6.2;  solving for the steady state elongation, ∆ls, leads to  

 

    ∆ls = l0 εs = (1015  mm)(4.7  x 10-3) = 4.8  mm  (0.19  in.) 

 
Finally, the total elongation is just the sum of this ∆ls and the total of both instantaneous and primary creep 

elongations [i.e., 1.3 mm (0.05 in.)].  Therefore, the total elongation is 4.8 mm + 1.3 mm = 6.1 mm (0.24 in.). 
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 8.29  We are asked to determine the tensile load necessary to elongate a 635 mm long low carbon-nickel 

alloy specimen 6.44 mm after 5,000 h at 538°C.  It is first necessary to calculate the steady state creep rate so that 
we may utilize Figure 8.31 in order to determine the tensile stress.  The steady state elongation, ∆ls, is just the 

difference between the total elongation and the sum of the instantaneous and primary creep elongations;  that is, 

 

    ∆ls = 6.44  mm − 1.8  mm = 4.64  mm  (0.18  in.)  

 
Now the steady state creep rate,   Ý  is just ε s

 

    
Ý ε s = ∆ε

∆ t
=

∆ ls
l0
∆ t

=

4.64  mm
635 mm
5,000  h

 

 

= 1.46 x 10-6 h-1 

 

Employing the 538°C line in Figure 8.31, a steady state creep rate of 1.46 x 10-6 h-1 corresponds to a stress σ of 

about 40 MPa (5,800 psi) [since log (1.46 x 10-6) = -5.836].  From this we may compute the tensile load using 

Equation 6.1 as 

 

  
F = σA0 = σπ

d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

 

 

  
= (40 x 106  N/m2)(π) 19.0 x 10−3 m

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
= 11,300  N  (2560  lbf )  
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 8.30  This problem asks us to calculate the rupture lifetime of a component fabricated from a low carbon-

nickel alloy exposed to a tensile stress of 31 MPa at 649°C.  All that we need do is read from the 649°C line in 

Figure 8.30 the rupture lifetime at 31 MPa;  this value is about 10,000 h. 
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 8.31  We are asked in this problem to determine the maximum load that may be applied to a cylindrical low 

carbon-nickel alloy component that must survive 10,000 h at 538°C.  From Figure 8.30, the stress corresponding to 
104 h is about 70 MPa (10,000 psi).  Since stress is defined in Equation 6.1 as σ = F/A0, and for a cylindrical 

specimen, 
    
A0 =  π

d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

, then 

 

  
F = σA0 = σπ

d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

 

 

  
= (70 x 106  N/m2)(π) 19.1 x 10−3 m

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
= 20,000  N  (4420 lbf )  
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 8.32  The slope of the line from a log  Ý  versus log σ plot yields the value of n in Equation 8.19;  that is ε s

 

  
n =

∆ log Ý ε s
∆ log σ

 

 

We are asked to determine the values of n for the creep data at the three temperatures in Figure 8.31.  This is 
accomplished by taking ratios of the differences between two log  

Ý ε s  and log σ values.  (Note:  Figure 8.31 plots log 

σ versus log   Ý ;  therefore, values of n are equal to the reciprocals of the slopes of the straight-line segments.) ε s

Thus for 427°C 

 

    
n =

∆ log Ý ε s
∆ log σ

= log (10−6) − log (10−7)
log (82  MPa) − log (54  MPa)

= 5.5 

 

While for 538°C 

 

    
n =

∆ log Ý ε s
∆ log σ

=
log 10−5( )− log (10−7)

log (59  MPa) − log (22  MPa)
= 4.7  

 

And at 649°C 

 

    
n =

∆ log Ý ε s
∆ log σ

=
log 10−5( )− log (10−7)

log (15 MPa) − log (8.3 MPa)
= 7.8 
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 8.33  (a)  We are asked to estimate the activation energy for creep for the low carbon-nickel alloy having 

the steady-state creep behavior shown in Figure 8.31, using data taken at σ = 55 MPa (8000 psi) and temperatures 

of 427°C and 538°C.  Since σ is a constant, Equation 8.20 takes the form 

 

    
Ý ε s = K2σnexp −

Qc
RT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = K2

' exp −
Qc
RT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

where      is now a constant.  (Note:  the exponent n has about the same value at these two temperatures per 

Problem 8.32.)  Taking natural logarithms of the above expression 

K2
'

 

  
ln Ý ε s =  ln K2

' −
Qc
RT

 

 
For the case in which we have creep data at two temperatures (denoted as T1 and T2) and their corresponding 
steady-state creep rates (

    
Ý ε s1

and 
    
Ý ε s2

), it is possible to set up two simultaneous equations of the form as above, with 

two unknowns, namely      and Qc.  Solving for Qc yields K2
'

 

  

Qc = −  
R ln Ý ε s1

− ln Ý ε s2
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

1
T1

−
1

T2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

 

 
Let us choose T1 as 427°C (700 K) and T2 as 538°C (811 K);  then from Figure 8.31, at σ = 55 MPa, 

    
Ý ε s1

 = 10-7 h-1 

and 
    
Ý ε s2

 =  8 x 10-6 h-1.  Substitution of these values into the above equation leads to 

 

    

Qc = −  
(8.31 J /mol - K) ln (10−7) − ln (8 x 10−6)[ ]

1
700  K

−
1

811 K
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

 

 

= 186,200 J/mol 

 

 (b)  We are now asked to estimate  Ý ε s at 649°C (922 K).  It is first necessary to determine the value of , 
which is accomplished using the first expression above, the value of Qc, and one value each of   

  K2
'

Ý ε s and T (say 
  
Ý ε s1

 

and T1).  Thus, 
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K2

' =  Ý ε s1
exp 

Qc
RT1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

  
=  10−7 h−1( )exp 186,200  J /mol

(8.31 J /mol - K)(700  K)
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ =  8.0 x 106  h-1 

 
Now it is possible to calculate   Ý  at 649°C (922 K) as follows: ε s

 

  
Ý ε s =  K2

' exp −
Qc
RT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

  
=  8.0 x 10−6 h−1( )exp 186,200  J /mol

(8.31 J /mol - K)(922  K)
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  

 

= 2.23 x 10-4 h-1 
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 8.34  This problem gives   Ý ε s values at two different stress levels and 200°C, and the activation energy for 

creep, and asks that we determine the steady-state creep rate at 250°C and 48 MPa (7000 psi). 

 Taking natural logarithms of both sides of Equation 8.20 yields 

 

    
ln Ý ε s =  ln K2 + n ln σ −

Qc
RT

 

 
With the given data there are two unknowns in this equation--namely K2 and n.  Using the data provided in the 

problem statement we can set up two independent equations as follows: 

 

    
ln 2.5 x 10−3 h−1( )= ln K2 +  n ln(55 MPa) −

140,000 J /mol
(8.31 J /mol - K)(473 K)

 

 

    
ln 2.4 x 10−2  h−1( )= ln K2 +  n ln(69 MPa) −

140,000 J /mol
(8.31 J /mol - K)(473 K)

 

 
Now, solving simultaneously for n and K2 leads to n = 9.97 and K2 = 3.27 x 10-5 h-1.  Thus it is now possible to 

solve for   Ý  at 48 MPa and 523 K using Equation 8.20 as ε s

 

  
Ý ε s = K2σnexp −

Qc
RT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

  
= 3.27 x 10−5 h−1( )(48 MPa)9.97 exp −

140,000  J /mol
(8.31 J /mol - K)(523 K)

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  

 

1.94 x 10-2 h-1 
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 8.35  This problem gives   Ý ε s values at two different temperatures and 140 MPa (20,000 psi), and the value 

of the stress exponent n = 8.5, and asks that we determine the steady-state creep rate at a stress of 83 MPa (12,000 

psi) and 1300 K. 

 Taking natural logarithms of both sides of Equation 8.20 yields 

 

    
ln Ý ε s =  lnK2 + n lnσ −

Qc
RT

 

 
With the given data there are two unknowns in this equation--namely K2 and Qc.  Using the data provided in the 

problem statement we can set up two independent equations as follows: 
 

    
ln 6.6 x 10−4  h−1( )= ln K2 +  (8.5) ln(140 MPa) −

Qc
(8.31 J /mol - K)(1090  K)

 

 

    
ln 8.8 x 10−2  h−1( )= ln K2 +  (8.5) ln(140 MPa) −

Qc
(8.31 J /mol - K)(1200  K)

 

 
Now, solving simultaneously for K2 and Qc leads to K2 = 57.5 h-1 and Qc = 483,500 J/mol.  Thus, it is now 

possible to solve for   Ý  at 83 MPa and 1300 K using Equation 8.20 as ε s
 

  
Ý ε s = K2σnexp −

Qc
RT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

  
= 57.5 h−1( )(83 MPa)8.5exp −

483,500  J /mol
(8.31 J /mol - K)(1300  K)

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  

 

4.31 x 10-2 h-1 
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 Alloys for High-Temperature Use 

 

 8.36  Three metallurgical/processing techniques that are employed to enhance the creep resistance of metal 

alloys are (1) solid solution alloying, (2) dispersion strengthening by using an insoluble second phase, and (3) 

increasing the grain size or producing a grain structure with a preferred orientation. 
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DESIGN PROBLEMS 

 

 8.D1  Each student or group of students is to submit their own report on a failure analysis investigation that 

was conducted. 
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 Principles of Fracture Mechanics 

 

 8.D2  (a)  This portion of the problem calls for us to rank four polymers relative to critical crack length in 

the wall of a spherical pressure vessel.  In the development of Design Example 8.1, it was noted that critical crack 
length is proportional to the square of the KIc–σy ratio.  Values of KIc and σy as taken from Tables B.4 and B.5 are 

tabulated below.  (Note:  when a range of σy or KIc values is given, the average value is used.) 

 
 Material    KIc (MPa m ) σy (MPa) 
 Nylon 6,6 2.75 51.7 

 Polycarbonate 2.2 62.1 

 Poly(ethylene terephthlate) 5.0 59.3 

 Poly(methyl methacrylate) 1.2 63.5 

 
On the basis of these values,  the five polymers are ranked per the squares of the KIc–σy ratios as follows: 

 

 Material 
  

KIc
σ y

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

2

 (mm) 

 PET 7.11 

 Nylon 6,6 2.83 

 PC 1.26 

 PMMA 0.36 

 

These values are smaller than those for the metal alloys given in Table 8.3, which range from 0.93 to 43.1 mm. 

 
 (b)  Relative to the leak-before-break criterion, the  ratio is used.  The five polymers are ranked 

according to values of this ratio as follows:  
  
KIc

2 - σ y

 

 Material 
  

KIc
2

σ y
 (MPa - m)  

 PET 0.422 

 Nylon 6,6 0.146 

 PC 0.078 

 PMMA 0.023 
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These values are all smaller than those for the metal alloys given in Table 8.4, which values range from 1.2 to 11.2 

MPa-m. 
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 Data Extrapolation Methods 

 

 8.D3 This problem asks that we compute the maximum allowable stress level to give a rupture lifetime of 

20 days for an S-590 iron component at 923 K.  It is first necessary to compute the value of the Larson-Miller 

parameter as follows: 

 

    T (20 +  log tr ) = (923 K) 20 +  log (20 days)(24 h/day)[ ]{ } 

 

= 20.9 x 103 

 

From the curve in Figure 8.32, this value of the Larson-Miller parameter corresponds to a stress level of about 280 

MPa (40,000 psi). 
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 8.D4 We are asked in this problem to calculate the temperature at which the rupture lifetime is 200 h when 

an S-590 iron component is subjected to a stress of 55 MPa (8000 psi).  From the curve shown in Figure 8.32, at 55 

MPa, the value of the Larson-Miller parameter is 26.7 x 103 (K-h).  Thus, 

 

    26.7 x 103 (K - h) = T (20 +  log tr ) 

 

  =  T 20 +  log(200 h)[ ] 

 

Or, solving for T yields T = 1197 K (924°C). 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 



 8-44 

 8.D5  This problem asks that we determine, for an 18-8 Mo stainless steel, the time to rupture for a 

component that is subjected to a stress of 100 MPa (14,500 psi) at 600°C (873 K).  From Figure 8.35, the value of 
the Larson-Miller parameter at 100 MPa is about 22.4 x 103, for T in K and tr in h.  Therefore, 

 

    22.4 x 103 = T (20 +  log tr) 

 

  =  873(20 +  log tr) 

 
And, solving for tr 

 

  25.66 = 20 +  log tr  

 
which leads to tr = 4.6 x 105 h = 52 yr. 
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 8.D6  We are asked in this problem to calculate the stress levels at which the rupture lifetime will be 1 year 

and 15 years when an 18-8 Mo stainless steel component is subjected to a temperature of 650°C (923 K).  It first 
becomes necessary to calculate the value of the Larson-Miller parameter for each time.  The values of tr 

corresponding to 1 and 15 years are 8.76 x 103 h and 1.31 x 105 h, respectively.  Hence, for a lifetime of 1 year 

 

    
T (20 +  log tr) = 923 20 +  log (8.76 x 103)[ ]= 22.10  x 103 

 
And for tr = 15 years 

 

    
T (20 +  log tr) = 923 20 +  log (1.31 x 105)[ ]= 23.18  x 103 

 

 Using the curve shown in Figure 8.35, the stress values corresponding to the one- and fifteen-year lifetimes 

are approximately 110 MPa (16,000 psi) and 80 MPa (11,600 psi), respectively. 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 


