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CHAPTER 3 

 

THE STRUCTURE OF CRYSTALLINE SOLIDS 

 

PROBLEM SOLUTIONS 

 

 

 Fundamental Concepts 

 

 3.1  Atomic structure relates to the number of protons and neutrons in the nucleus of an atom, as well as 

the number and probability distributions of the constituent electrons.  On the other hand, crystal structure pertains to 

the arrangement of atoms in the crystalline solid material. 
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 Unit Cells 
 Metallic Crystal Structures 

 

 3.2  For this problem, we are asked to calculate the volume of a unit cell of lead.  Lead has an FCC crystal 

structure (Table 3.1).  The FCC unit cell volume may be computed from Equation 3.4 as 

 

    VC  =  16R3 2 =  (16) (0.175 ×  10-9  m)3( 2) =  1.213 ×  10-28  m3 
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 3.3  This problem calls for a demonstration of the relationship 
  
a =

4R
3

 for BCC.  Consider the BCC unit 

cell shown below 

 

 
 

Using the triangle NOP 

 

  (NP)2 =  a2 +  a2 = 2a2 

 

And then for triangle NPQ, 

 

  (NQ)2 = (QP)2 + (NP)2 

 

But   NQ  = 4R, R being the atomic radius.  Also,  QP  = a.  Therefore, 

 

  (4R)2  =  a2 +  2a2 

 

or 

  
a =  4R

3
 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 3-4 

 3.4  We are asked to show that the ideal c/a ratio for HCP is 1.633.  A sketch of one-third of an HCP unit 

cell is shown below. 

 

 
 

Consider the tetrahedron labeled as JKLM, which is reconstructed as 

 

 
 

The atom at point M is midway between the top and bottom faces of the unit cell--that is   MH  = c/2.  And, since 

atoms at points J, K, and M, all touch one another, 

 

  JM = JK = 2R = a  

 

where R is the atomic radius.  Furthermore, from triangle JHM, 
 

  (JM )2 = (JH )2 + (MH )2 

or 

  
a2 =  (JH )2  +  c

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2
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Now, we can determine the   JH  length by consideration of triangle JKL, which is an equilateral triangle, 

 

 
 

  
cos 30° =  a /2

JH
=  3

2
 

and 

  
JH =  a

3
 

 

Substituting this value for   JH  in the above expression yields 
 

    
a2 =  a

3
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

+ c
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

=  a2

3
+  c2

4
 

 

and, solving for c/a 

 

  
c
a

=  8
3

=  1.633 
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 3.5  We are asked to show that the atomic packing factor for BCC is 0.68. The atomic packing factor is 

defined as the ratio of sphere volume to the total unit cell volume, or 

 

  
APF =  

VS
VC

 

 

Since there are two spheres associated with each unit cell for BCC 

 

    
VS  =  2(sphere volume) =  2 4πR3

3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =  8πR3

3
 

 
Also, the unit cell has cubic symmetry, that is VC = a3.  But a depends on R according to Equation 3.3, and 

 

  
VC = 4R

3
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3

= 64 R3

3 3
 

Thus, 

 

    
APF =  

VS
VC

=  8π R3 /3
64 R3 /3 3

=  0.68 
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 3.6  This problem calls for a demonstration that the APF for HCP is 0.74.  Again, the APF is just the total 

sphere volume-unit cell volume ratio.  For HCP, there are the equivalent of six spheres per unit cell, and thus 

 

  
VS  =  6 4π R3

3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =  8π R3 

 

Now, the unit cell volume is just the product of the base area times the cell height, c.  This base area is just three 

times the area of the parallelepiped ACDE shown below. 

 

 
The area of ACDE is just the length of   CD  times the height  BC .  But  CD  is just a or 2R, and  

 

    
BC  =  2R cos (30°) =  2 R 3

2
 

 

Thus, the base area is just 

 

    
AREA =  (3)(CD)(BC) =  (3)(2 R) 2 R 3

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =  6R2 3 

 

and since c = 1.633a = 2R(1.633) 

 

    VC  =  (AREA)(c) =  6 R2c 3 =  (6 R2 3)(2)(1.633)R =  12 3 (1.633) R3 

 

Thus, 

    
APF =  

VS
VC

=  8π R3

12 3 (1.633) R3 =  0.74 
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 Density Computations 

 

 3.7  This problem calls for a computation of the density of molybdenum.  According to Equation 3.5 

 

 
ρ =

nAMo
VC NA

 

 

For BCC, n = 2 atoms/unit cell, and 
 

  
VC  =  4 R

3
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3
 

 

Thus, 

 

  

ρ =
nAMo

4 R
3

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3

NA

 

 

  

=  (2 atoms/unit cell)(95.94 g/mol)

(4)(0.1363 ×  10-7  cm)3 / 3[ ]3 /(unit cell) (6.023 ×  1023 atoms/mol)
 

 

= 10.21 g/cm3 

 

The value given inside the front cover is 10.22 g/cm3. 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 3-9 

 3.8  We are asked to determine the radius of a palladium atom, given that Pd has an FCC crystal structure.  
For FCC, n = 4 atoms/unit cell, and VC =     16R3 2  (Equation 3.4).  Now, 

 

  
ρ =  

nAPd
VC N A

 

 

  
=  

nAPd
(16R3 2)N A

 

 

And solving for R from the above expression yields 

 

  
R =  

nAPd
16ρN A 2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/3
 

 

  
=  

(4 atoms/unit cell) 106.4 g/mol( )
(16)(12.0 g/cm3)(6.023 x 1023 atoms/mol)( 2)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/3
 

 

= 1.38 x 10-8 cm = 0.138 nm 
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 3.9  This problem asks for us to calculate the radius of a tantalum atom.  For BCC, n = 2 atoms/unit cell, 

and 
 

  
VC  =  4 R

3
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3

 =  64 R3

3 3
 

 

Since, from Equation 3.5 

 

  
ρ =  

nATa
VC N A

 

 

  

=  
nATa

64 R3

3 3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ N A

 

 
and solving for R the previous equation 

 

  
R =  

3 3nATa
64ρ N A

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/3
 

 

  
=  (3 3) (2 atoms/unit cell) (180.9 g/mol)

(64)(16.6 g/cm3)(6.023 x 1023 atoms/mol)
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/3
 

 

= 1.43 x 10-8 cm = 0.143 nm 
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 3.10  For the simple cubic crystal structure, the value of n in Equation 3.5 is unity since there is only a 

single atom associated with each unit cell.  Furthermore, for the unit cell edge length, a = 2R (Figure 3.23).  

Therefore, employment of Equation 3.5 yields 

 

  
ρ =  nA

VC N A
=  nA

(2 R)3 N A
 

 

  

=  (1 atom/unit cell)(74.5 g/mol)

(2)(1.45 x 10
-8

 cm)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
3

/(unit cell)
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
(6.023 x 1023 atoms/mol)

 

 

5.07 g/cm3 
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 3.11  (a)  The volume of the Ti unit cell may be computed using Equation 3.5 as 

 

  
VC =

nATi
ρN A

 

 
Now, for HCP, n = 6 atoms/unit cell, and for Ti, ATi = 47.9 g/mol.  Thus, 

 

    
VC =  (6 atoms/unit cell)(47.9 g/mol)

(4.51 g/cm3)(6.023 x 1023 atoms/mol)
 

 

= 1.058 x 10-22 cm3/unit cell = 1.058 x 10-28 m3/unit cell 

 

 (b)  From part of the solution to Problem 3.6, for HCP 

 

  VC  =   6 R2c 3  

 

But, since a = 2R, (i.e., R = a/2) then 

 

 

    
VC  =  6 a

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

c 3  =  
3 3 a2c

2
 

 

but, since c = 1.58a 

 

    
VC  =  3 3 (1.58) a3

2
=  1.058 x 10-22  cm3/unit cell  

 

Now, solving for a 

 

    
a =  (2)(1.058 x 10-22  cm3)

(3)( 3) (1.58)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/3
 

 

= 2.96 x 10-8 cm = 0.296 nm 

 

And finally 

c = 1.58a = (1.58)(0.296 nm) = 0.468 nm 
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 3.12  This problem asks that we calculate the theoretical densities of Al, Ni, Mg, and W. 
 Since Al has an FCC crystal structure, n = 4, and VC =   16R3 2  (Equation 3.4).  Also, R = 0.143 nm (1.43 

x 10-8 cm) and AAl = 26.98 g/mol.  Employment of Equation 3.5 yields 

 

  
ρ =  

nAAl
VC N A

 

 

  

=  (4 atoms/unit cell)(26.98 g/mol)

(2)(1.43 x 10-8  cm)( 2)[ ]3/(unit cell)
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
(6.023 x 1023 atoms/mol)

 

 

= 2.71 g/cm3 

 

The value given in the table inside the front cover is 2.71 g/cm3. 

 Nickel also has an FCC crystal structure and therefore 

 

  

ρ  =  (4 atoms/unit cell)(58.69 g/mol)

(2)(1.25 x 10-8  cm)( 2)[ ]3/(unit cell )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
(6.023 x 1023 atoms/mol)

 

 

= 8.82 g/cm3 

 

The value given in the table is 8.90 g/cm3. 

 

 Magnesium has an HCP crystal structure, and from the solution to Problem 3.6, 

 

  
VC  =  3 3 a2c

2
 

 

and, since c = 1.624a and a = 2R = 2(1.60 x 10-8 cm) = 3.20 x 10-8 cm 

 

    
VC  =  

(3 3)(1.624)(3.20 x 10-8  cm)3

2
 =  1.38 x 10−22  cm3/unit cell  

 

Also, there are 6 atoms/unit cell for HCP.  Therefore the theoretical density is 

 

  
ρ =  

nAMg
VC N A
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=  (6 atoms/unit cell)(24.31 g/mol)

(1.38 x 10-22  cm3/unit cell)(6.023 x 1023 atoms/mol)
 

 

= 1.75 g/cm3 

 

The value given in the table is 1.74 g/cm3. 

 

 Tungsten has a BCC crystal structure for which n = 2 and a = 
  

4 R
3

 (Equation 3.3);  also AW = 183.85 

g/mol and R  = 0.137 nm.  Therefore, employment of Equation 3.5 leads to 

 

  

ρ  =  (2 atoms/unit cell)(183.85 g/mol)

(4)(1.37 x 10-8  cm)
3

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

3
/(unit cell)

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
(6.023 x 1023 atoms/mol)

 

 

= 19.3 g/cm3 

 

The value given in the table is 19.3 g/cm3. 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 3-15 

 3.13  In order to determine whether Nb has an FCC or a BCC crystal structure, we need to compute its 
density for each of the crystal structures.  For FCC, n = 4, and a =   2 R 2  (Equation 3.1). Also, from Figure 2.6, its 

atomic weight is 92.91 g/mol.  Thus, for FCC (employing Equation 3.5) 

 

    
ρ  =  

nANb
a3N A

 =  
nANb

(2R 2)3N A
 

 

  

   =  (4 atoms/unit cell)(92.91 g/mol)

(2)(1.43 ×  10-8 cm)( 2)[ ]3 /(unit cell)
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
(6.023 × 1023 atoms /mol)

 

 

= 9.33 g/cm3 

 

 For BCC, n = 2, and a = 
    

4 R
3

 (Equation 3.3), thus 

 

  

ρ  =  
nANb

4 R
3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

3
N A

 

 

  

ρ  =  (2 atoms/unit cell)(92.91 g/mol)

(4)(1.43 ×  10-8 cm)
3

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

3
/(unit cell)

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
(6.023 × 1023 atoms /mol)

 

 

= 8.57 g/cm3 

 

which is the value provided in the problem statement.  Therefore, Nb has a BCC crystal structure. 
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 3.14  For each of these three alloys we need, by trial and error, to calculate the density using Equation 3.5, 

and compare it to the value cited in the problem.  For SC, BCC, and FCC crystal structures, the respective values of 

n are 1, 2, and 4, whereas the expressions for a (since VC = a3) are 2R,   2 R 2 , and 
  
4R

3
. 

 For alloy A, let us calculate ρ assuming a BCC crystal structure. 

 

  
ρ =  

nAA
VC N A

 

 

  

=  
nAA

4R
3

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3

N A

 

 

  

=  (2 atoms/unit cell)(43.1 g/mol)

(4)(1.22 × 10-8 cm)
3

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

3
/(unit cell)

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
(6.023 ×  1023 atoms/mol)

 

 

= 6.40 g/cm3 

 

Therefore, its crystal structure is BCC. 

 

 For alloy B, let us calculate ρ assuming a simple cubic crystal structure. 

 

  
ρ =  

nAB
(2a)3 N A

 

 

  

=  (1 atom/unit cell)(184.4 g/mol)

(2)(1.46 ×  10-8  cm)[ ]3/(unit cell)
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
(6.023 ×  1023 atoms/mol)

 

 

= 12.3 g/cm3 

 

Therefore, its crystal structure is simple cubic. 

 

 For alloy C, let us calculate ρ assuming a BCC crystal structure. 
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ρ  =  
nAC

4R
3

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3

N A

 

 

  

=  (2 atoms/unit cell)(91.6 g/mol)

(4)(1.37 × 10-8 cm)
3

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

3
/(unit cell)

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
(6.023 ×  1023 atoms/mol)

 

 

= 9.60 g/cm3 

Therefore, its crystal structure is BCC. 
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 3.15  In order to determine the APF for U, we need to compute both the unit cell volume (VC) which is just 

the product of the three unit cell parameters, as well as the total sphere volume (VS) which is just the product of the 

volume of a single sphere and the number of spheres in the unit cell (n).  The value of n may be calculated from 

Equation 3.5 as 

 

  
n =  

ρVC N A
AU

 

 

  
=  (19.05 g/cm3)(2.86)(5.87)(4.95)(× 10-24  cm3)(6.023 ×  1023  atoms /mol)

238.03 g/mol
 

 

= 4.01 atoms/unit cell 

Therefore 

 

    
APF =  

VS
VC

 =  
(4) 4

3
π R3⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

(a)(b)(c)
 

 

  
=  

(4) 4
3

(π)(1.385Źx 10-8  cm)3⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

(2.86)(5.87)(4.95)(xŹ10-24  cm3)
 

 

= 0.536 
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 3.16  (a)  For indium, and from the definition of the APF 

 

  
APF =  

VS
VC

=  
n 4

3
π R3⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

a2c
 

 

we may solve for the number of atoms per unit cell, n, as 

 

  

n =  (APF) a2c
4
3

π R3
 

 

  

=  (0.693)(4.59)2(4.95)(10-24  cm3)
4
3

π (1.625 ×  10-8  cm)3
 

 

= 4.0 atoms/unit cell 

 

 (b)  In order to compute the density, we just employ Equation 3.5 as 

 

  
ρ =  

nAIn
a2c N A

 

 

  

=  (4 atoms/unit cell)(114.82 g/mol)

(4.59 × 10-8 cm)2 (4.95 × 10-8 cm) /unit cell[ ](6.023 ×  1023 atoms/mol)
 

 

= 7.31 g/cm3 
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 3. 17  (a)  We are asked to calculate the unit cell volume for Be.  For HCP, from the solution to Problem 

3.6 

 

  VC  =  6 R2c 3  

 

But, c = 1.568a, and a = 2R, or c = 3.14R, and 

 

  VC  =  (6)(3.14) R3 3  

 

  
=  (6) (3.14)( 3) 0.1143 ×  10-7  cm[ ]3 =  4.87 ×  10−23 cm3/unit cell  

 

 (b)  The theoretical density of Be is determined, using Equation 3.5, as follows: 

 

  
ρ =  

nABe
VC N A

 

 
For HCP, n = 6 atoms/unit cell, and for Be, ABe = 9.01 g/mol (as noted inside the front cover).  Thus, 

 

  
ρ =  (6 atoms/unit cell)(9.01 g/mol)

(4.87 ×  10-23 cm3/unit cell)(6.023 ×  1023 atoms/mol)
 

 

= 1.84 g/cm3 

 

The value given in the literature is 1.85 g/cm3. 
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 3.18  This problem calls for us to compute the atomic radius for Mg.  In order to do this we must use 

Equation 3.5, as well as the expression which relates the atomic radius to the unit cell volume for HCP;  from 

Problem 3.6 it was shown that 

 

  VC  =  6 R2c 3  

 

In this case c = 1.624a, but, for HCP, a = 2R, which means that 

 

    VC  =  6 R2 (1.624)(2R) 3  =  (1.624)(12 3)R3 

 

And from Equation 3.5, the density is equal to 

 

    
ρ =  

nAMg
VC N A

 =  
nAMg

(1.624)(12 3)R3N A
 

 

And, solving for R from the above equation leads to the following: 

 

    
R =  

nAMg
(1.624)(12 3) ρ N A

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/3
 

 

  
=  (6 atoms/unit cell) (24.31 g/mol)

(1.624)(12 3)(1.74 g/cm3)(6.023 ×  1023 atoms/mol)
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/3
 

 

= 1.60 x 10-8 cm = 0.160 nm 
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 3.19  This problem asks that we calculate the unit cell volume for Co which has an HCP crystal structure.  

In order to do this, it is necessary to use a result of Problem 3.6, that is 

 

  VC  =  6 R2c 3  

 

The problem states that c = 1.623a, and a = 2R.  Therefore 

 

  VC  =  (1.623)(12 3) R3 

 

  =  (1.623)(12 3)(1.253 ×  10-8  cm)3 =  6.64 ×  10-23 cm3 =  6.64 ×  10-2  nm3 
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 Crystal Systems 
 

 3.20  (a)  The unit cell shown in the problem statement belongs to the tetragonal crystal system since a = b 

= 0.35 nm, c = 0.45 nm, and α = β = γ = 90°. 

 (b)  The crystal structure would be called body-centered tetragonal. 

 (c)  As with BCC, n = 2 atoms/unit cell.  Also, for this unit cell 

 

    VC  =  (3.5 ×  10−8  cm)2(4.5 ×  10−8  cm)  

 

  = 5.51 × 10−23 cm3/unit cell  
 

Thus, using Equation 3.5, the density is equal to 
 

  
ρ =  nA

VC N A
 

 

  
=  (2 atoms/unit cell) (141 g/mol)

(5.51 ×  10-23 cm3/unit cell)(6.023 ×  1023 atoms/mol)
 

 

= 8.49 g/cm3 
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 3.21  A unit cell for the face-centered orthorhombic crystal structure is presented below. 
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 Point Coordinates 

 

 3.22  This problem asks that we list the point coordinates for all of the atoms that are associated with the 

FCC unit cell.  From Figure 3.1b, the atom located of the origin of the unit cell has the coordinates 000.  

Coordinates for other atoms in the bottom face are 100, 110, 010, and 
 
1
2

1
2

0.  (The z coordinate for all these points 

is zero.) 

 For the top unit cell face, the coordinates are 001, 101, 111, 011, and 
 
1
2

1
2

1.  (These coordinates are the 

same as bottom-face coordinates except that  the “0” z coordinate has been replaced by a “1”.) 

 Coordinates for those atoms that are positioned at the centers of both side faces, and centers of both front 

and back faces need to be specified.   For the front and back-center face atoms, the coordinates are 
  
1 1

2
1
2

 and 
 
0 1

2
1
2

, 

respectively.  While for the left and right side center-face atoms, the respective coordinates are 
  
1
2

0 1
2

 and 
 
1
2

1 1
2

. 
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 3.23  Here we are asked list point coordinates for both sodium and chlorine ions for a unit cell of the 

sodium chloride crystal structure, which is shown in Figure 12.2. 

 In Figure 12.2, the chlorine ions are situated at all corners and face-centered positions.  Therefore, point 

coordinates for these ions are the same as for FCC, as presented in the previous problem—that is, 000, 100, 110, 

010, 001, 101, 111, 011, 
  
1
2

1
2

0, 
  
1
2

1
2

1, 
  
1 1

2
1
2

, 
 
0 1

2
1
2

, 
 
1
2

0 1
2

, and 
 
1
2

1 1
2

. 

 Furthermore, the sodium ions are situated at the centers of all unit cell edges, and, in addition, at the unit 

cell center.  For the bottom face of the unit cell, the point coordinates are as follows: 
  
1
2

00, 
  
1 1

2
0, 

  
1
2

10, 
 
0 1

2
0.  

While, for the horizontal plane that passes through the center of the unit cell (which includes the ion at the unit cell 

center), the coordinates are 
 
00 1

2
, 

  
1 0 1

2
, 

  
1
2

1
2

1
2

, 
 
1 1 1

2
, and 

 
01 1

2
.  And for the four ions on the top face 

  
1
2

01, 
 
1 1

2
1, 

  
1
2

1 1, and 
  
0 1

2
1. 
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 3.24  This problem calls for us to list the point coordinates of both the zinc and sulfur atoms for a unit cell 

of the zinc blende structure, which is shown in Figure 12.4. 

 First of all, the sulfur atoms occupy the face-centered positions in the unit cell, which from the solution to 

Problem 3.22, are as follows:  000, 100, 110, 010, 001, 101, 111, 011, 
 
1
2

1
2

0, 
 
1
2

1
2

1, 
 
1 1

2
1
2

, 
  
0 1

2
1
2

, 
  
1
2

0 1
2

, and 
 
1
2

1 1
2

. 

 Now, using an x-y-z coordinate system oriented as in Figure 3.4, the coordinates of the zinc atom that lies 

toward the lower-left-front of the unit cell has the coordinates 
 
3
4

1
4

1
4

, whereas the atom situated toward the lower-

right-back of the unit cell has coordinates of 
 
1
4

3
4

1
4

.  Also, the zinc atom that resides toward the upper-left-back of 

the unit cell has the 
  
1
4

1
4

3
4

 coordinates.  And, the coordinates of the final zinc atom, located toward the upper-right-

front of the unit cell, are 
  
3
4

3
4

3
4

. 
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 3.25  A tetragonal unit in which are shown the 
 
1 1 1

2
 and 

 
1
2

1
4

1
2

 point coordinates is presented below. 
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 3.26  First of all, open the “Molecular Definition Utility”;  it may be found in either of “Metallic Crystal 

Structures and Crystallography” or “Ceramic Crystal Structures” modules. 

 In the “Step 1” window, it is necessary to define the atom type, a color for the spheres (atoms), and specify 

an atom size.  Let us enter “Sn” as the name of the atom type (since “Sn” the symbol for tin).  Next it is necessary to 

choose a color from the selections that appear in the pull-down menu—for example, “LtBlue” (light blue).  In the 

“Atom Size” window, it is necessary to enter an atom size.  In the instructions for this step, it is suggested that the 

atom diameter in nanometers be used.  From the table found inside the front cover of the textbook, the atomic radius 

for tin is 0.151 nm, and, therefore, the atomic diameter is twice this value (i.e., 0.302 nm);  therefore, we enter the 

value “0.302”.  Now click on the “Register” button, followed by clicking on the “Go to Step 2” button. 

 In the “Step 2” window we specify positions for all of the atoms within the unit cell;  their point 

coordinates are specified in the problem statement.  Now we must enter a name in the box provided for each of the 

atoms in the unit cell.  For example, let us name the first atom “Sn1”.  Its point coordinates are 000, and, therefore, 

we enter a “0” (zero) in each of the “x”, “y”, and “z” atom position boxes.  Next, in the “Atom Type” pull-down 

menu we select “Sn”, our only choice, and the name we specified in Step 1.  For the next atom, which has point 

coordinates of 100, let us name it “Sn2”;  since it is located a distance of a units along the x-axis the value of 

“0.583” is entered in the “x” atom position box (since this is the value of a given in the problem statement);  zeros 

are entered in each of the “y” and “z” position boxes.  We next click on the “Register” button.  This same procedure 

is repeated for all 13 of the point coordinates specified in the problem statement.  For the atom having point 

coordinates of “111” respective values of “0.583”, “0.583”, and “0.318” are entered in the x, y, and z atom position 

boxes, since the unit cell edge length along the y and z axes are a (0.583) and c (0.318 nm), respectively.  For 

fractional point coordinates, the appropriate a or c value is multiplied by the fraction.  For example, the second 
point coordinate set in the right-hand column, 

 
1
2

0 3
4

, the x, y, and z atom positions are 
  
1
2

(0.583)  = 0.2915, 0, and 

  
3
4

(0.318)  = 0.2385, respectively.  The x, y, and z atom position entries for all 13 sets of point coordinates are as 

follows: 

 0, 0, and 0 0, 0.583, and 0.318 

 0.583, 0, and 0 0.2915, 0, and 0.2385 

 0.583, 0.583, and 0 0.2915, 0.583, and 0.2385 

 0, 0.583, and 0 0.583, 0.2915, and 0.0795 

 0, 0, and 0.318 0, 0.2915, 0.0795 

 0.583, 0, and 0.318 0.2915, 0.2915, and 0.159 

 0.583, 0.583, and 0.318 
  

 In Step 3, we may specify which atoms are to be represented as being bonded to one another, and which 

type of bond(s) to use (single solid, single dashed, double, and triple are possibilities), or we may elect to not 
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represent any bonds at all (in which case we click on the “Go to Step 4” button).  If it is decided to show bonds, 

probably the best thing to do is to represent unit cell edges as bonds. 

 The window in Step 4 presents all the data that have been entered;  you may review these data for 

accuracy.  If any changes are required, it is necessary to close out all windows back to the one in which corrections 

are to be made, and then reenter data in succeeding windows.  When you are fully satisfied with your data, click on 

the “Generate” button, and the image that you have defined will be displayed.  The image may then be rotated by 

using mouse click-and-drag. 

 Your image should appear as 
 

 

 
 

[Note:  Unfortunately, with this version of the Molecular Definition Utility, it is not possible to save either the data 

or the image that you have generated.  You may use screen capture (or screen shot) software to record and store 

your image.] 
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 Crystallographic Directions 

 
 3.27  This problem calls for us to draw a  [21 1]  direction within an orthorhombic unit cell (a ≠ b ≠ c, α = β 

= γ = 90°).  Such a unit cell with its origin positioned at point O is shown below.  We first move along the +x-axis 

2a units (from point O to point A), then parallel to the +y-axis -b units (from point A to point B).  Finally, we 
proceed parallel to the z-axis c units (from point B to point C).  The  [21 1]  direction is the vector from the origin 

(point O) to point C as shown. 

 

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 3-32 

 3.28  This problem asks that a   [1 01] direction be drawn within a monoclinic unit cell (a ≠ b ≠ c, and α = β 

= 90º ≠ γ).  One such unit cell with its origin at point O is sketched below.  For this direction, we move from the 

origin along the minus x-axis a units (from point O to point P).  There is no projection along the y-axis since the 

next index is zero.  Since the final index is a one, we move from point P parallel to the z-axis, c units (to point Q). 
Thus, the   [1 01] direction corresponds to the vector passing from the origin to point Q, as indicated in the figure. 
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 3.29  We are asked for the indices of the two directions sketched in the figure.  For direction 1, the 
projection on the x-axis is a, while projections on the y- and z-axes are -b/2 and -c, respectively.  This is a  [21 2 ] 

direction as indicated in the summary below. 

 

 
  x y z

 Projections a -b/2 -c 

 Projections in terms of a, b, and c 1 -1/2 -1 

 Reduction to integers 2 -1 -2 
 Enclosure   [21 2 ] 

 

 Direction 2 is [102] as summarized below. 

 
  x y z

 Projections a/2 0b c 

 Projections in terms of a, b, and c 1/2 0 1 

 Reduction to integers 1 0 2 

 Enclosure  [102] 
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 3.30  The directions asked for are indicated in the cubic unit cells shown below. 
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 3.31  Direction A is a   [1 10]direction, which determination is summarized as follows.  We first of all 

position the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate 

system 

 
  x y z

 Projections – a b 0c 

 Projections in terms of a, b, and c –1 1 0 

 Reduction to integers  not necessary  

 Enclosure   [1 10]  
 

 Direction B is a [121] direction, which determination is summarized as follows.  The vector passes through 

the origin of the coordinate system and thus no translation is necessary.  Therefore, 
 
  x y z

 Projections 
  
a
2

 b 
  
c
2

 

 Projections in terms of a, b, and c 
 
1
2

 1 
 
1
2

 

 Reduction to integers 1 2 1 

 Enclosure  [121] 

 

 Direction C is a   [01 2 ] direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
 
  x y z

 Projections 0a 
  
−

b
2

 – c 

 Projections in terms of a, b, and c 0 –
 
1
2

 –1 

 Reduction to integers 0 –1 –2 

 Enclosure   [01 2 ] 
 

 Direction D is a   [12 1] direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
 
  x y z

 Projections 
  
a
2

 –b 
  
c
2

 

 Projections in terms of a, b, and c 
 
1
2

 –1 
 
1
2

 

 Reduction to integers 1 –2 1 

 Enclosure   [12 1] 
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 3.32  Direction A is a   [331 ]  direction, which determination is summarized as follows.  We first of all 

position the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate 

system 
  x y z

 Projections a b –
    
c
3

 

 Projections in terms of a, b, and c 1 1 –
  
1
3

 

 Reduction to integers 3 3 –1 

 Enclosure   [331 ]  
 

 Direction B is a   [4 03 ] direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
 
  x y z

 Projections –
  
2a
3

 0b –
    
c
2

 

 Projections in terms of a, b, and c –
 
2
3

 0 –
  
1
2

 

 Reduction to integers –4 0 –3 

 Enclosure   [4 03 ] 
 

 Direction C is a   [3 61] direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
 
  x y z

 Projections –
  
a
2

 b 
  
c
6

 

 Projections in terms of a, b, and c –
 
1
2

 1 
 
1
6

 

 Reduction to integers –3 6 1 

 Enclosure   [3 61] 

 

 Direction D is a   [1 11 ] direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
 
  x y z

 Projections –
  
a
2

 
  
b
2

 –
    
c
2

 

 Projections in terms of a, b, and c –
 
1
2

 
 
1
2

 –
  
1
2

 

 Reduction to integers –1 1 –1 

 Enclosure   [1 11 ] 
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 3.33  For tetragonal crystals a = b ≠ c and α = β = γ = 90°;  therefore, projections along the x and y axes are 

equivalent, which are not equivalent to projections along the z axis.  

 (a)  Therefore, for the [011] direction, equivalent directions are the following:  [101],   [1 01 ],  [1 01], 

  [101 ],   [011 ] ,   [01 1] , and   [01 1 ] . 

 (b)  Also, for the [100] direction, equivalent directions are the following:   [1 00] , [010], and   [01 0]. 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 3-38 

 3.34 We are asked to convert [110] and  [001 ]  directions into the four-index Miller-Bravais scheme for 

hexagonal unit cells.  For [110] 

 

u' = 1, 

v' = 1, 

w' = 0 

 

From Equations 3.6 

 

    
u =  1

3
(2uÕ− vÕ) =  1

3
[(2)(1) −  1] =  1

3
  

 

    
v =  1

3
(2vÕ− uÕ) =  1

3
[(2)(1) −  1] =  1

3
  

 

    
t =  − (u +  v) =  −

1
3

+ 1
3

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  =  −

2
3

 

 

w = w' = 0 

 

It is necessary to multiply these numbers by 3 in order to reduce them to the lowest set of integers.  Thus, the 

direction is represented as [uvtw] =   [112 0] . 

 For   [001 ] , u' = 0, v' = 0, and w' = -1;  therefore, 

 

 
u =  1

3
[(2)(0) −  0] =  0  

 

 
v =  1

3
[(2)(0) −  0] =  0 

 

t = - (0 + 0) = 0 

 

w = -1 

 

Thus, the direction is represented as [uvtw] =  [0001 ] . 
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 3.35  This problem asks for the determination of indices for several directions in a hexagonal unit cell. 
 For direction A, projections on the a1, a2, and z axes are –a, –a, and c, or, in terms of a and c the 

projections are –1, –1, and 1.  This means that 

 u’ = –1 

 v’ = –1 

 w’ = 1 

Now, from Equations 3.6, the u, v, t, and w indices become 

 

    
u = 1

3
(2u' − v' ) =

1
3

(2)(−1) − (−1)[ ] = −
1
3

 

 

    
v = 1

3
(2vÕ− uÕ) =

1
3

(2)(−1) − (−1)[ ] = −
1
3

 

 

    
t = − (u + v) = − −

1
3

−
1
3

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ =

2
3

 

w = w’ = 1 

 

Now, in order to get the lowest set of integers, it is necessary to multiply all indices by the factor 3, with the result 

that the direction A is a   [1 1 23] direction. 

 
 For direction B, projections on the a1, a2, and z axes are –a, 0a, and 0c, or, in terms of a and c the 

projections are –1, 0, and 0.  This means that 

  u’ = –1 

  v’ = 0 

  w’ = 0 

Now, from Equations 3.6, the u, v, t, and w indices become 

 

    
u =

1
3

(2u' − v) =
1
3

(2)(−1) − 0[ ] = −
2
3

 

 

    
v =

1
3

(2v' − u' ) =
1
3

(2)(0) − (−1)[ ] =
1
3

 

 

    
t = − (u+ v) = − −

2
3

+
1
3

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ =

1
3

 

 

  w = w' = 0  
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Now, in order to get the lowest set of integers, it is necessary to multiply all indices by the factor 3, with the result 

that the direction B is a   [2 110] direction. 

 

 
 For direction C projections on the a1, a2, and z axes are a, a/2, and 0c, or, in terms of a and c the 

projections are 1, 1/2, and 0, which when multiplied by the factor 2 become the smallest set of integers:  2, 1, and 0.  

This means that 

  u’ = 2 

  v’ = 1 

  w’ = 0 

Now, from Equations 3.6, the u, v, t, and w indices become 

 

    
u =

1
3

(2uÕ− v) =
1
3

(2)(2) −1[ ] =
3
3

= 1 

 

    
v =

1
3

(2vÕ− uÕ) =
1
3

(2)(1) − 2[ ] = 0 

 

    t = − (u+ v) = − 1 − 0( ) = −1 

 

  w = w' = 0  

 

No reduction is necessary inasmuch as all the indices are integers.  Therefore, direction C is a   [101 0] . 

 
 For direction D projections on the a1, a2, and z axes are a, 0a, and c/2, or, in terms of a and c the 

projections are 1, 0, and 1/2, which when multiplied by the factor 2 become the smallest set of integers:  2, 0, and 1.  

This means that 

  u’ = 2 

  v’ = 0 

  w’ = 1 

Now, from Equations 3.6, the u, v, t, and w indices become 

 

    
u =

1
3

(2u' − v' ) =
1
3

(2)(2) − 0[ ] =
4
3

 

 

    
v =

1
3

(2vÕ− uÕ) =
1
3

(2)(0) − (2)[ ] =−
2
3

 

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 3-42 

 3.36  This problem asks for us to derive expressions for each of the three primed indices in terms of the 

four unprimed indices. 

 It is first necessary to do an expansion of Equation 3.6a as 

 

  
u =

1
3

(2u' − v) =
2u'
3

−
v'
3

 

 

And solving this expression for v’ yields 

 

  v' = 2u' − 3u 

 

Now, substitution of this expression into Equation 3.6b gives 

 

    
v =

1
3

(2vÕ− uÕ) =
1
3

(2)(2uÕ− 3u) − uÕ[ ] = uÕ− 2u  

Or 

 

  u' = v + 2u  

 

And, solving for v from Equation 3.6c leads to 

 

 v = − (u + t)  

 

which, when substituted into the above expression for u’ yields 

 

    u' = v + 2u = − u − t + 2u = u − t  

 

 In solving for an expression for v’, we begin with the one of the above expressions for this parameter—i.e., 

 

  v' = 2u' − 3u 

 

Now, substitution of the above expression for u’ into this equation leads to 

 

    vÕ= 2uÕ− 3u = (2)(u − t) − 3u = − u −2t  

 

And solving for u from Equation 3.6c gives 
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 u = − v − t  

 

which, when substituted in the previous equation results in the following expression for v’ 

 

    vÕ= − u −2t = − (− v − t) − 2t = v − t  

 

And, of course from Equation 3.6d 

 

w’ = w 
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 Crystallographic Planes 

 

 3.37 (a)  We are asked to draw a  (021 )  plane within an orthorhombic unit cell.  First remove the three 

indices from the parentheses, and take their reciprocals--i.e., ∞, 1/2, and -1.  This means that the plane parallels the 

x-axis, intersects the y-axis at b/2, and intersects the z-axis at -c.  The plane that satisfies these requirements has 

been drawn within the orthorhombic unit cell below.  (For orthorhombic, a ≠ b ≠ c, and α = β = γ = 90°.) 

 

 
 

 (b)  A (200) plane is drawn within the monoclinic cell shown below.  We first remove the parentheses and 

take the reciprocals of the indices;  this gives 1/2, ∞, and ∞,.  Thus, the (200) plane parallels both y- and z-axes, and 

intercepts the x-axis at a/2, as indicated in the drawing.  (For monoclinic, a ≠ b ≠ c, and α =  γ = 90° ≠ β.) 
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 3.38  This problem calls for specification of the indices for the two planes that are drawn in the sketch. 

 Plane 1 is a (211) plane.  The determination of its indices is summarized below. 

 
  x y z

 Intercepts a/2 b c 

 Intercepts in terms of a, b, and c 1/2 1 1 

 Reciprocals of intercepts 2 1 1 

 Enclosure  (211) 

 

 Plane 2 is a   (02 0)  plane, as summarized below. 

 

  x y z

 

 Intercepts ∞a -b/2 ∞c 

 Intercepts in terms of a, b, and c ∞ -1/2 ∞ 

 Reciprocals of intercepts 0 -2 0 

 Enclosure   (02 0)  
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 3.39  The planes called for are plotted in the cubic unit cells shown below. 
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 3.40  For plane A we will leave the origin at the unit cell as shown.  If we extend this plane back into the 

plane of the page, then it is a   (111 )  plane, as summarized below. 

 
  x y z

 Intercepts a b – c 

 Intercepts in terms of a, b, and c 1 1 – 1 

 Reciprocals of intercepts 1 1 – 1 

 Reduction  not necessary  

 Enclosure   (111 )  

 

[Note:  If we move the origin one unit cell distance parallel to the x axis and then one unit cell distance parallel to 

the y axis, the direction becomes   (1 1 1) ]. 

 

 For plane B we will leave the origin of the unit cell as shown;  this is a (230) plane, as summarized below. 

 
  x y z

 Intercepts 
  
a
2

 
  
b
3

 ∞c 

 Intercepts in terms of a, b, and c 
 
1
2

 
 
1
3

 ∞ 

 Reciprocals of intercepts 2 3 0 

 Enclosure  (230) 
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 3.41  For plane A we will move the origin of the coordinate system one unit cell distance to the right along 

the y axis;  thus, this is a   (11 0)  plane, as summarized below. 

 
  x y z

 Intercepts 
  
a
2

 – 
  
b
2

 ∞ c 

 Intercepts in terms of a, b, and c 
 
1
2

 – 
 
1
2

 ∞ 

 Reciprocals of intercepts 2 – 2 0 

 Reduction 1 – 1 0 

 Enclosure   (11 0)  

 

 For plane B we will leave the origin of the unit cell as shown;  thus, this is a (122) plane, as summarized 

below. 

 
  x y z

 Intercepts a 
  
b
2

 
  
c
2

 

 Intercepts in terms of a, b, and c 1 
 
1
2

 
 
1
2

 

 Reciprocals of intercepts 1 2 2 

 Reduction  not necessary  

 Enclosure  (122) 
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t = − (u+ v) = −

4
3

−
2
3

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = −

2
3

 

 

  w = w' = 1 

 

Now, in order to get the lowest set of integers, it is necessary to multiply all indices by the factor 3, with the result 

that the direction D is a   [42 2 3] direction. 
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 3.42  For plane A since the plane passes through the origin of the coordinate system as shown, we will 

move the origin of the coordinate system one unit cell distance vertically along the z axis;  thus, this is a  (211 )  

plane, as summarized below. 

 
  x y z

 Intercepts 
  
a
2

 b – c 

 Intercepts in terms of a, b, and c 
 
1
2

 1 – 1 

 Reciprocals of intercepts 2 1 – 1 

 Reduction  not necessary  

 Enclosure   (211 )  
 

 For plane B, since the plane passes through the origin of the coordinate system as shown, we will move the 

origin one unit cell distance vertically along the z axis;  this is a  (021 )  plane, as summarized below. 

 
  x y z

 Intercepts ∞ a 
  
b
2

 – c 

 Intercepts in terms of a, b, and c ∞ 
 
1
2

 – 1 

 Reciprocals of intercepts 0 2 – 1 

 Reduction  not necessary 

 Enclosure   (021 )  
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 3.43  (a)  In the figure below is shown (110) and (111) planes, and, as indicated, their intersection results in a 

  [1 10] , or equivalently, a   [11 0]  direction. 

 

 
 

 (b)  In the figure below is shown (110) and  (11 0)  planes, and, as indicated, their intersection results in a 

[001], or equivalently, a   [001 ]  direction. 

 

 
 

 (c) In the figure below is shown   (111 )  and (001) planes, and, as indicated, their intersection results in a 

  [1 10] , or equivalently, a   [11 0]  direction. 
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 3.44  (a)  The atomic packing of the (100) plane for the FCC crystal structure is called for.  An FCC unit 

cell, its (100) plane, and the atomic packing of this plane are indicated below. 

 

 
 

 (b)  For this part of the problem we are to show the atomic packing of the (111) plane for the BCC crystal 

structure.  A BCC unit cell, its (111) plane, and the atomic packing of this plane are indicated below. 
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 3.45  (a)  The unit cell in Problem 3.20 is body-centered tetragonal.  Of the three planes given in the 

problem statement the (100) and   (01 0)  are equivalent—that is, have the same atomic packing.  The atomic packing 

for these two planes as well as the (001) are shown in the figure below. 

 

 
 

 (b)  Of the four planes cited in the problem statement, only (101), (011), and  (1 01)  are equivalent—have 

the same atomic packing.  The atomic arrangement of these planes as well as the (110) are presented in the figure 

below.  Note:  the 0.495 nm dimension for the (110) plane comes from the relationship 

  
(0.35 nm)2  +  (0.35 nm)2[ 1] /2

.  Likewise, the 0.570 nm dimension for the (101), (011), and   (1 01)  planes comes 

from 
  
(0.35 nm)2  +  (0.45 nm)2[ ]1/2

. 
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 (c)  All of the (111),   (11 1) ,   (111 ) , and  (1 11 )  planes are equivalent, that is, have the same atomic packing 

as illustrated in the following figure: 
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 3.46  Unit cells are constructed below from the three crystallographic planes provided in the problem 

statement. 

 

 
 

 (a)  This unit cell belongs to the tetragonal system since a = b = 0.40 nm, c = 0.55 nm, and α = β = γ = 90°. 

 (b)  This crystal structure would be called body-centered tetragonal since the unit cell has tetragonal 

symmetry, and an atom is located at each of the corners, as well as the cell center. 
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 3.47 The unit cells constructed below show the three crystallographic planes that were provided in the 

problem statement. 

 

 
 

 (a)  This unit cell belongs to the orthorhombic crystal system since a = 0.25 nm, b = 0.30 nm, c = 0.20 nm, 

and α = β = γ = 90°. 

 (b)  This crystal structure would be called face-centered orthorhombic since the unit cell has orthorhombic 

symmetry, and an atom is located at each of the corners, as well as at each of the face centers. 

 (c)  In order to compute its atomic weight, we employ Equation 3.5, with n = 4;  thus 

 

  
A =  

ρVC N A
n

 

 

  
=

(18.91 g/cm3) (2.0)(2.5)(3.0) (× 10-24  cm3/unit cell)(6.023 ×  10 23 atoms/mol)
4 atoms/unit cell

 

 

= 42.7 g/mol 
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 3.48  This problem asks that we convert (111) and  (01 2)  planes into the four-index Miller-Bravais 

scheme, (hkil), for hexagonal cells.  For (111), h = 1, k = 1, and l = 1, and, from Equation 3.7, the value of i is equal 

to 

 

    i = − (h + k) = − (1 + 1) = − 2  

 

Therefore, the (111) plane becomes   (112 1) . 

 Now for the   (01 2)  plane, h = 0, k = -1, and l = 2, and computation of i using Equation 3.7 leads to 

 

    i = − (h + k) = −[0 + (−1)] = 1 

 

such that   (01 2)  becomes   (01 12) . 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 3-58 

 3.49  This problem asks for the determination of Bravais-Miller indices for several planes in hexagonal 

unit cells. 

 
 (a)  For this plane, intersections with the a1, a2, and z axes are ∞a, –a, and ∞c (the plane parallels both a1 

and z axes).  In terms of a and c these intersections are ∞, –1, and ∞, the respective reciprocals of which are 0, –1, 

and 0.  This means that 

  h = 0 

  k = –1 

  l = 0 

Now, from Equation 3.7, the value of i is 

 

    i = − (h + k) = −[0 + (−1)] = 1 

 

Hence, this is a   (01 10)  plane. 

 
 (b)  For this plane, intersections with the a1, a2, and z axes are –a, –a, and c/2, respectively.  In terms of a 

and c these intersections are –1, –1, and 1/2, the respective reciprocals of which are –1, –1, and 2.  This means that 

  h = –1 

  k = –1 

  l = 2 

Now, from Equation 3.7, the value of i is 

 

  i = − (h + k) = − (−1 − 1) = 2  

 

Hence, this is a   (1 1 22)  plane. 

 
 (c)  For this plane, intersections with the a1, a2, and z axes are a/2, –a, and ∞c (the plane parallels the z 

axis).  In terms of a and c these intersections are 1/2, –1, and ∞, the respective reciprocals of which are 2, –1, and 0.  

This means that 

  h = 2 

  k = –1 

  l = 0 

Now, from Equation 3.7, the value of i is 

 

    i = − (h + k) = − (2 − 1) = −1 
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Hence, this is a   (21 1 0)  plane. 

 
 (d)  For this plane, intersections with the a1, a2, and z axes are –a, a, and c/2, respectively.  In terms of a 

and c these intersections are –1, 1, and 1/2, the respective reciprocals of which are –1, 1, and 2.  This means that 

  h = –1 

  k = 1 

  l = 2 

Now, from Equation 3.7, the value of i is 

 

  i = − (h + k) = − (−1 + 1) = 0  

 

Therefore, this is a   (1 102)  plane. 
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 3.50  This problem asks that we draw  (011 1)  and  (21 1 0)  planes within hexagonal unit cells. 

 For   (011 1)  the reciprocals of h, k, i, and l are, respectively, ∞, 1, –1, and 1;  thus, this plane is parallel to 
the a1 axis, and intersects the a2 axis at a, the a3 axis at –a, and the z-axis at c.  The plane having these intersections 

is shown in the figure below 

 
 

 For   (21 1 0)  the reciprocals of h, k, i, and l are, respectively, 1/2, –1, –1, and ∞;  thus, this plane is parallel 
to the c axis, and intersects the a1 axis at a/2, the a2 axis at –a, and the a3 axis at –a.  The plane having these 

intersections is shown in the figure below. 
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 Linear and Planar Densities 

 

 3.51  (a)  In the figure below is shown a [100] direction within an FCC unit cell. 

 

 
 

For this [100] direction there is one atom at each of the two unit cell corners, and, thus, there is the equivalent of 1 

atom that is centered on the direction vector.  The length of this direction vector is just the unit cell edge length, 

    2R 2  (Equation 3.1).  Therefore, the expression for the linear density of this plane is 

 

  
LD100 =  number of atoms centered on [100] direction vector

length of [100] direction vector
 

 

  
=

1 atom
2 R 2

=
1

2 R 2
 

 

 An FCC unit cell within which is drawn a [111] direction is shown below. 

 

 
 

For this [111] direction, the vector shown passes through only the centers of the single atom at each of its ends, and, 

thus, there is the equivalence of 1 atom that is centered on the direction vector.  The length of this direction vector is 

denoted by z in this figure, which is equal to 

 

  z = x2 + y2  
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where x is the length of the bottom face diagonal, which is equal to 4R.  Furthermore, y is the unit cell edge length, 

which is equal to     2R 2  (Equation 3.1).  Thus, using the above equation, the length z may be calculated as follows: 

 

    z = (4R)2 + (2 R 2)2 = 24 R2 = 2 R 6  

 

Therefore, the expression for the linear density of this direction is 

 

  
LD111 =  number of atoms centered on [111] direction vector

length of [111] direction vector
 

 

  
=

1 atom
2 R 6

=
1

2 R 6
 

 

 (b)  From the table inside the front cover, the atomic radius for copper is 0.128 nm.  Therefore, the linear 

density for the [100] direction is 

 

    
LD100 (Cu) =

1
2 R 2

=
1

(2)(0.128 nm) 2
= 2.76 nm−1 = 2.76 × 109 m−1 

 

While for the [111] direction 

 

    
LD111(Cu) =

1
2 R 6

=
1

(2)(0.128 nm) 6
= 1.59 nm−1 = 1.59 × 109 m−1 
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 3.52  (a)  In the figure below is shown a [110] direction within a BCC unit cell. 

 

 
 

For this [110] direction there is one atom at each of the two unit cell corners, and, thus, there is the equivalence of 1 

atom that is centered on the direction vector. The length of this direction vector is denoted by x in this figure, which 

is equal to 

 

  x = z2 − y2  

 

where y is the unit cell edge length, which, from Equation 3.3 is equal to 
  

4 R
3

.  Furthermore, z is the length of the 

unit cell diagonal, which is equal to 4R  Thus, using the above equation, the length x may be calculated as follows: 

 

    
x = (4R)2 −

4 R
3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
=

32 R2

3
= 4 R 2

3
 

 

Therefore, the expression for the linear density of this direction is 

 

  
LD110 =  number of atoms centered on [110] direction vector

length of [110] direction vector
 

 

  

=
1 atom

4 R 2
3

=
3

4 R 2
 

 

 A BCC unit cell within which is drawn a [111] direction is shown below. 
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For although the [111] direction vector shown passes through the centers of three atoms, there is an equivalence of 

only two atoms associated with this unit cell—one-half of each of the two atoms at the end of the vector, in addition 

to the center atom belongs entirely to the unit cell.  Furthermore, the length of the vector shown is equal to 4R, since 

all of the atoms whose centers the vector passes through touch one another.  Therefore, the linear density is equal to 

 

  
LD111 =  number of atoms centered on [111] direction vector

length of [111] direction vector
 

 

  
=

2 atoms
4R

=
1

2R
 

 

 (b)  From the table inside the front cover, the atomic radius for iron is 0.124 nm.  Therefore, the linear 

density for the [110] direction is 

 

    
LD110 (Fe) =

3
4 R 2

=
3

(4)(0.124 nm) 2
= 2.47 nm−1 = 2.47 × 109 m−1 

 

While for the [111] direction 
 

    
LD111(Fe) =

1
2 R

=
1

(2)(0.124 nm)
= 4.03 nm−1 = 4.03 × 109 m−1 
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 3.53 (a)  In the figure below is shown a (100) plane for an FCC unit cell. 
 

 
 

For this (100) plane there is one atom at each of the four cube corners, each of which is shared with four adjacent 

unit cells, while the center atom lies entirely within the unit cell.  Thus, there is the equivalence of 2 atoms 

associated with this FCC (100) plane.  The planar section represented in the above figure is a square, wherein the 

side lengths are equal to the unit cell edge length,   2R 2  (Equation 3.1);  and, thus, the area of this square is just 

    (2R 2)2  = 8R2.  Hence, the planar density for this (100) plane is just 

 

  
PD100 =  number of atoms centered on (100) plane

area of (100) plane
 

 

  
=

2 atoms
8R2 =

1
4R2  

 

 That portion of an FCC (111) plane contained within a unit cell is shown below. 

 

 
 

There are six atoms whose centers lie on this plane, which are labeled A through F.  One-sixth of each of atoms A, 

D, and F are associated with this plane (yielding an equivalence of one-half atom), with one-half of each of atoms 

B, C, and E (or an equivalence of one and one-half atoms) for a total equivalence of two atoms.  Now, the area of 
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the triangle shown in the above figure is equal to one-half of the product of the base length and the height, h.  If we 

consider half of the triangle, then 

 

  (2 R)2 + h2 = (4 R)2  

 
which leads to h =     2 R 3 .  Thus, the area is equal to 

 

    
Area =

4 R(h)
2

=
(4 R) (2 R 3)

2
= 4 R2 3  

 

And, thus, the planar density is 

 

  
PD111 =  number of atoms centered on (111) plane

area of (111) plane
 

 

  
=

2 atoms
4 R2 3

=
1

2 R2 3
 

 

 (b)  From the table inside the front cover, the atomic radius for aluminum is 0.143 nm.  Therefore, the 

planar density for the (100) plane is 

 

    
PD100 (Al) =

1
4 R2 =

1
4 (0.143 nm)2 = 12.23 nm−2 = 1.223 × 1019 m−2 

 

While for the (111) plane 

 

    
PD111(Al) =

1
2 R2 3

=
1

2 3 (0.143 nm)2 = 14.12 nm−2 = 1.412 × 1019 m−2  
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 3.54 (a)  A BCC unit cell within which is drawn a (100) plane is shown below. 

 

 
 

For this (100) plane there is one atom at each of the four cube corners, each of which is shared with four adjacent 

unit cells.  Thus, there is the equivalence of 1 atom associated with this BCC (100) plane.  The planar section 

represented in the above figure is a square, wherein the side lengths are equal to the unit cell edge length, 
  

4 R
3

 

(Equation 3.3);  and, thus, the area of this square is just 
  

4R
3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
 = 

  
16 R2

3
.  Hence, the planar density for this (100) 

plane is just 

 

  
PD100 =  number of atoms centered on (100) plane

area of (100) plane
 

 

  

=
1 atom
16 R2

3

=
3

16 R2  

 

 A BCC unit cell within which is drawn a (110) plane is shown below. 

 

 
 

For this (110) plane there is one atom at each of the four cube corners through which it passes, each of which is 

shared with four adjacent unit cells, while the center atom lies entirely within the unit cell.  Thus, there is the 
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equivalence of 2 atoms associated with this BCC (110) plane.  The planar section represented in the above figure is 

a rectangle, as noted in the figure below. 

 

 
 

From this figure, the area of the rectangle is the product of x and y.  The length x is just the unit cell edge length, 

which for BCC (Equation 3.3) is 
    

4 R
3

.  Now, the diagonal length z is equal to 4R.  For the triangle bounded by the 

lengths x, y, and z 

 

  y = z2 − x2  

Or 

 

    
y = (4 R)2 −

4R
3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
=

4 R 2
3

 

 

Thus, in terms of R, the area of this (110) plane is just 

 

    
Area (110) = xy =

4 R
3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

4 R 2
3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =

16 R2 2
3

 

 

And, finally, the planar density for this (110) plane is just 

 

  
PD110 =  number of atoms centered on (110) plane

area of (110) plane
 

 

  

=
2 atoms

16 R2 2
3

=
3

8 R2 2
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 (b)  From the table inside the front cover, the atomic radius for molybdenum is 0.136 nm.  Therefore, the 

planar density for the (100) plane is 

 

    
PD100 (Mo) =

3
16 R2 =

3
16 (0.136 nm)2 = 10.14 nm−2 = 1.014 × 1019 m−2 

 

While for the (110) plane 

 

    
PD110 (Mo) =

3
8 R2 2

=
3

8 (0.136 nm)2 2
= 14.34 nm−2 = 1.434 × 1019 m−2 
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 3.55 (a)  A (0001) plane for an HCP unit cell is show below. 

 

 
 

Each of the 6 perimeter atoms in this plane is shared with three other unit cells, whereas the center atom is shared 

with no other unit cells;  this gives rise to three equivalent atoms belonging to this plane. 

 In terms of the atomic radius R, the area of each of the 6 equilateral triangles that have been drawn is 

    R
2 3 , or the total area of the plane shown is   6 R2 3 .  And the planar density for this (0001) plane is equal to 

 

  
PD0001 =

number of atoms centered on (0001) plane
area of (0001) plane

 

 

  
=

3 atoms
6R2 3

=
1

2R2 3
 

 

 (b)  From the table inside the front cover, the atomic radius for titanium is 0.145 nm.  Therefore, the planar 

density for the (0001) plane is 

 

    
PD0001(Ti) =

1
2 R2 3

=
1

2 3 (0.145 nm)2 = 13.73 nm−2 = 1.373 × 1019 m−2  
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 Polycrystalline Materials 

 

 3.56  Although each individual grain in a polycrystalline material may be anisotropic, if the grains have 

random orientations, then the solid aggregate of the many anisotropic grains will behave isotropically. 
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 X-ray Diffraction:  Determination of Crystal Structures 

 

 3.57  From the Table 3.1, aluminum has an FCC crystal structure and an atomic radius of 0.1431 nm.  

Using Equation 3.1, the lattice parameter a may be computed as 

 

    a=2 R 2 = (2) (0.1431 nm) 2 = 0.4048 nm 

 
Now, the interplanar spacing d110 maybe determined using Equation 3.14 as 

 

    
d110 = a

(1)2  +  (1)2  +  (0)2
= 0.4048 nm

2
=  0.2862 nm 
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 3.58  We first calculate the lattice parameter using Equation 3.3 and the value of R (0.1249 nm) cited in 

Table 3.1, as follows: 

 

    
a = 4 R

3
= (4) (0.1249 nm)

3
=  0.2884  nm 

 

Next, the interplanar spacing for the (310) set of planes may be determined using Equation 3.14 according to 

 

    
d310 =  a

(3)2  +  (1)2  +  (0)2
= 0.2884 nm

10
=  0.0912  nm 

 

And finally, employment of Equation 3.13 yields the diffraction angle as 

 

    
sin θ = nλ

2d310
= (1)(0.0711 nm)

(2)(0.0912  nm)
=  0.390 

 

Which leads to 

 

 θ = sin-1(0.390) =  22.94°  

 

And, finally 

 

 2θ = (2)(22.94°) = 45.88°  
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 3.59  From the table, α-iron has a BCC crystal structure and an atomic radius of 0.1241 nm.  Using 

Equation 3.3 the lattice parameter, a, may be computed as follows: 

 

    
a = 4 R

3
= (4) (0.1241 nm)

3
= 0.2866 nm 

 
Now, the d111 interplanar spacing may be determined using Equation 3.14 as 

 

    
d111 =  a

(1)2  +  (1)2  +  (1)2
= 0.2866 nm

3
=  0.1655  nm 

 
And, similarly for d211 

 

    
d211 = a

(2)2  +  (1)2  +  (1)2
= 0.2866 nm

6
=  0.1170  nm 
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 3.60  (a)  From the data given in the problem, and realizing that 36.12° = 2θ, the interplanar spacing for the 

(311) set of planes for rhodium may be computed using Equation 3.13 as 

 

    

d311 = nλ
2 sin θ

= (1)(0.0711  nm)

(2) sin 36.12°
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

=  0.1147  nm 

 

 (b)  In order to compute the atomic radius we must first determine the lattice parameter, a, using Equation 

3.14, and then R from Equation 3.1 since Rh has an FCC crystal structure.  Therefore, 

 

    a = d311 (3)2  +  (1)2  +  (1)2 =  (0.1147  nm)( 11) =  0.3804  nm 

 

And, from Equation 3.1 

 

    
R = a

2 2
= 0.3804 nm

2 2
=  0.1345  nm 
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 3.61  (a)  From the data given in the problem, and realizing that 75.99° = 2θ, the interplanar spacing for the 

(211) set of planes for Nb may be computed using Equation 3.13 as follows: 

 

    

d211 = nλ
2 sin θ

= (1)(0.1659  nm)

(2) sin 75.99°
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

=  0.1348  nm 

 

 (b)  In order to compute the atomic radius we must first determine the lattice parameter, a, using Equation 

3.14, and then R from Equation 3.3 since Nb has a BCC crystal structure.  Therefore, 

 

    a = d211 (2)2  +  (1)2  +  (1)2 = (0.1347  nm)( 6) = 0.3300  nm 

 

And, from Equation 3.3 

 

    
R =

a 3
4

=
(0.3300 nm) 3

4
= 0.1429  nm 
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 3.62  The first step to solve this problem is to compute the interplanar spacing using Equation 3.13.  Thus, 

 

    

dhkl =
nλ

2 sin θ
= (1)(0.1542  nm)

(2) sin 44.53°
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

= 0.2035 nm 

 

Now, employment of both Equations 3.14 and 3.1 (since Ni’s crystal structure is FCC), and the value of R for nickel 

from Table 3.1 (0.1246 nm) leads to 

 

    
 h2 +  k 2 +  l2 = a

dhkl
=

2R 2
dhkl

 

 

  
=  

(2)(0.1246  nm) 2
(0.2035 nm)

 =  1.732 

 

This means that 

 

    h
2 +  k 2 +  l2 = (1.732)2 = 3.0  

 

By trial and error, the only three integers that are all odd or even, the sum of the squares of which equals 3.0 are 1, 

1, and 1.  Therefore, the set of planes responsible for this diffraction peak is the (111) set. 
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 3.63  For each peak, in order to compute the interplanar spacing and the lattice parameter we must employ 

Equations 3.14 and 3.13, respectively.  The first peak of Figure 3.21, which results from diffraction by the (111) set 

of planes, occurs at 2θ = 31.3°;  the corresponding interplanar spacing for this set of planes, using Equation 3.13, is 

equal to 

 

    

d111 = nλ
2 sin θ

= (1)(0.1542 nm)

(2) sin 31.3°
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

 =  0.2858 nm  

 

And, from Equation 3.14, the lattice parameter a is determined as 

 

    a =  dhkl (h)2  +  (k)2  +  (l)2  =  d111 (1)2  +  (1)2  +  (1)2  

 

  =  (0.2858  nm) 3 =  0.4950  nm  

 

Similar computations are made for the other peaks which results are tabulated below: 

 
 Peak Index 2θ dhkl(nm) a (nm) 

 200 36.6 0.2455 0.4910 

 220 52.6 0.1740 0.4921 

 311 62.5 0.1486 0.4929 

 222 65.5 0.1425 0.4936 
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 3.64  The first four diffraction peaks that will occur for BCC consistent with h + k + l being even are (110), 

(200), (211), and (220). 
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 3.65  (a)  Since W has a BCC crystal structure, only those peaks for which h + k + l are even will appear.  

Therefore, the first peak results by diffraction from (110) planes. 

 (b)  For each peak, in order to calculate the interplanar spacing we must employ Equation 3.13.  For the 

first peak which occurs at 40.2° 
 

    

d110 = nλ
2 sin θ

= (1)(0.1542 nm)

(2) sin 40.2°
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

 =  0.2244 nm 

 

 (c)  Employment of Equations 3.14 and 3.3 is necessary for the computation of R for W as 

 

    
R =

a 3
4

=
(dhkl)( 3) (h)2  +  (k)2  +  (l)2

4
 

 

  
=

(0.2244 nm)( 3) (1)2  +  (1)2  +  (0)2

4
 

 

= 0.1374 nm 

 

Similar computations are made for the other peaks which results are tabulated below: 
 
 Peak Index 2θ dhkl(nm) R (nm) 

 200 58.4 0.1580 0.1369 

 211 73.3 0.1292 0.1370 

 220 87.0 0.1120 0.1371 

 310 100.7 0.1001 0.1371 
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 Noncrystalline Solids 
 

 3.66  A material in which atomic bonding is predominantly ionic in nature is less likely to form a 

noncrystalline solid upon solidification than a covalent material because covalent bonds are directional whereas 

ionic bonds are nondirectional;  it is more difficult for the atoms in a covalent material to assume positions giving 

rise to an ordered structure. 
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