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CHAPTER 6 

 

MECHANICAL PROPERTIES OF METALS 

 

PROBLEM SOLUTIONS 

 

 Concepts of Stress and Strain 

 

 6.1  This problem asks that we derive Equations 6.4a and 6.4b, using mechanics of materials principles.  In 

Figure (a) below is shown a block element of material of cross-sectional area A that is subjected to a tensile force P.  

Also represented is a plane that is oriented at an angle θ referenced to the plane perpendicular to the tensile axis;  

the area of this plane is A' = A/cos θ.  In addition, and the forces normal and parallel to this plane are labeled as P' 

and V', respectively.  Furthermore, on the left-hand side of this block element are shown force components that are 

tangential and perpendicular to the inclined plane.  In Figure (b) are shown the orientations of the applied stress σ, 

the normal stress to this plane σ', as well as the shear stress τ' taken parallel to this inclined plane.  In addition, two 

coordinate axis systems in represented in Figure (c):  the primed x and y axes are referenced to the inclined plane, 

whereas the unprimed x axis is taken parallel to the applied stress. 

 

 
 

 Normal and shear stresses are defined by Equations 6.1 and 6.3, respectively.  However, we now chose to 

express these stresses in terms (i.e., general terms) of normal and shear forces (P and V) as 

 

  
σ = P

A
 

 

  
τ = V

A
 

 

For static equilibrium in the x' direction the following condition must be met: 
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F∑ x'

= 0 

 

which means that 

 

  PÕ− P cos θ = 0 

 

Or that 

 

  P' = P cos θ  

 

Now it is possible to write an expression for the stress σ'  in terms of P' and A' using the above expression and the 

relationship between A and A' [Figure (a)]: 

 

  
σ' = PÕ

AÕ
 

 

  

=  P cosθ
A

cosθ

= P
A

cos2θ  

 

However, it is the case that P/A = σ;  and, after making this substitution into the above expression, we have 

Equation 6.4a--that is 

 

 σ ' = σ cos2θ  

 

 Now, for static equilibrium in the y' direction, it is necessary that 

 

  
FyÕ∑ = 0  

 

  = −VÕ+ P sinθ  

 

Or 

 

  V' = P sinθ  
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We now write an expression for τ' as 

 

  
τÕ= VÕ

AÕ
 

 

And, substitution of the above equation for V' and also the expression for A' gives 

 

  
τ' = VÕ

AÕ
 

 

  

= P sinθ
A

cosθ

 

 

  
= P

A
sinθ cos θ  

 

 = σ sinθ cos θ  

 

which is just Equation 6.4b. 
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 6.2 (a)  Below are plotted curves of cos2θ (for σ' ) and sin θ cos θ (for τ') versus θ. 

 

 
 

 (b)  The maximum normal stress occurs at an inclination angle of 0°. 

 (c)  The maximum shear stress occurs at an inclination angle of 45°. 
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 Stress-Strain Behavior 

 

 6.3  This problem calls for us to calculate the elastic strain that results for a copper specimen stressed in 

tension.  The cross-sectional area is just (15.2 mm) x (19.1 mm) = 290 mm2 (= 2.90 x 10-4 m2 = 0.45 in.2);  also, 

the elastic modulus for Cu is given in Table 6.1 as 110 GPa (or 110 x 109 N/m2).  Combining Equations 6.1 and 6.5 

and solving for the strain yields 
 

    
ε = σ

E
= F

A0E
=  44,500 N

(2.90 × 10−4 m2)(110 × 109 N /m2)
=  1.39 x 10-3 
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 6.4  We are asked to compute the maximum length of a cylindrical nickel specimen (before deformation) 

that is deformed elastically in tension.  For a cylindrical specimen 

 

  
A0 =  π

d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

 

 
where d0 is the original diameter.  Combining Equations 6.1, 6.2, and 6.5 and solving for l0 leads to 

 

    

l0 =  ∆l
ε

 =  ∆l
σ
E

Ź=  ∆l E
F
A0

Ź =  
∆l Eπ 

d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

F
=  

∆l Eπ d0
2

4F
 

 

  
=  (0.25 × 10−3 m)(207 × 109 N /m2) (π) (10.2 × 10−3 m)2

(4)(8900 N)
 

 

= 0.475 m = 475 mm (18.7 in.) 
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 6.5  This problem asks us to compute the elastic modulus of aluminum.  For a square cross-section, A0 = 

, where b0 is the edge length.  Combining Equations 6.1, 6.2, and 6.5 and solving for E, leads to     b0
2

 

  

E  =  σ
ε

 =  

F
A0
∆l
l0

=  
Fl0

b 0
2 ∆ l

 

 

  
=  (66,700 N)(125 × 10−3 m)

(16.5 × 10−3 m)2(0.43 × 10−3 m)
 

 

= 71.2 x 109 N/m2 = 71.2 GPa  (10.4 x 106 psi) 
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 6.6  In order to compute the elongation of the Ni wire when the 300 N load is applied we must employ 

Equations 6.1, 6.2, and 6.5.  Solving for ∆l and realizing that for Ni, E = 207 GPa (30 x 106 psi) (Table 6.1), 

 

    

∆l  =  l0ε =  l0
σ
E

=  
l0F
EA0

=
l0F

Eπ
d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2 =

4l0F

Eπd0
2  

 

  
=  (4)(30 m)(300 N)

(207 × 109 N /m2)(π )(2 × 10−3 m)2 = 0.0138  m = 13.8  mm (0.53 in.)  
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 6.7  (a)  This portion of the problem calls for a determination of the maximum load that can be applied 

without plastic deformation (Fy).  Taking the yield strength to be 345 MPa, and employment of Equation 6.1 leads 

to 

 

    
Fy =  σ y A0 =  (345 x 106  N/m2)(130 x 10-6  m2) 

 
= 44,850 N   (10,000 lbf) 

 

 (b)  The maximum length to which the sample may be deformed without plastic deformation is determined 

from Equations 6.2 and 6.5 as 
 

  
li  =  l0 1 +

σ
E

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  

 

  
=  (76 mm) 1 +

345 MPa
103 x 103 MPa

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=  76.25 mm  (3.01 in.)  

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 



 6-10 

 6.8  This problem asks us to compute the diameter of a cylindrical specimen of steel in order to allow an 

elongation of 0.38 mm.  Employing Equations 6.1, 6.2, and 6.5, assuming that deformation is entirely elastic 

 

  

σ = F
A0

= F

π
d 0

2

4

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

=  E ∆ l
l0

 

 
Or, solving for d0 

 

  
d0 =  

4 l0F
π E ∆ l

 

 

  
=  (4)(500 x 10−3 m) (11,100 N)

(π) (207 x 109 N /m2)(0.38 x 10−3 m)
 

 

= 9.5 x 10-3 m = 9.5 mm  (0.376 in.) 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 



 6-11 

 6.9  This problem asks that we calculate the elongation ∆l of a specimen of steel the stress-strain behavior 

of which is shown in Figure 6.21.  First it becomes necessary to compute the stress when a load of 65,250 N is 

applied using Equation 6.1 as 

 

    

σ = F
A0

= F

π
d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2 = 65,250 N

π
8.5 x 10−3 m

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2 =  1150 MPa (170,000 psi)  

 

Referring to Figure 6.21, at this stress level we are in the elastic region on the stress-strain curve, which corresponds 

to a strain of 0.0054.  Now, utilization of Equation 6.2 to compute the value of ∆l 

 

    ∆ l = ε l0 = (0.0054)(80  mm) = 0.43 mm  (0.017 in.)  
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 6.10  (a)  This portion of the problem asks that the tangent modulus be determined for the gray cast iron, 

the stress-strain behavior of which is shown in Figure 6.22.  In the figure below is shown a tangent draw on the 

curve at a stress of 25 MPa. 

 

 
 

The slope of this line (i.e., ∆σ/∆ε), the tangent modulus, is computed as follows: 

 

  
∆σ
∆ε

 =  57 MPs −  0 MPa
0.0006 − 0

 =  95,000 MPa =  95 GPa  (13.8 x 106  psi)  

 

 (b)  The secant modulus taken from the origin is calculated by taking the slope of a secant drawn from the 

origin through the stress-strain curve at 35 MPa (5,000 psi).  This secant modulus is drawn on the curve shown 

below: 
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The slope of this line (i.e., ∆σ/∆ε), the secant modulus, is computed as follows: 

 

  
∆σ
∆ε

 =  60 MPs −  0 MPa
0.0006 −  0

 =  100,000 MPa =  100 GPa  (14.5 x 106  psi)  
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 6.11  We are asked, using the equation given in the problem statement, to verify that the modulus of 

elasticity values along [110] directions given in Table 3.3 for aluminum, copper, and iron are correct.  The α, β, and 

γ parameters in the equation correspond, respectively, to the cosines of the angles between the [110] direction and 

[100], [010] and [001] directions.  Since these angles are 45°, 45°, and 90°, the values of α, β, and γ are 0.707, 

0.707, and 0, respectively.  Thus, the given equation takes the form 

 

  

1
E<110>

 

 

    
=  1

E<100>
−  3 1

E<100>
−

1
E<111>

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ (0.707)2 (0.707)2 + (0.707)2 (0)2 + (0)2 (0.707)2[ ] 

 

    
=  1

E<100>
−  (0.75) 1

E<100>
−

1
E<111>

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 
Utilizing the values of E<100> and E<111> from Table 3.3 for Al 

 

    

1
E<110>

= 1
63.7 GPa

− (0.75) 1
63.7 GPa

−
1

76.1 GPa

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 
Which leads to, E<110> = 72.6 GPa, the value cited in the table. 

 

 For Cu, 

 

    

1
E<110>

= 1
66.7 GPa

− (0.75) 1
66.7 GPa

−
1

191.1 GPa

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 
Thus, E<110> = 130.3 GPa, which is also the value cited in the table. 

 

 Similarly, for Fe 

 

    

1
E<110>

= 1
125.0 GPa

−  (0.75) 1
125.0 GPa

−
1

272.7 GPa

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 
And E<110> = 210.5 GPa, which is also the value given in the table. 
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 6.12  This problem asks that we derive an expression for the dependence of the modulus of elasticity, E, on 

the parameters A, B, and n in Equation 6.25.  It is first necessary to take dEN/dr in order to obtain an expression for 

the force F;  this is accomplished as follows: 

 

    
F =

dEN
d r

=
d −

A
r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

d r
+

d B
rn

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

d r
 

 

  
=  A

r2 −
nB

r (n+1)  

 
The second step is to set this dEN/dr expression equal to zero and then solve for r (= r0).  The algebra for this 

procedure is carried out in Problem 2.14, with the result that 

 

  
r0 =  A

nB
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1/(1 −  n)

 

 

Next it becomes necessary to take the derivative of the force (dF/dr), which is accomplished as follows: 

 

    
dF
dr

=
d A

r2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

dr
+

d −
nB

r (n+1)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

dr
 

 

  
= −

2A
r3 + (n)(n + 1)B

r (n+2)  

 
Now, substitution of the above expression for r0 into this equation yields 

 

    

dF
dr

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
r0

= −
2 A

A
nB

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3/(1−n) +  (n)(n + 1) B

A
nB

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
(n+2) /(1−n)  

 

which is the expression to which the modulus of elasticity is proportional. 
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 6.13  This problem asks that we rank the magnitudes of the moduli of elasticity of the three hypothetical 

metals X, Y, and Z.  From Problem 6.12, it was shown for materials in which the bonding energy is dependent on 

the interatomic distance r according to Equation 6.25, that the modulus of elasticity E is proportional to 

 

    

E ∝ −
2A

A
nB

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3/(1−n) +  (n)(n + 1) B

A
nB

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
(n+2) /(1−n)  

 

 For metal X, A = 1.5, B = 7 x 10-6, and n = 8.  Therefore, 

 

    

E ∝ −
(2)(1.5)

1.5
(8)(7 x 10−6)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

3/(1 − 8) +  (8)(8 +1)(7 x 10−6)
1.5

(8)(7 x 10−6)
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

(8 + 2) /(1 − 8)  

 

= 830 

 

 For metal Y, A = 2.0, B = 1 x 10-5, and n = 9.  Hence 

 

    

E ∝ −
(2)(2.0)

2.0
(9)(1 x 10−5)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

3/(1 − 9) +  (9)(9 + 1)(1 x 10−5)
2.0

(9)(1 x 10−5)
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

(9 + 2) /(1 − 9)  

 

= 683 

 

 And, for metal Z, A = 3.5, B = 4 x 10-6, and n = 7.  Thus 

 

    

E ∝ −
(2)(3.5)

3.5
(7)(4 x 10−6)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

3/(1 − 7) +  (7)(7 + 1)(4 x 10−6)
3.5

(7)(4 x 10−6)
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

(7 + 2) /(1 − 7)  

 

= 7425 

 

 Therefore, metal Z has the highest modulus of elasticity. 
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 Elastic Properties of Materials 

 

 6.14  (a)  We are asked, in this portion of the problem, to determine the elongation of a cylindrical 

specimen of steel.  Combining Equations 6.1, 6.2, and 6.5, leads to 

 

  σ = Eε 

 

  

F

π
d0

2

4

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

= E ∆ l
l0

 

 

Or, solving for ∆l (and realizing that E = 207 GPa, Table 6.1), yields 

 

  
∆ l =  

4F l0
π d0

2E
 

 

  
=  (4)(48,900 N)(250 x 10−3 m)

(π) (15.2 x 10−3 m)2(207 x 109 N /m2)
= 3.25 x 10-4  m =  0.325 mm (0.013 in.)  

 

 (b)  We are now called upon to determine the change in diameter, ∆d.  Using Equation 6.8 

 

  
ν = −

εx
εz

=  −
∆d /d0
∆ l / l0

 

 

From Table 6.1, for steel, ν = 0.30.  Now, solving the above expression for ∆d yields 

 

    
∆d = −

ν ∆l d0
l0

= −
(0.30)(0.325 mm)(15.2  mm)

250  mm
 

 

= –5.9 x 10-3 mm  (–2.3 x 10-4 in.) 

 

The diameter will decrease. 
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 6.15  This problem asks that we calculate the force necessary to produce a reduction in diameter of 2.5 x 

10-3 mm for a cylindrical bar of aluminum.  For a cylindrical specimen, the cross-sectional area is equal to 

 

  
A0 =

π d0
2

4
 

 

Now, combining Equations 6.1 and 6.5 leads to  
 

  

σ =  F
A0

=
F

πd0
2

4

= Eεz  

And, since from Equation 6.8 

 

  
εz = −

εx
ν

= −

∆d
d0
ν

= −
∆d
νd0

 

 

Substitution of this equation into the above expression gives 

 

  

F
πd0

2

4

= E −
∆d
νd0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

And, solving for F leads to 

 

  
F =  −

d0∆d π E
4ν

 

 

From Table 6.1, for aluminum, ν = 0.33 and E = 69 GPa.  Thus, 

 

    
F = −

(19 x 10−3 m)(−2.5 x 10−6 m)(π) (69 x 109 N /m2)
(4)(0.33)

 

 
= 7,800 N  (1785 lbf) 
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 6.16  This problem asks that we compute Poisson's ratio for the metal alloy.  From Equations 6.5 and 6.1 

 

    

εz  =  σ
E

= F
A0E

= F

π
d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

E

= 4F
π d0

2 E
 

 
Since the transverse strain εx is just 

 

  
εx = ∆d

d0
 

 

and Poisson's ratio is defined by Equation 6.8, then 

 

    

ν =  −
εx
εz

= −
∆d /d0

4F
π d0

2E

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

= −
d0∆d π E

4F
 

 

  
=  −

(10 x 10−3 m)(−7 x 10−6 m) (π) (100 x 109 N /m2)
(4)(15,000  N)

=  0.367  
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 6.17  This problem asks that we compute the original length of a cylindrical specimen that is stressed in 

compression.  It is first convenient to compute the lateral strain εx as 

 

    
εx = ∆d

d0
= 30.04 mm− 30.00 mm

30.00  mm
=  1.33 x 10-3 

 
In order to determine the longitudinal strain εz we need Poisson's ratio, which may be computed using Equation 6.9;  

solving for ν yields 

 

    
ν = E

2G
− 1 =  65.5 x 103  MPa

(2)(25.4 x 103  MPa)
− 1 =  0.289 

 
Now εz may be computed from Equation 6.8 as 

 

    
εz  = −

εx
ν

= −
1.33 x  10−3

0.289
=  − 4.60 x 10-3 

 
Now solving for l0 using Equation 6.2 

 

  
l0 =  

li
1 + εz

 

 

  
=  105.20 mm

1 − 4.60 x 10−3 =  105.69  mm 
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 6.18  This problem asks that we calculate the modulus of elasticity of a metal that is stressed in tension.  

Combining Equations 6.5 and 6.1 leads to 

 

    

E = σ
εz

= F
A0εz

= F

εzπ
d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2 = 4F

εzπ d0
2  

 

From the definition of Poisson's ratio, (Equation 6.8) and realizing that for the transverse strain, εx= 
    

∆d
d0

 

 

  
εz  = −

εx
ν

= −
∆d
d0ν

 

 
Therefore, substitution of this expression for εz into the above equation yields 

 

  
E = 4F

εzπ d0
2 =  4F ν

π d0∆d
 

 

  
=  (4)(1500  N)(0.35)

π (10 × 10−3 m)(6.7 × 10−7 m)
= 1011 Pa = 100 GPa  (14.7 x 106  psi) 
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 6.19  We are asked to ascertain whether or not it is possible to compute, for brass, the magnitude of the 

load necessary to produce an elongation of 1.9 mm (0.075 in.).  It is first necessary to compute the strain at yielding 

from the yield strength and the elastic modulus, and then the strain experienced by the test specimen.  Then, if 

ε(test) < ε(yield) 

deformation is elastic, and the load may be computed using Equations 6.1 and 6.5.  However, if 

ε(test) > ε(yield) 

computation of the load is not possible inasmuch as deformation is plastic and we have neither a stress-strain plot 

nor a mathematical expression relating plastic stress and strain.  We compute these two strain values as 

 

    
ε(test) =  ∆l

l0
=  1.9 mm

380  mm
=  0.005 

 

and 

    
ε(yield) =

σ y
E

= 240  MPa
110 x 103 MPa

=  0.0022 

 

Therefore, computation of the load is not possible since ε(test) > ε(yield). 
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 6.20  (a)  This part of the problem asks that we ascertain which of the metals in Table 6.1 experience an 

elongation of less than 0.072 mm when subjected to a tensile stress of 50 MPa.  The maximum strain that may be 

sustained, (using Equation 6.2) is just 

 

    
ε =  ∆l

l0
= 0.072 mm

150  mm
=  4.8 x 10-4 

 

Since the stress level is given (50 MPa), using Equation 6.5 it is possible to compute the minimum modulus of 

elasticity which is required to yield this minimum strain.  Hence 

 

    
E = σ

ε
= 50 MPa

4.8 x 10−4 = 104.2 GPa  

 

Which means that those metals with moduli of elasticity greater than this value are acceptable candidates--namely, 

Cu, Ni, steel, Ti and W. 

 (b)  This portion of the problem further stipulates that the maximum permissible diameter decrease is 2.3 x 
10-3 mm when the tensile stress of 50 MPa is applied.  This translates into a maximum lateral strain εx (max) as 

 

    
εx(max) = ∆d

d0
=  −2.3 x 10−3  mm

15.0  mm
= −1.53 x 10-4  

 

But, since the specimen contracts in this lateral direction, and we are concerned that this strain be less than 1.53 x 

10-4, then the criterion for this part of the problem may be stipulated as 
  
−

∆d
d0

< 1.53 x 10-4.  

Now, Poisson’s ratio is defined by Equation 6.8 as 

 

 
ν = −

εx
εz

 

 

For each of the metal alloys let us consider a possible lateral strain, 
  
εx =

∆d
d0

. Furthermore, since the deformation is 

elastic, then, from Equation 6.5, the longitudinal strain, εz is equal to 

 

 
εz =

σ
E

 

 
Substituting these expressions for εx and εz into the definition of Poisson’s ratio we have 
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ν = −
εx
εz

=−

∆d
d0
σ
E

 

 

which leads to the following: 

 

  
−

∆d
d0

=
ν σ
E

 

 

Using values for ν and E found in Table 6.1 for the six metal alloys that satisfy the criterion for part (a), and for σ = 

50 MPa, we are able to compute a 
    
−

∆d
d0

 for each alloy as follows: 

 

    
−

∆d
d0

(brass) =
(0.34)(50 x 106 N /m2)

97 x 109 N /m2 = 1.75 x 10−4 

 

    
−

∆d
d0

(copper) =
(0.34)(50 x 106 N /m2)

110 x 109 N /m2 = 1.55 x 10−4 

 

    
−

∆d
d0

(titanium) =
(0.34)(50 x 106 N /m2)

107 x 109 N /m2 = 1.59 x 10−4 

 

    
−

∆d
d0

(nickel) =
(0.31)(50 x 106 N /m2)

207 x 109 N /m2 = 7.49 x 10−5 

 

    
−

∆d
d0

(steel) =
(0.30)(50 x 106 N /m2)

207 x 109 N /m2 = 7.25 x 10−5 

 

    
−

∆d
d0

(tungsten) =
(0.28)(50 x 106 N /m2)

407 x 109 N /m2 = 3.44 x 10−5 

 

Thus, the brass, copper, and titanium alloys will experience a negative transverse strain greater than 1.53 x 10-4.  

This means that the following alloys satisfy the criteria for both parts (a) and (b) of this problem:  nickel, steel, and 

tungsten. 
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 6.21  (a)  This portion of the problem asks that we compute the elongation of the brass specimen.  The first 

calculation necessary is that of the applied stress using Equation 6.1, as 

 

    

σ = F
A0

= F

π
d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2 = 10,000 N

π
10 x 10−3 m

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2 = 127 MPa  (17,900 psi) 

 

From the stress-strain plot in Figure 6.12, this stress corresponds to a strain of about 1.5 x 10-3.  From the definition 

of strain, Equation 6.2 

 

    ∆l = ε l0 = (1.5 x 10-3)(101.6 mm) =  0.15 mm  (6.0 x 10-3 in.)  

 

 (b)  In order to determine the reduction in diameter ∆d, it is necessary to use Equation 6.8 and the 
definition of lateral strain (i.e., εx = ∆d/d0) as follows 

 

    ∆d =  d0εx = − d0ν εz = − (10 mm)(0.35)(1.5 x 10-3)  

 

= –5.25 x 10-3 mm (–2.05 x 10-4 in.) 
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 6.22  This problem asks that we assess the four alloys relative to the two criteria presented.  The first 

criterion is that the material not experience plastic deformation when the tensile load of 35,000 N is applied;  this 

means that the stress corresponding to this load not exceed the yield strength of the material.  Upon computing the 

stress 

 

    

σ =  F
A0

= F

π
d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2 = 35,000 N

π
15 x 10−3 m

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2 =  200 x 106  N/m2 =  200 MPa  

 

Of the alloys listed, the Al, Ti and steel alloys have yield strengths greater than 200 MPa. 

 Relative to the second criterion (i.e., that ∆d be less than 1.2 x 10-2 mm), it is necessary to calculate the 

change in diameter ∆d for these three alloys.  From Equation 6.8 

 

    

ν = −
εx
εz

= −

∆d
d0
σ
E

= −
E ∆d
σ d0

 

 

Now, solving for ∆d from this expression, 

 

  
∆d = −

ν σ d0
E

 

 

 For the aluminum alloy 

 

    
∆d = −

(0.33)(200 MPa)(15 mm)
70 x 103 MPa

= −1.41 x 10-3 mm 

 

Therefore, the Al alloy is not a candidate. 

 

 For the steel alloy 

 

    
∆d = −

(0.27)(200 MPa)(15 mm)
205 x 103 MPa

= − 0.40 x 10-2  mm 

 

Therefore, the steel is a candidate. 
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 For the Ti alloy 

 

    
∆d = −

(0.36)(200 MPa)(15 mm)
105 x 103 MPa

= −1.0 x 10-2  mm 

 

Hence, the titanium alloy is also a candidate. 
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 6.23  This problem asks that we ascertain which of four metal alloys will not (1) experience plastic 

deformation, and (2) elongate more than 1.3 mm when a tensile load of 29,000 N is applied.  It is first necessary to 

compute the stress using Equation 6.1;  a material to be used for this application must necessarily have a yield 

strength greater than this value.  Thus, 

 

    

σ = F
A0

= 29,000 N

π
12.7  x  10−3 m

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2 = 230 MPa  

 

Of the metal alloys listed, aluminum, brass and steel have yield strengths greater than this stress. 

 Next, we must compute the elongation produced in aluminum, brass, and steel using Equations 6.2 and 6.5 

in order to determine whether or not this elongation is less than 1.3 mm.  For aluminum 
 

    
∆l =  

σ l0
E

=  (230  MPa)(500  mm)
70  x  103 MPa

= 1.64  mm 

Thus, aluminum is not a candidate. 

 For brass 

    
∆l =  

σ l0
E

=  (230  MPa)(500  mm)
100  x  103 MPa

= 1.15 mm 

 

Thus, brass is a candidate.  And, for steel 
 

    
∆l =

σ l0
E

= (230  MPa)(500  mm)
207  x  103 MPa

= 0.56  mm 

 

Therefore, of these four alloys, only brass and steel satisfy the stipulated criteria. 
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 Tensile Properties 

 

 6.24  Using the stress-strain plot for a steel alloy (Figure 6.21), we are asked to determine several of its 

mechanical characteristics. 

 (a)  The elastic modulus is just the slope of the initial linear portion of the curve;  or, from the inset and 

using Equation 6.10 
 

    
E =

σ2 − σ1
ε2 − ε1

= (1300 − 0)  MPa
(6.25 x 10−3 − 0)

= 210 x 103 MPa =  210 GPa  (30.5 x 106  psi)  

 

The value given in Table 6.1 is 207  GPa. 

 (b)  The proportional limit is the stress level at which linearity of the stress-strain curve ends, which is 

approximately 1370 MPa (200,000 psi). 

 (c)  The 0.002 strain offset line intersects the stress-strain curve at approximately 1570 MPa (228,000 psi). 

 (d)  The tensile strength (the maximum on the curve) is approximately 1970 MPa (285,000 psi). 
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 6.25  We are asked to calculate the radius of a cylindrical brass specimen in order to produce an elongation 

of 5 mm when a load of 100,000 N is applied.  It first becomes necessary to compute the strain corresponding to this 

elongation using Equation 6.2 as 

 

    
ε = ∆l

l0
= 5 mm

100  mm
=  5 x 10-2  

 

From Figure 6.12, a stress of 335 MPa (49,000 psi) corresponds to this strain.  Since for a cylindrical specimen, 
stress, force, and initial radius r0 are related as 

 

  
σ = F

π r0
2  

 

then 

 

    
r0 =  F

π σ
= 100,000  N

π (335 x 106 N /m2)
= 0.0097  m = 9.7 mm  (0.38  in.) 
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 6.26  This problem asks us to determine the deformation characteristics of a steel specimen, the stress-

strain behavior for which is shown in Figure 6.21. 

 (a)  In order to ascertain whether the deformation is elastic or plastic, we must first compute the stress, then 

locate it on the stress-strain curve, and, finally, note whether this point is on the elastic or plastic region.  Thus, from 

Equation 6.1 
 

    

σ = F
A0

= 140,000 N

π
10 x 10−3 m

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2 = 1782  MPa  (250,000  psi)  

 

The 1782 MPa point is beyond the linear portion of the curve, and, therefore, the deformation will be both elastic 

and plastic. 

 (b)  This portion of the problem asks us to compute the increase in specimen length.  From the stress-strain 

curve, the strain at 1782 MPa is approximately 0.017.  Thus, from Equation 6.2 
 

    ∆l = ε l0 = (0.017)(500 mm) = 8.5 mm  (0.34 in.)  
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 6.27  (a)  We are asked to compute the magnitude of the load necessary to produce an elongation of 2.25 

mm for the steel displaying the stress-strain behavior shown in Figure 6.21.  First, calculate the strain, and then the 

corresponding stress from the plot. 

 

    
ε = ∆l

l0
= 2.25 mm

375 mm
= 0.006  

 

This is within the elastic region;  from the inset of Figure 6.21, this corresponds to a stress of about 1250 MPa 

(180,000 psi).  Now, from Equation 6.1 
 

  F = σA0 = σb2  

 

in which b is the cross-section side length.  Thus, 
 

    F = (1250 x 106  N/m2)(5.5 x 10-3 m)2 = 37,800 N  (8500 lbf )  

 

 (b)  After the load is released there will be no deformation since the material was strained only elastically. 
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 6.28  This problem calls for us to make a stress-strain plot for stainless steel, given its tensile load-length 

data, and then to determine some of its mechanical characteristics. 

 (a)  The data are plotted below on two plots:  the first corresponds to the entire stress-strain curve, while 

for the second, the curve extends to just beyond the elastic region of deformation. 

 

 
 

 
 

 (b)  The elastic modulus is the slope in the linear elastic region (Equation 6.10) as 
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E = ∆ σ

∆ ε
= 400  MPa − 0 MPa

0.002 − 0
= 200 x 103 MPa = 200 GPa  (29 x 106  psi)  

 

 (c)  For the yield strength, the 0.002 strain offset line is drawn dashed.  It intersects the stress-strain curve 

at approximately 750 MPa (112,000 psi ). 

 (d)  The tensile strength is approximately 1250 MPa (180,000 psi), corresponding to the maximum stress 

on the complete stress-strain plot. 

 (e)  The ductility, in percent elongation, is just the plastic strain at fracture, multiplied by one-hundred.  

The total fracture strain at fracture is 0.115;  subtracting out the elastic strain (which is about 0.003) leaves a plastic 

strain of 0.112.  Thus, the ductility is about 11.2%EL. 

 (f)  From Equation 6.14, the modulus of resilience is just 

 

  
Ur =

σ y
2

2E
 

 

which, using data computed above gives a value of 

 

    
Ur  = (750  MPa)2

(2)(200 x 103 MPa)
= 1.40 x 106  J/m3   (210 in.- lbf /in.3)  
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 6.29  This problem calls for us to make a stress-strain plot for a magnesium, given its tensile load-length 

data, and then to determine some of its mechanical characteristics. 

 (a)  The data are plotted below on two plots:  the first corresponds to the entire stress-strain curve, while 

for the second, the curve extends just beyond the elastic region of deformation. 

 

 
 

 
 

 (b)  The elastic modulus is the slope in the linear elastic region (Equation 6.10) as 
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E = ∆ σ

∆ ε
= 50 MPa − 0 MPa

0.001 − 0
=  50 x 103 MPa = 50 GPa  (7.3 x 106  psi)  

 

 (c)  For the yield strength, the 0.002 strain offset line is drawn dashed.  It intersects the stress-strain curve 

at approximately 140 MPa (20,300 psi). 

 (d)  The tensile strength is approximately 230 MPa (33,350 psi), corresponding to the maximum stress on 

the complete stress-strain plot. 

 (e)  From Equation 6.14, the modulus of resilience is just 

 

  
Ur  =

σ y
2

2 E
 

 

which, using data computed above, yields a value of 

 

    
Ur  =  (140 x 106 N /m2)2

(2)(50 x 109 N /m2)
= 1.96 x 105 J/m3 (28.4 in.- lbf /in.3) 

 

 (f)  The ductility, in percent elongation, is just the plastic strain at fracture, multiplied by one-hundred.  The 

total fracture strain at fracture is 0.110;  subtracting out the elastic strain (which is about 0.003) leaves a plastic 

strain of 0.107.  Thus, the ductility is about 10.7%EL. 
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 6.30  This problem calls for the computation of ductility in both percent reduction in area and percent 

elongation.  Percent reduction in area is computed using Equation 6.12 as 

 

    

%RA =

π
d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

− π
d f
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

π
d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2 x 100  

 
in which d

0
 and d

f
 are, respectively, the original and fracture cross-sectional areas.  Thus, 

 

  

%RA =
π

12.8  mm
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

− π
8.13 mm

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

π
12.8  mm

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2 x 100 = 60% 

 

While, for percent elongation, we use Equation 6.11 as 
 

  
%EL =

l f − l0
l0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ x 100 

 

  
= 74.17 mm − 50.80 mm

50.80 mm
x 100 =  46% 
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 6.31  This problem asks us to calculate the moduli of resilience for the materials having the stress-strain 

behaviors shown in Figures 6.12 and 6.21.  According to Equation 6.14, the modulus of resilience Ur is a function 

of the yield strength and the modulus of elasticity as 

 

  
Ur  =

σ y
2

2 E
 

 
The values for σy and E for the brass in Figure 6.12 are determined in Example Problem 6.3 as 250 MPa (36,000 

psi) and 93.8 GPa (13.6 x 106 psi), respectively.  Thus 

 

    
Ur  = (250  MPa)2

(2)(93.8 x 103 MPa)
=  3.32 x 105 J/m3  (48.2 in. - lbf /in.3) 

 

 Values of the corresponding parameters for the steel alloy (Figure 6.21) are determined in Problem 6.24 as 

1570 MPa (228,000 psi) and 210 GPa (30.5 x 106 psi), respectively, and therefore 

 

    
Ur  = (1570  MPa)2

(2)(210 x 103 MPa)
= 5.87 x 106  J/m3   (867  in.- lbf /in.3)  
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 6.32  The moduli of resilience of the alloys listed in the table may be determined using Equation 6.14.  

Yield strength values are provided in this table, whereas the elastic moduli are tabulated in Table 6.1. 

 For steel 

 

  
Ur  =

σ y
2

2 E
 

 

  
= (830 x 106 N /m2)2

(2)(207 x 109 N /m2)
= 16.6 x 105 J/m3 (240  in.- lbf /in.3) 

 

 For the brass 

 

    
Ur  = (380 x 106 N /m2)2

(2)(97 x 109 N /m2)
= 7.44 x 105 J/m3  (108 in.- lbf /in.3)  

 

 For the aluminum alloy 

 

    
Ur  = (275 x 106 N /m2)2

(2)(69 x 109 N /m2)
= 5.48 x 105 J/m3  (80.0 in. - lbf /in.3)  

 

 And, for the titanium alloy 

 

    
Ur  = (690 x 106 N /m2)2

(2)(107 x 109 N /m2)
= 22.2 x 105 J/m3 (323  in.- lbf /in.3)  
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 6.33  The modulus of resilience, yield strength, and elastic modulus of elasticity are related to one another 

through Equation 6.14;  the value of E for steel given in Table 6.1 is 207 GPa.  Solving for σy from this expression 

yields 

 

    
σ y = 2UrE = (2) (2.07  MPa)(207 x 103 MPa)  

 

= 925 MPa  (134,000 psi) 
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 True Stress and Strain 

 

 6.34  To show that Equation 6.18a is valid, we must first rearrange Equation 6.17 as 
 

  
Ai  =

A0 l0
li

 

 

Substituting this expression into Equation 6.15 yields 
 

    
σT  = F

Ai
= F

A0

li
l0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = σ

li
l0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
   

 

But, from Equation 6.2 
 

  
ε =

li
l0

−  1 

 

Or 

 

  

li
l0

= ε +  1 

Thus, 
 

  
σT  = σ

li
l0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = σ (ε +  1)  

 

 For Equation 6.18b 
 

  εT  = ln (1 +  ε)  

 

is valid since, from Equation 6.16 
 

  
εT =  ln

li
l0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

and 
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li
l0

= ε +  1 

from above. 
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 6.35  This problem asks us to demonstrate that true strain may also be represented by 

 

  
εT  =  ln

A0
Ai

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

Rearrangement of Equation 6.17 leads to 

 

  

li
l0

=
A0
Ai

 

 

Thus, Equation 6.16 takes the form 

 

  
εT = ln

li
l0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = ln

A0
Ai

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

The expression  
    
εT = ln

A0
Ai

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  is more valid during necking because Ai is taken as the area of the neck.  
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 6.36  These true stress-strain data are plotted below. 
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 6.37  We are asked to compute the true strain that results from the application of a true stress of 600 MPa 

(87,000 psi);  other true stress-strain data are also given.  It first becomes necessary to solve for n in Equation 6.19.  

Taking logarithms of this expression and after rearrangement we have 
 

  
n =

log σT − log K
log εT

 

 

  
=  log (500 MPa) − log (825 MPa)

log (0.16)
= 0.273 

 
Expressing εT as the dependent variable (Equation 6.19), and then solving for its value from the data stipulated in 

the problem statement, leads to 
 

    
εT  =

σT
K

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1/n

= 600  MPa
825 MPa

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1/0.273

=  0.311 
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 6.38  We are asked to compute how much elongation a metal specimen will experience when a true stress 

of 415 MPa is applied, given the value of n and that a given true stress produces a specific true strain.  Solution of 

this problem requires that we utilize Equation 6.19.  It is first necessary to solve for K from the given true stress and 

strain.  Rearrangement of this equation yields 

 

    
K =

σT
(εT )n = 345 MPa

(0.02)0.22 = 816  MPa (118,000 psi)  

 

Next we must solve for the true strain produced when a true stress of 415 MPa is applied, also using Equation 6.19.  

Thus 

 

    
εT =

σT
K

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1/n

= 415 MPa
816 MPa

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1/0.22

= 0.0463 = ln
li
l0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 
Now, solving for li gives 

 

    li = l0e0.0463 = (500  mm) e0.0463 = 523.7  mm  (20.948  in.) 

 

And finally, the elongation ∆l is just 

 

    ∆l = li −  l0 = 523.7  mm− 500  mm = 23.7  mm  (0.948  in.)  
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 6.39  For this problem, we are given two values of εT and σT, from which we are asked to calculate the 

true stress which produces a true plastic strain of 0.21.  Employing Equation 6.19, we may set up two simultaneous 

equations with two unknowns (the unknowns being K and n), as 

 

    log (60,000 psi) = log K + n log (0.15)  

 

    log (70,000 psi) = log K + n log (0.25)  

 

Solving for n from these two expressions yields 
 

    
n = log (60,000) − log (70,000)

log (0.15) − log (0.25)
= 0.302 

 

and for K 

log K = 5.027 or K = 105.027 =  106,400 psi 

 
Thus, for εT = 0.21 

 

    σT  =  K (εT )n = (106, 400 psi)(0.21)0.302 = 66, 400  psi  (460 MPa) 
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 6.40  For this problem we first need to convert engineering stresses and strains to true stresses and strains 
so that the constants K and n in Equation 6.19 may be determined.  Since σT = σ(1 + ε) then,  

 

    
σT 1 = (315 MPa)(1 + 0.105) = 348  MPa  

 

    
σT 2 = (340  MPa)(1 + 0.220) = 415 MPa  

 
Similarly for strains, since εT = ln(1 + ε) then 

 

    
εT 1 = ln (1 + 0.105) = 0.09985 

 

    
εT 2 = ln (1 + 0.220) = 0.19885 

 

Taking logarithms of Equation 6.19, we get 

 

  log σT = log K +  n log εT  

 

which allows us to set up two simultaneous equations for the above pairs of true stresses and true strains, with K and 

n as unknowns.  Thus 

 

    log (348) = log K + n log (0.09985)  

 

    log (415) = log K + n log (0.19885)  

 

Solving for these two expressions yields K = 628 MPa and n = 0.256. 

 Now, converting ε = 0.28 to true strain 

 

    εT  =  ln (1 +  0.28) =  0.247  
 
The corresponding σT to give this value of εT (using Equation 6.19) is just 
 

    σT  = KεT
n = (628  MPa)(0.247)0.256 = 439  MPa  

 
Now converting this value of σT to an engineering stress using Equation 6.18a gives 
 

    
σ =

σT
1 + ε

= 439  MPa
1 + 0.28

= 343 MPa  
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 6.41  This problem calls for us to compute the toughness (or energy to cause fracture).  The easiest way to 

do this is to integrate both elastic and plastic regions, and then add them together. 
 

  
Toughness = σ dε∫  

 

  
=  Eεd ε

0

0.007

∫ +  Kεn d ε
0.007

0.60

∫  

 

    

=  Eε2

2
0

0.007

+ K
(n + 1)

ε(n+1)

0.007

0.60

 

 

  
=  103 x 109 N /m2

2
(0.007 )2 + 1520 x 106 N/ m2

(1.0 + 0.15)
(0.60)1.15 −  (0.007)1.15[ ] 

 
=  7.33 x 108 J/m3  (1.07 x 105 in.-lbf/in.3) 
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 6.42  This problem asks that we determine the value of εT for the onset of necking assuming that necking 

begins when 

 

  

d σT
d εT

=  σT  

 
Let us take the derivative of Equation 6.19, set it equal to σT, and then solve for εT from the resulting expression.  

Thus 

 

    

d K (εT )n[ ]
d εT

= Kn (εT )(n−1) =  σT  

 
However, from Equation 6.19, σT = K(εT)n, which, when substituted into the above expression, yields 
 

  Kn (εT )(n - 1) =  K (εT )n  

 
Now solving for εT from this equation leads to 

 
εT = n 

 

as the value of the true strain at the onset of necking. 
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 6.43  This problem calls for us to utilize the appropriate data from Problem 6.28 in order to determine the 
values of n and K for this material.  From Equation 6.27 the slope and intercept of a log σT versus log εT plot will 

yield n and log K, respectively.  However, Equation 6.19 is only valid in the region of plastic deformation to the 

point of necking;  thus, only the 8th, 9th, 10th, 11th, 12th, and 13th data points may be utilized.  The log-log plot 

with these data points is given below. 

 

 
 

The slope yields a value of 0.246 for n, whereas the intercept gives a value of 3.424 for log K, and thus K = 103.424 

= 2655 MPa. 
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 Elastic Recovery After Plastic Deformation 

 

 6.44  (a)  In order to determine the final length of the brass specimen when the load is released, it first 

becomes necessary to compute the applied stress using Equation 6.1;  thus 

 

    

σ = F
A0

= F

π
d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2 = 11,750 N

π
10 x 10−3 m

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2 = 150  MPa (22,000  psi)  

 

Upon locating this point on the stress-strain curve (Figure 6.12), we note that it is in the linear, elastic region;  

therefore, when the load is released the specimen will return to its original length of 120 mm (4.72 in.). 

 (b)  In this portion of the problem we are asked to calculate the final length, after load release, when the 
load is increased to 23,500 N (5280 lbf).  Again, computing the stress 

 

  

σ = 23,500 N

π
10 x 10−3 m

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2 = 300 MPa  (44,200 psi) 

 

The point on the stress-strain curve corresponding to this stress is in the plastic region.  We are able to estimate the 

amount of permanent strain by drawing a straight line parallel to the linear elastic region;  this line intersects the 
strain axis at a strain of about 0.012 which is the amount of plastic strain.  The final specimen length li may be 

determined from a rearranged form of Equation 6.2 as 

 
li = l0(1 + ε) = (120 mm)(1 + 0.012) = 121.44 mm (4.78 in.) 
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 6.45  (a)  We are asked to determine both the elastic and plastic strain values when a tensile force of 
110,000 N (25,000 lbf) is applied to the steel specimen and then released.  First it becomes necessary to determine 

the applied stress using Equation 6.1;  thus 

 

  
σ = F

A0
= F

b0d0
 

 
where b0 and d0 are cross-sectional width and depth (19 mm and 3.2 mm, respectively).  Thus 

 

  
σ = 110,000  N

(19 x 10−3 m)(3.2 x 10−3 m)
= 1.810 x 109 N /m2 = 1810  MPa  (265,000 psi) 

 

From Figure 6.21, this point is in the plastic region so the specimen will be both elastic and plastic strains.  The total 
strain at this point, εt, is about 0.020.  We are able to estimate the amount of permanent strain recovery εe from 

Hooke's law, Equation 6.5 as 

 

  
εe = σ

E
 

 

And, since E = 207 GPa for steel (Table 6.1) 

 

    
εe = 1810 MPa

207 x 103 MPa
= 0.0087  

 
The value of the plastic strain, εp is just the difference between the total and elastic strains;  that is 

 
εp = εt – εe = 0.020 – 0.0087 = 0.0113 

 
 (b)  If the initial length is 610 mm (24.0 in.) then the final specimen length li may be determined from a 

rearranged form of Equation 6.2 using the plastic strain value as 

 
li = l0(1 + εp) = (610 mm)(1 + 0.0113) = 616.7 mm (24.26 in.) 
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 Hardness 

 

 6.46  (a)  We are asked to compute the Brinell hardness for the given indentation.  It is necessary to use the 

equation in Table 6.5 for HB, where P = 1000 kg, d = 2.50 mm, and D = 10 mm.  Thus, the Brinell hardness is 

computed as 

 

  

HB = 2P

π D D − D2 − d2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

 

 

  

=  (2)(1000 kg)

(π)(10  mm) 10  mm − (10  mm)2 − (2.50  mm)2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

= 200.5 

 

 (b)  This part of the problem calls for us to determine the indentation diameter d which will yield a 300 HB 

when P = 500 kg.  Solving for d from the equation in Table 6.5 gives 

 

    
d = D2 − D −

2P
(HB)π D

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
2

 

 

  
= (10  mm)2 − 10  mm −

(2)(500  kg)
(300)(π)(10  mm)

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
2

= 1.45  mm 
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 6.47  This problem calls for estimations of Brinell and Rockwell hardnesses. 

 (a)  For the brass specimen, the stress-strain behavior for which is shown in Figure 6.12, the tensile 

strength is 450 MPa (65,000 psi).  From Figure 6.19, the hardness for brass corresponding to this tensile strength is 

about 125 HB or 70 HRB. 

 (b)  The steel alloy (Figure 6.21) has a tensile strength of about 1970 MPa (285,000 psi) [Problem 6.24(d)].  

This corresponds to a hardness of about 560 HB or ~55 HRC from the line (extended) for steels in Figure 6.19. 
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 6.48  This problem calls for us to specify expressions similar to Equations 6.20a and 6.20b for nodular cast 

iron and brass.  These equations, for a straight line, are of the form 

 

TS = C + (E)(HB) 

 

where TS is the tensile strength, HB is the Brinell hardness, and C and E are constants, which need to be 

determined. 

 One way to solve for C and E is analytically--establishing two equations using TS and HB data points on 

the plot, as 

 
(TS)1 = C + (E)(BH)1 

(TS)2 = C + (E)(BH)2 

 

Solving for E from these two expressions yields 

 

  
E =

(TS)1 − (TS)2
(HB)2 − (HB)1

 

 
For nodular cast iron, if we make the arbitrary choice of (HB)1 and (HB)2 as 200 and 300, respectively, then, from 

Figure 6.19, (TS)1 and (TS)2 take on values of 600 MPa (87,000 psi) and 1100 MPa (160,000 psi), respectively.  

Substituting these values into the above expression and solving for E gives 

 

    
E = 600  MPa − 1100 MPa

200  HB − 300  HB
= 5.0  MPa/HB  (730 psi/HB)  

 

Now, solving for C yields 

 
C = (TS)1 – (E)(BH)1 

 

= 600 MPa - (5.0 MPa/HB)(200 HB) = – 400 MPa (– 59,000 psi) 

 

Thus, for nodular cast iron, these two equations take the form 

 

TS(MPa) = – 400 + 5.0 x HB 

TS(psi) = – 59,000 + 730 x HB 
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 Now for brass, we take (HB)1 and (HB)2 as 100 and 200, respectively, then, from Figure 7.31, (TS)1 and 

(TS)2 take on values of 370 MPa (54,000 psi) and 660 MPa (95,000 psi), respectively.  Substituting these values 

into the above expression and solving for E gives 

 

    
E = 370 MPa − 660 MPa

100  HB − 200  HB
= 2.9 MPa/HB (410  psi/HB) 

 

Now, solving for C yields 

 
C = (TS)1 – (E)(BH)1 

 

= 370 MPa – (2.9 MPa/HB)(100 HB) = 80 MPa  (13,000 psi) 

 

Thus, for brass these two equations take the form 

 

TS(MPa) = 80 + 2.9 x HB 

TS(psi) = 13,000 + 410 x HB 
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 Variability of Material Properties 

 

 6.49  The five factors that lead to scatter in measured material properties are the following:  (1) test 

method;  (2) variation in specimen fabrication procedure;  (3) operator bias;  (4) apparatus calibration;  and (5) 

material inhomogeneities and/or compositional differences. 
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 6.50  The average of the given hardness values is calculated using Equation 6.21 as 

 

  
HRG =  

HRGi
i=1

18
∑

18
 

 

  
= 47.3 + 52.1 + 45.6 . . . . + 49.7

18
= 48.4 

 

And we compute the standard deviation using Equation 6.22 as follows: 

 

    
s =  

HRGi − HRG( )2

i=1

18
∑

18 − 1
 

 

  
= (47.3 − 48.4)2 + (52.1 − 48.4)2 + . . . . + (49.7 − 48.4)2

17

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/2
  

 

 
= 64.95

17
= 1.95 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 



 6-61 

 Design/Safety Factors 

 

 6.51  The criteria upon which factors of safety are based are (1) consequences of failure, (2) previous 

experience, (3) accuracy of measurement of mechanical forces and/or material properties, and (4) economics. 
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 6.52  The working stresses for the two alloys the stress-strain behaviors of which are shown in Figures 6.12 

and 6.21 are calculated by dividing the yield strength by a factor of safety, which we will take to be 2.  For the brass 
alloy (Figure 6.12), since σy = 250 MPa (36,000 psi), the working stress is 125 MPa (18,000 psi), whereas for the 

steel alloy (Figure 6.21), σy = 1570 MPa (228,000 psi), and, therefore, σw = 785 MPa (114,000 psi). 
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DESIGN PROBLEMS 

 

 6.D1  For this problem the working stress is computed using Equation 6.24 with N = 2, as 

 

    
σw =

σ y
2

= 860  MPa
2

= 430 MPa  (62,500 psi )  

 
Since the force is given, the area may be determined from Equation 6.1, and subsequently the original diameter d0 

may be calculated as 

 

  
A0 = F

σw
= π

d0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

 

 

And 

 

    
d0 = 4F

π σw
= (4)(13,300 N)

π (430 x 106 N /m2)
 

 

= 6.3 x 10-3 m = 6.3 mm (0.25 in.) 
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 6.D2  (a)  This portion of the problem asks for us to compute the wall thickness of a thin-walled cylindrical 

Ni tube at 350°C through which hydrogen gas diffuses.  The inside and outside pressures are, respectively, 0.658 

and 0.0127 MPa, and the diffusion flux is to be no greater than 1.25 x 10-7 mol/m2-s.  This is a steady-state 

diffusion problem, which necessitates that we employ Equation 5.3.  The concentrations at the inside and outside 

wall faces may be determined using Equation 6.28, and, furthermore, the diffusion coefficient is computed using 

Equation 6.29.  Solving for ∆x (using Equation 5.3) 

 

  
∆x = −

D ∆C
J

 

 

  
=  −  1

1.25 × 10−7 mol / m2 − s
×  

 

  
(4.76 x 10-7) exp −

39,560  J / mol
(8.31 J /mol - K)(350 + 273 K)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ×  

 

  
(30.8)exp −

12,300  J / mol
(8.31 J / mol - K)(350 + 273 K)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  0.0127  MPa  −  0.658  MPa( ) 

 

= 0.00366 m = 3.66 mm 

 

 (b)  Now we are asked to determine the circumferential stress: 

 

  
σ = r ∆p

4 ∆x
 

 

  
= (0.125 m)(0.658 MPa − 0.0127 MPa)

(4)(0.00366  m)
 

 

= 5.50 MPa 

 

 (c)  Now we are to compare this value of stress to the yield strength of Ni at 350°C, from which it is 

possible to determine whether or not the 3.66 mm wall thickness is suitable.  From the information given in the 
problem, we may write an equation for the dependence of yield strength (σy) on temperature (T) as follows: 

 

    
σ y =  100 MPa −  5 MPa

50°C
T −  Tr( ) 

 
where Tr is room temperature and for temperature in degrees Celsius.  Thus, at 350°C 
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σ y = 100  MPa −  0.1 MPa/°C (350°C −  20°C) = 67  MPa  

 

Inasmuch as the circumferential stress (5.50 MPa) is much less than the yield strength (67 MPa), this thickness is 

entirely suitable. 

 

 (d)  And, finally, this part of the problem asks that we specify how much this thickness may be reduced and 

still retain a safe design.  Let us use a working stress by dividing the yield stress by a factor of safety, according to 

Equation 6.24.  On the basis of our experience, let us use a value of 2.0 for N.  Thus 

 

    
σw =

σ y
N

= 67  MPa
2

= 33.5  MPa  

 
Using this value for σw and Equation 6.30, we now compute the tube thickness as 

 

  
∆x = r ∆p

4σw
 

 

  
=

(0.125 m)(0.658 MPa − 0.0127 MPa)
4(33.5 MPa)

 

 

= 0.00060 m = 0.60 mm 

 

Substitution of this value into Fick's first law we calculate the diffusion flux as follows: 

 

  
J = − D ∆C

∆x
 

 

  
= −  (4.76 x 10-7) exp −

39,560  J /mol
(8.31 J /mol - K)(350 + 273 K)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ×  

  

(30.8) exp −
12,300  J / mol

(8.31 J /mol - K)(350 + 273 K)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 0.0127  MPa  −  0.658  MPa( )

0.0006  m
 

 

= 7.62 x 10-7 mol/m2-s 
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Thus, the flux increases by approximately a factor of 6, from 1.25 x 10-7 to 7.62 x 10-7 mol/m2-s with this reduction 

in thickness. 
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 6.D3  This problem calls for the specification of a temperature and cylindrical tube wall thickness that will 

give a diffusion flux of 2.5 x 10-8 mol/m2-s for the diffusion of hydrogen in nickel;  the tube radius is 0.100 m and 

the inside and outside pressures are 1.015 and 0.01015 MPa, respectively.  There are probably several different 

approaches that may be used;  and, of course, there is not one unique solution.  Let us employ the following 

procedure to solve this problem:  (1)  assume some wall thickness, and, then, using Fick's first law for diffusion 

(which also employs Equations 5.3 and 6.29), compute the temperature at which the diffusion flux is that required;  

(2)  compute the yield strength of the nickel at this temperature using the dependence of yield strength on 

temperature as stated in Problem 6.D2;  (3)  calculate the circumferential stress on the tube walls using Equation 

6.30;  and (4)  compare the yield strength and circumferential stress values--the yield strength should probably be at 

least twice the stress in order to make certain that no permanent deformation occurs.  If this condition is not met 

then another iteration of the procedure should be conducted with a more educated choice of wall thickness. 

 As a starting point, let us arbitrarily choose a wall thickness of 2 mm (2 x 10-3 m).  The steady-state 

diffusion equation, Equation 5.3, takes the form 

 

  
J = − D ∆C

∆x
 

 

= 2.5 x 10-8 mol/m2-s 

 

    
=  − (4.76  x 10-7)exp −

39,560  J /mol
(8.31 J / mol - K)(T)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   ×  

    

(30.8) exp −
12,300  J / mol

(8.31 J / mol - K)(T)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 0.01015 MPa  −  1.015 MPa( )

0.002  m
 

 

Solving this expression for the temperature T gives T = 500 K = 227°C;  this value is satisfactory inasmuch as it is 

less than the maximum allowable value (300°C). 

 The next step is to compute the stress on the wall using Equation 6.30;  thus 

 

  
σ = r ∆p

4 ∆x
 

 

  
= (0.100 m)(1.015 MPa − 0.01015 MPa)

(4)(2 × 10−3 m)
 

 

= 12.6 MPa 
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Now, the yield strength (σy) of Ni at this temperature may be computed using the expression 

 

    
σ y =  100 MPa −  5 MPa

50°C
T −  Tr( ) 

 
where Tr is room temperature.  Thus, 

 
σy = 100 MPa – 0.1 MPa/°C (227°C – 20°C) = 79.3 MPa 

 

Inasmuch as this yield strength is greater than twice the circumferential stress, wall thickness and temperature 

values of 2 mm and 227°C are satisfactory design parameters. 
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