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CHAPTER 20 

 

MAGNETIC PROPERTIES 

 

PROBLEM SOLUTIONS 

 

Basic Concepts 

 

 20.1  (a)  We may calculate the magnetic field strength generated by this coil using Equation 20.1 as 
 

  
H =  NI

l
 

 

  
=  (400 turns)(15 A)

0.25 m
=  24,000  A - turns/m 

 

 (b)  In a vacuum, the flux density is determined from Equation 20.3.  Thus, 

 

  B0 =  µ0H  

 

  =  (1.257 x 10-6  H/m)(24,000 A - turns/m) =  3.0168 x 10-2  tesla  
 

 (c)  When a bar of chromium is positioned within the coil, we must use an expression that is a combination 
of Equations 20.5 and 20.6 in order to compute the flux density given the magnetic susceptibility.  Inasmuch as χm 

= 3.13 x 10-4 (Table 20.2), then 
 

    B =  µ0H +  µ0M =  µ0H +  µ0χmH =  µ0H(1 +  χm) 

 

  =  (1.257 x 10-6  H/m)(24,000 A - turns/m)(1 +  3.13 x 10-4) 

 

= 3.0177 x 10-2 tesla 
 

which is essentially the same result as part (b).  This is to say that the influence of the chromium bar within the coil 

makes an imperceptible difference in the magnitude of the B field. 

 (d)  The magnetization is computed from Equation 20.6: 
 

    M =  χmH =  (3.13 x 10-4 )(24,000 A - turns/m) =  7.51 A/m 
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 20.2  This problem asks us to show that χm and µr are related according to χm = µr – 1.  We begin with 

Equation 20.5 and substitute for M using Equation 20.6.  Thus, 
 

    B =  µ0H +  µ0M =  µ0H +  µ0χmH  

 

But B is also defined in Equation 20.2 as 
 

  B = µH  

 

When the above two expressions are set equal to one another as 

 

  µH =  µ0H +  µ0χmH  

 

This leads to 

  µ =  µ0(1 +  χm)  

 
If we divide both sides of this expression by µ0, and from the definition of µr (Equation 20.4), then 

 

  

µ
µ0

=  µr  =  1 +  χm 

 

or, upon rearrangement 

 

  χm =  µr −1 

 

which is the desired result. 
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 20.3  For this problem, we want to convert the volume susceptibility of copper (i.e., –0.96 x 10-5) into 

other systems of units. 

 For the mass susceptibility  
 

  
χm(kg) =

χm
ρ (kg /m3)

 

 

  
=  −0.96 x 10−5

8.96 x 103 kg /m3 =  −1.07 x 10-9 

 

 For the atomic susceptibility 
 

    χm(a) =  χm(kg) x atomic weight (in kg)[ ] 

 

  =  (−1.07 x 10-9)(0.06355 kg/mol) = − 6.81 x 10-11 

 

 For the cgs-emu susceptibilities, 
 

    
χ m' =  

χm
4π

=  − 0.96 x 10−5

4π
= − 7.64 x 10-7  

 

    
χm' (g) =  

χ m'

ρ(g /cm3)
=  −7.64 x 10−7

8.96 g /cm3 =  − 8.53 x 10-8  

 

    χ mÕ(a) =  χmÕ(g) x atomic weight (in g)[ ] 

 

  =  (−8.53 x 10-8)(63.55 g/mol) = − 5.42 x 10-6 
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 20.4  (a)  The two sources of magnetic moments for electrons are the electron's orbital motion around the 

nucleus, and also, its spin. 

 (b)  Each electron will have a net magnetic moment from spin, and possibly, orbital contributions, which 

do not cancel for an isolated atom. 

 (c)  All atoms do not have a net magnetic moment.  If an atom has completely filled electron shells or 

subshells, there will be a cancellation of both orbital and spin magnetic moments. 
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 Diamagnetism and Paramagnetism 
 Ferromagnetism 

 

 20.5  (a)  The magnetic permeability of this material may be determined according to Equation 20.2 as 
 

    
µ = B

H
= 0.630 tesla

5 x 105 A /m
=  1.26 x 10-6  H/m 

 

 (b)  The magnetic susceptibility is calculated using a combined form of Equations 20.4 and 20.7 as 
 

  
χm = µr − 1 =

µ
µ0

− 1  

 

  
= 1.26 x 10−6 H /m

1.257 x 10−6 H /m
−  1 =  2.39 x 10-3 

 

 (c)  This material would display both diamagnetic and paramagnetic behavior.  All materials are 
diamagnetic, and since χm is positive and on the order of 10-3, there would also be a paramagnetic contribution. 
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 20.6  (a)  This portion of the problem calls for us to compute the magnetic susceptibility within a bar of 
some metal alloy when M = 1.2 x 106 A/m and H =200 A/m.  This requires that we solve for χm from Equation 20.6 

as 

 

    
χm =  M

H
=  1.2 x 106 A /m

200 A /m
=  6000 

 

 (b)  In order to calculate the permeability we must employ a combined form of Equations 20.4 and 20.7 as 

follows: 

 

  µ =  µr µ0 =  (χm +  1)µ0 

 

  =  (6000 +  1)(1.257 x 10-6  H/m) =  7.54 x 10-3 H/m 

 

 (c)  The magnetic flux density may be determined using Equation 20.2 as 

 

    B =  µH =  (7.54 x 10-3 H/m)(200 A/m) =  1.51 tesla  

 
 (d)  This metal alloy would exhibit ferromagnetic behavior on the basis of the magnitude of its χm (6000), 

which is considerably larger than the χm values for diamagnetic and paramagnetic materials listed in Table 20.2. 
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 20.7  (a)  The saturation magnetization for Fe may be determined in the same manner as was done for Ni in 

Example Problem 20.1.  Thus, using a modified form of Equation 20.9 
 

  Ms = 2.2µBN  

 
in which µB is the Bohr magneton and N is the number of Fe atoms per cubic meter.  Also, there are 2.2 Bohr 

magnetons per Fe atom.  Now, N (the number of iron atoms per cubic meter) is related to the density and atomic 

weight of Fe, and Avogadro's number according to Equation 20.10 as 

 

  
N =  

ρFe N A
AFe

 

 

  
=  (7.87 x 106 g /m3)(6.023 x 1023atoms /mol)

55.85 g /mol
 

 

 = 8.49 x 1028 atoms/m3 

 

Therefore, 
 

    Ms = 2.2 µBN = (2.2  BM/atom)(9.27 x 10-24  A - m2/BM)(8.49 x 1028  atoms/m3) 

 

 = 1.73 x 106 A/m 

 

 (b)  The saturation flux density is determined according to Equation 20.8.  Thus 
 

  Bs =  µ0Ms  

 

  =  (1.257 x 10-6  H/m)(1.73 x 106  A/m) =  2.18 tesla  
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 20.8  We want to confirm that there are 1.72 Bohr magnetons associated with each cobalt atom.  Therefore, 
let        be the number of Bohr magnetons per atom, which we will calculate.  This is possible using a modified and 

rearranged form of Equation 20.9—that is 

nB
'

 

   
n B

' =  
Ms

µBN
 

 

Now, N is just the number of atoms per cubic meter, which is the number of atoms per unit cell (six for HCP, 

Section 3.4) divided by the unit cell volume-- that is, 

 

  
N =  6

VC
 

 

which, when substituted into the first equation gives 

 

  
n B

' =  
Ms VC
6µB

 

 

Now, the unit cell volume is just the product of the base area times the cell height, c.  This base area is just three 

times the area of the parallelepiped ACDE shown below. 

 
 

The area of ACDE is just the length of   CD  times the height  BC .  But  CD  is just a, the unit cell edge length, and  

 

  
BC  =  a cos (30°) =  a 3

2
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Thus, the base area is just 

 

    
AREA =  (3)(CD)(BC) =  (3)( a) a 3

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =  3a2

2
3  

 

and since c = 1.623a 

 

    
VC  =  (AREA)(c) =  3a2c

2
3 =  3a2(1.623)a

2
3 =  3a3(1.623)

2
3  

 

Thus, substitution of  this equation with the one above for  

 

    
n B

Õ=  
Ms VC
6µB

 =  
Ms 

6µB

3(1.623) 3a3

2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 
and, since a = 0.2506 nm, the value of      is calculated as nB

'

 

    
n B

'  =  (1.45 ×  106  A/m)
(6 atoms/unit cell)(9.27 ×  10-24  A - m2 /Bohr magneton)

3(1.623) 3 (0.2506 ×  10-9  m)3 / unit cell 
2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

= 1.73 Bohr magnetons/atom 
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 20.9  We are to determine the number of Bohr magnetons per atom for a hypothetical metal that has a 

simple cubic crystal structure, an atomic radius of 0.125 nm, and a saturation flux density of 0.85 tesla.  It becomes 

necessary to employ Equation 20.8 and a modified form of Equation 20.9 as follows: 

 

    
nB  =  

Ms
µBN

 =  

Bs
µ0

µBN
 =  

Bs
µ0µBN

 

 
Here nB is the number of Bohr magnetons per atom, and N is just the number of atoms per cubic meter, which is the 

number of atoms per unit cell [one for simple cubic (Figure 3.23)] divided by the unit cell volume—that is, 

 

  
N =  1

VC
 

 

which, when substituted into the above equation gives 

 

  
nB =  

BsVC
µ0µB

 

 
For the simple cubic crystal structure (Figure 3.23), a = 2r, where r is the atomic radius, and VC = a3 = (2r)3.  

Substituting this relationship into the above equation yields 

 

  
nB =  

Bs (2r)3

µ0 µB
 

 

  
=  (0.85 tesla)(8)(0.125 x 10−9 m)3

(1.257 x 10−6 H /m)(9.27 x 10−24 A - m2 /BM)
=  1.14 Bohr magnetons/atom 
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 20.10  Ferromagnetic materials may be permanently magnetized (whereas paramagnetic ones may not) 

because of the ability of net spin magnetic moments of adjacent atoms to align with one another.  This mutual 

magnetic moment alignment in the same direction exists within small volume regions--domains.  When a magnetic 

field is applied, favorably oriented domains grow at the expense of unfavorably oriented ones, by the motion of 

domain walls.  When the magnetic field is removed, there remains a net magnetization by virtue of the resistance to 

movement of domain walls;  even after total removal of the magnetic field, the magnetization of some net domain 

volume will be aligned near the direction that the external field was oriented. 

 For paramagnetic materials, there is no magnetic dipole coupling, and, consequently, domains do not form.  

When a magnetic field is removed, the atomic dipoles assume random orientations, and no magnetic moment 

remains. 
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 Antiferromagnetism and Ferrimagnetism 

 

 20.11  Hund's rule states that the spins of the electrons of a shell will add together in such a way as to yield 

the maximum magnetic moment.  This means that as electrons fill a shell the spins of the electrons that fill the first 

half of the shell are all oriented in the same direction;  furthermore, the spins of the electrons that fill the last half of 

this same shell will all be aligned and oriented in the opposite direction.  For example, consider the iron ions in 

Table 20.4;  from Table 2.2, the electron configuration for the outermost shell for the Fe atom is 3d64s2.  For the 

Fe3+ ion the outermost shell configuration is 3d5, which means that five of the ten possible 3d states are filled with 

electrons.  According to Hund's rule the spins of all of these electrons are aligned, there will be no cancellation, and 

therefore, there are five Bohr magnetons associated with each Fe3+ ion, as noted in the table.  For Fe2+ the 

configuration of the outermost shell is 3d6, which means that the spins of five electrons are aligned in one direction, 

and the spin of a single electron is aligned in the opposite direction, which cancels the magnetic moment of one of 

the other five;  thus, this yields a net moment of four Bohr magnetons. 

 For Mn2+ the electron configuration is 3d5, the same as Fe3+, and, therefore it will have the same number 

of Bohr magnetons (i.e., five). 

 For Co2+ the electron configuration is 3d7, which means that the spins of five electrons are in one 

direction, and two are in the opposite direction, which gives rise to a net moment of three Bohr magnetons. 

 For Ni2+ the electron configuration is 3d8 which means that the spins of five electrons are in one direction, 

and three are in the opposite direction, which gives rise to a net moment of two Bohr magnetons. 

 For Cu2+ the electron configuration is 3d9 which means that the spins of five electrons are in one direction, 

and four are in the opposite direction, which gives rise to a net moment of one Bohr magneton. 
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 20.12  (a)  The saturation magnetization of cobalt ferrite is computed in the same manner as Example 

Problem 20.2;  from Equation 20.13 
 

  
Ms =  

nB µB

a3  

 
Now, nB is just the number of Bohr magnetons per unit cell.  The net magnetic moment arises from the Co2+ ions, 

of which there are eight per unit cell, each of which has a net magnetic moment of three Bohr magnetons (Table 
20.4).  Thus, nB is twenty-four.  Therefore, from the above equation 

 

    
Ms =  (24 BM /unit cell)(9.27 x 10−24 A - m2 /BM)

(0.838 x 10−9 m)3 /unit cell
 

 

 = 3.78 x 105 A/m 

 

 (b)  This portion of the problem calls for us to compute the saturation flux density.  From Equation 20.8 
 

  Bs =  µ0 Ms  

 

  =  (1.257 x 10-6  H/m)(3.78 x 105 A/m) =  0.475 tesla  
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 20.13  We want to compute the number of Bohr magnetons per Cu2+ ion in (CuFe2O4)8.  Let nB represent 

the number of Bohr magnetons per Cu2+ ion;  then, using Equation 20.9, we have 

 

  Ms =  nB µBN  

 

in which N is the number of Cu2+ ions per cubic meter of material.  But, from Equation 20.10 

 

  
N =  

ρN A
A

 

 
Here A is the molecular weight of CuFe2O4 (239.25 g/mol).  Thus, combining the previous two equations 

 

  
Ms =  

nB µB ρN A
A

 

 

or, upon rearrangement (and expressing the density in units of grams per meter cubed), 

 

  
nB =  

M s A
µB ρN A

 

 

  
=  (1.35 x 105 A / m) (239.25 g / mol)

(9.27 x 10−24 A - m2 / BM)(5.40 x 106 g / m3)(6.023 x 1023 ions / mol)
 

 

  =  1.07 Bohr magnetons/Cu2+ ion 
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 20.14  For this problem we are given that samarium iron garnet may be written in the form 
 where the superscripts a, c, and d represent different sites on which the Sm    Sm3

cFe2
aFe3

dO12
3+ and Fe3+ ions are 

located, and that the spin magnetic moments for the ions on a and c sites are oriented parallel to one another and 

antiparallel to the Fe3+ ions on the d sites.  We are to determine the number of Bohr magnetons associated with each 

Sm3+ ion given that each unit cell consists of eight formula units, the unit cell is cubic with an edge length of 

1.2529 nm, the saturation magnetization for the material is 1.35 x 105 A/m, and that there are 5 Bohr magnetons for 

each Fe3+ ion. 
 The first thing to do is to calculate the number of Bohr magnetons per unit cell, which we will denote nB.  

Solving for nB using Equation 20.13, we get 
 

  
nB =  

Ms a3

µB
 

 

  
=  (1.35 × 105 A /m)(1.2529 x 10−9 m)3

9.27 x 10−24 A - m2 /BM
=  28.64 Bohr magnetons/unit cell 

 

Now, there are 8 formula units per unit cell or 
 
28.64

8
= 3.58 Bohr magnetons per formula unit.  Furthermore, for 

each formula unit there are two Fe3+ ions on a sites and three Fe3+ on d sites which magnetic moments are aligned 

antiparallel.  Since there are 5 Bohr magnetons associated with each Fe3+ ion, the net magnetic moment 

contribution per formula unit from the Fe3+ ions is 5 Bohr magnetons.  This contribution is antiparallel to the 

contribution from the Sm3+ ions, and since there are three Sm3+ ions per formula unit, then 

 

  
No. of Bohr magnetons/Sm3+ =  3.58 BM + 5 BM

3
=  2.86 BM 
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 The Influence of Temperature on Magnetic Behavior 

 

 20.15  For ferromagnetic materials, the saturation magnetization decreases with increasing temperature 

because the atomic thermal vibrational motions counteract the coupling forces between the adjacent atomic dipole 

moments, causing some magnetic dipole misalignment.  Ferromagnetic behavior ceases above the Curie temperature 

because the atomic thermal vibrations are sufficiently violent so as to completely destroy the mutual spin coupling 

forces. 
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 Domains and Hysteresis 

 

 20.16  The phenomenon of magnetic hysteresis and an explanation as to why it occurs for ferromagnetic 

and ferrimagnetic materials is given in Section 20.7. 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 20-18 

 20.17  (a)  This portion of the problem asks that we compute the flux density in a coil of wire 0.5 m long, 

having 20 turns, and carrying a current of 1.0 A, and that is situated in a vacuum.  Combining Equations 20.1 and 

20.3, and solving for B yields 

 

  
B0 =  µ0H =  

µ0NI
l

 

 

  
=  (1.257 x 10−6 H / m) (20 turns) (1.0 A)

0.5 m
=  5.03 x 10-5 tesla  

 

 (b)  Now we are to compute the flux density with a bar of the iron-silicon alloy, the B-H behavior for 

which is shown in Figure 20.29.  It is necessary to determine the value of H using Equation 20.1 as 

 

    
H =  NI

l
=  (20 turns)(1.0 A)

0.5 m
=  40 A - turns/m 

 

Using the curve in Figure 20.29, B = 1.30 tesla at H = 40 A-turns/m. 

 (c)  Finally, we are to assume that a bar of Mo is situated within the coil, and to calculate the current that is 

necessary to produce the same B field as when the iron-silicon alloy in part (b) was used.  Molybdenum is a 
paramagnetic material having a χm of 1.19 x 10-4 (Table 20.2).  Combining Equations 20.2, 20.4, and 20.7 we solve 

for H 

 

    
H =  B

µ
=  B

µ0 µr
=

B
µ0(1 + χm)  

 

And when Mo is positioned within the coil, then, from the above equation 

 

    
H =  1.30 tesla

(1.257 x 10−6 H /m)(1 + 1.19 x 10−4)
=  1.034 x 106  A - turns/m 

 

Now, the current may be determined using Equation 20.1: 

 

    
I =  Hl

N
=  (1.034 x 106 A - turns /m) (0.5 m)

20 turns
=  25,850 A 
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 20.18  The B versus H curve for this material is shown below. 
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 20.19  (a)  The B-H data for the plain carbon steel provided in the problem statement are plotted below. 
 

 
 

 (b)  The first three data points are plotted below. 
 

 
 
The slope of the initial portion of the curve is µi (as shown), is 
 

    
µi  = ∆B

∆H
=  (0.01 − 0) tesla

(40 − 0) A / m
=  2.5 x 10-4  H/m 

 
Also, the initial relative permeability, µri, (Equation 20.4) is just 
 

    
µri  =  

µi
µ0

= 2.5 x 10−4 H /m
1.257 x 10−6 H /m

=  200 
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 (c)  The maximum permeability is the tangent to the B-H curve having the greatest slope;  it is drawn on 
the plot below, and designated as µ(max). 
 

 
 

The value of µ(max) is (modifying Equation 20.2) 

 

    
µ(max) = ∆B

∆H
=  (1.5 − 0) tesla

(100 − 50) A - m
=  3.0 x 10 -2 H/m 

 

 (d)  The H field at which µ(max) occurs is approximately 70 A/m [as taken from the plot shown in part 

(c)]. 

 (e)  We are asked for the maximum susceptibility, χ(max).  Combining modified forms of Equations 20.7 

and 20.4 yields 

 

    
χ(max) =  µ r (max) − 1 =

µ (max)
µ0

−  1 

 

  
=  3.0 x 10−2 H /m

1.257 x 10−6 H /m
−  1 =  23,865 
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 20.20  In order to demagnetize a magnet having a coercivity of 7000 A/m, an H field of 7000 A/m must be 

applied in a direction opposite to that of magnetization.  According to Equation 20.1 
 

  
I = Hl

N
 

 

  
=  (7000 A /m) (0.25 m)

150 turns
=  11.7 A  
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 20.21  (a)  We want to determine the magnitude of the B field within an iron-silicon alloy, the B-H 

behavior for which is shown in Figure 20.29, when l = 0.40 m, N = 50 turns, and I = 0.1 A.  Applying Equation 20.1 
 

    
H = NI

l
=  (50 turns) (0.1 A)

0.40 m
=  12.5 A/m 

 

Below is shown the B-versus-H plot for this material.  The B value from the curve corresponding to H = 12.5 A/m is 

about 1.07 tesla. 

 

 
 

 (b) 

  (i)  The permeability at this field is just ∆B/∆H of the tangent of the B-H curve at H = 12.5 A/m.  

The slope of this line as drawn in the above figure is 
 

    
µ =  ∆B

∆H
=  (1.50 − 0.66) tesla

(25 − 0) A / m
=  3.36 x 10-2  H/m 

 

  (ii)  From Equation 20.4, the relative permeability is 
 

    
µr  = µ

µ0
= 3.36 x 10−2 H / m

1.257 x 10−6 H / m
=  26,730  
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  (iii)  Using Equation 20.7, the susceptibility is 
 

    χm =  µr − 1 =  26,730 −  1 =  26,729 

 

  (iv)  The magnetization is determined from Equation 20.6 as 
 

    M =  χmH =  (26,729)(12.5 A/m) =  3.34 x 105 A/m 
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 Magnetic Anisotropy 

 

 20.22  This problem asks for us to estimate saturation values of H for single crystal nickel in the [100], 

[110], and [111] directions.  All we need do is read values of H at points A, B, and C on the curves shown in Figure 

20.17.  Saturation in the [111] direction (point A) is approximately 3000 A/m.  Corresponding values in [110] and 

[111] directions are approximately 15,000 and 17,500 A/m, respectively. 
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 20.23 In this problem we are asked to estimate the energy required to magnetize single crystals of iron in 
[100], [110], and [111] directions.  These energies correspond to the products of µ0 and the areas between the 

vertical axis of Figure 20.17 and the three curves for single crystal iron taken to the saturation magnetization.  For 
the [100] direction this area is about 6.8 x 108 A2/m2. When this value is multiplied by the value of µ0 (1.257 x 10-

6 H/m), we get a value of about 850 J/m3.  The corresponding approximate areas for [110] and [111] directions are 
9 x 109 A2/m2 and 1.2 x 1010 A2/m2, respectively;  when multiplied by µ0 the respective energies for [110] and 

[111] directions are 1.1 x 104 and 1.5 x 104 J/m3. 
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 Soft Magnetic Materials 
 Hard Magnetic Materials 

 

 20.24  Relative to hysteresis behavior, a hard magnetic material has a high remanence, a high coercivity, a 

high saturation flux density, high hysteresis energy losses, and a low initial permeability;  a soft magnetic material, 

on the other hand, has a high initial permeability, a low coercivity, and low hysteresis energy losses. 

 With regard to applications, hard magnetic materials are utilized for permanent magnets;  soft magnetic 

materials are used in devices that are subjected to alternating magnetic fields such as transformer cores, generators, 

motors, and magnetic amplifier devices. 
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 20.25  We want to determine the saturation magnetization of the silicon-iron (97 Fe-3 Si) in Table 20.5, if 

it just reaches saturation when inserted within the coil described in Problem 20.1—i.e., l = 0.25 m, N = 400 turns, 

and A = 15 A..  It is first necessary to compute the H field within this coil using Equation 20.1 as 
 

    
Hs =  NI

l
=  (400 turns)(15 A)

0.25 m
=  24,000 A - turns/m 

 

Now, the saturation magnetization may be determined from a rearranged form of Equation 20.5 as 

 

  
Ms =  

Bs − µ0 Hs
µ0

 

 
The value of Bs in Table 20.5 is 2.01 tesla;  thus, 

 

    
Ms =  (2.01 tesla) − (1.257 x 10−6 H / m)(24,000A /m)

1.257 x 10−6 H / m
 

 

 = 1.58 x 106 A/m 
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 20.26  (a)  The saturation flux density for the nickel-iron, the B-H behavior for which is shown in Figure 

20.30, is 1.5 tesla, the maximum B value shown on the plot. 

 (b)  The saturation magnetization is computed from Equation 20.8 as 
 

  
Ms =

Bs
µ0

 

 

  
=  1.5 tesla

1.257 x 10−6 H /m
=  1.19 x 106  A/m 

 
 (c)  The remanence, Br, is read from this plot as from the hysteresis loop shown in Figure 20.14;  its value 

is about 1.47 tesla. 
 (d)  The coercivity, Hc, is read from this plot as from Figure 20.14;  the value is about 17 A/m. 

 (e)  On the basis of Tables 20.5 and 20.6, this is most likely a soft magnetic material.  The saturation flux 

density (1.5 tesla) lies within the range of values cited for soft materials, and the remanence (1.47 tesla) is close to 
the values given in Table 20.6 for hard magnetic materials.  However, the Hc (17 A/m) is significantly lower than 

for hard magnetic materials.  Also, if we estimate the area within the hysteresis curve, we get a value of 

approximately 100 J/m3, which is in line with the hysteresis loss per cycle for soft magnetic materials. 
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 Magnetic Storage 
 

 20.27  The manner in which information is stored magnetically is discussed in Section 20.11. 
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 Superconductivity 

 

 20.28  (a)  Given Equation 20.14 and the data in Table 20.7, we are asked to calculate the critical magnetic 
fields for lead at 2.5 and 5.0 K.  From the table, for Pb, TC = 7.19 K and BC(0) = 0.0803 tesla.  Thus, from Equation 

20.2 

 

  
HC (0) =

BC (0)
µ0

 

 

  
=  0.0803 tesla

1.257 x 10−6 H /m
=  6.39 x 104  A/m 

 
Now, solving for HC(2.5) and HC(5.0) using Equation 20.14 yields 

 

  
HC (T) = HC (0) 1 −

T 2

TC
2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

    
HC (2.5) = (6.39 x 104 A /m) 1 −

(2.5 K)2

(7.19 K)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= 5.62 x 104 A /m 

 

    
HC (5.0) = (6.39 x 104 A /m) 1 −

(5.0 K)2

(7.19 K)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= 3.30 x 104 A /m 

 

 (b)  Now we are to determine the temperature to which lead must be cooled in a magnetic field of 15,000 

A/m in order for it to be superconductive.  All we need do is to solve for T from Equation 20.14—i.e.,  

 

  
T =  TC 1 −

HC (T)
HC (0)

 

 
And, since the value of HC(0) was computed in part (a), then 

 

    
T =  (7.19 K) 1 −

15,000 A /m
63,900 A /m

=  6.29 K  
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 20.29  We are asked to determine which of the superconducting elements in Table 20.7 are 

superconducting at 2 K and in a magnetic field of 40,000 A/m.  First of all, in order to be superconductive at 2 K 

within any magnetic field, the critical temperature must be greater than 2 K.  Thus, aluminum, titanium, and 

tungsten may be eliminated upon inspection.  Now, for each of lead, mercury, and tin it is necessary, using Equation 
20.14, to compute the value of HC(2)—also substituting for HC(0) from Equation 20.3;  if HC(2) is greater than 

40,000 A/m then the element will be superconductive.  Hence, for Pb 
 

    
HC (2) = HC (0) 1 −

T 2

TC
2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=
BC (0)

µ0
1 −

T 2

TC
2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

  
=

0.0803 tesla
1.257 x 10−6 H /m

1 −
(2.0 K)2

(7.19 K)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=  5.89 x 104  A/m 

 

Since this value is greater than 40,000 A/m, Pb will be superconductive. 

 Similarly for Hg 

 

    
HC (2)  =

0.0411 tesla
1.257 x 10−6 H /m

1 −
(2.0 K)2

(4.15 K)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
=  2.51 x 104  A/m 

 

Inasmuch as this value is less than 40,000 A/m, Hg will not be superconductive. 

 As for Sn 

 

    
HC (2)  =

0.0305 tesla
1.257 x 10−6 H /m

1 −
(2.0 K)2

(3.72 K)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
=  1.73 x 103 A/m 

 

Therefore, Sn is not superconductive. 
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 20.30  For type I superconductors, with increasing magnetic field the material is completely diamagnetic 
and superconductive below HC, while at HC conduction becomes normal and complete magnetic flux penetration 

takes place.  On the other hand, for type II superconductors upon increasing the magnitude of the magnetic field, the 

transition from the superconducting to normal conducting states is gradual between lower-critical and upper-critical 

fields;  so also is magnetic flux penetration gradual.  Furthermore, type II generally have higher critical temperatures 

and critical magnetic fields. 
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 20.31  The Meissner effect is a phenomenon found in superconductors wherein, in the superconducting 

state, the material is diamagnetic and completely excludes any external magnetic field from its interior.  In the 

normal conducting state complete magnetic flux penetration of the material occurs. 
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 20.32  The primary limitation of the new superconducting materials that have relatively high critical 

temperatures is that, being ceramics, they are inherently brittle. 
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DESIGN PROBLEMS 

 

Ferromagnetism 

 

 20.D1  For this problem we are asked to determine the composition of a Co-Fe alloy that will yield a 

saturation magnetization of 1.47 x 106 A/m.  To begin, let us compute the number of Bohr magnetons per unit cell 
nB for this alloy from an expression that results from combining Equations 20.11 and 20.12.  That is 

 

  
nB =

M sVC
µB

 

 
in which Ms is the saturation magnetization, VC is the unit cell volume, and µB is the magnitude of the Bohr 

magneton.  In Problem 20.8 it was demonstrated that, for HCP 

 

  
VC  =  3a2c

2
3  

 

Furthermore, for HCP, the unit cell edge length, a, and the atomic radius, R are related as a = 2R;  also, as stipulated 

in the problem statement, c = 1.623a.  Making these substitutions into the above equation leads to the following: 

 

  
VC  =  (3)(1.623)(2R)3

2
3  

 

From the inside of the front cover of the book, the value of R for Co is given as 0.125 nm (1.25 x 10-10 m).  

Therefore, 

 

    
VC  =  

(3)(1.623) (2)(1.25 x 10-10  m)[ ]3( 3)
2

 

 

 =  6.59 x 10 -29 m3 

 
And, now solving for nB from the first equation above, yields 

 

    

nB =  =
M sVC

µB
=

(1.47 × 106 A /m)(6.59 × 10−29 m3 /unit cell)
9.27 × 10−24 A - m2

Bohr magneton
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=  10.45 Bohr magneton

unit cell
 

 

Inasmuch as there are 1.72 and 2.22 Bohr magnetons for each of Co and Fe (Section 20.4), and, for HCP, there are 

6 equivalent atoms per unit cell (Section 3.4), if we represent the fraction of Fe atoms by x, then 

 

    nB =  10.45 Bohr  magnetons/unit cell  

 

    
=  2.22 Bohr magnetons

Fe atom

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

6 x Fe atoms
unit cell

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +  1.72 Bohr magnetons

Co atom

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

(6) (1 − x) Co atoms
unit cell

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 

And solving for x, the fraction of Fe atoms , x = 0.0433, of 4.33 at% Fe. 

 In order to convert this composition to weight percent, we employ Equation 4.7 as 

 

    

CFe =  
CFe

' AFe

CFe
' AFe + CCo

' ACo

×  100 

 

  
=  (4.33 at%)(55.85 g /mol)

(4.33 at%)(55.85 g /mol) + (95.67 at%)(58.93 g /mol)
× 100 

 

= 4.11 wt% 
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 Ferrimagnetism 

 

 20.D2  This problem asks that we design a cubic mixed-ferrite magnetic material that has a saturation 
magnetization of 4.25 x 105 A/m.  From Example Problem 20.2 the saturation magnetization for Fe3O4 is 5.0 x 105 

A/m.  In order to decrease the magnitude of Ms it is necessary to replace some fraction of the Fe2+ with another 

divalent metal ion that has a smaller magnetic moment.  From Table 20.4 it may be noted that Co2+, Ni2+, and 

Cu2+, with 3, 2, and 1 Bohr magnetons per ion, respectively, have fewer than the 4 Bohr magnetons/Fe2+ ion.  Let 

us first consider Ni2+ (with 2 Bohr magnetons per ion) and employ Equation 20.13 to compute the number of Bohr 
magnetons per unit cell (nB), assuming that the Ni2+ addition does not change the unit cell edge length (0.839 nm, 

Example Problem 20.2).  Thus, 

 

  
nB =  

Ms a3

µB
 

 

  
=  (4.25 x 105 A /m)(0.839 x 10−9 m)3 /unit cell

9.27 x 10−24 A - m2 /Bohr magneton
 

 

= 27.08 Bohr magnetons/unit cell 

 

If we let x represent the fraction of Ni2+ that have substituted for Fe2+, then the remaining unsubstituted Fe2+ 

fraction is equal to 1 – x.  Furthermore, inasmuch as there are 8 divalent ions per unit cell, we may write the 

following expression: 

 

    nB =  8 2x +  4(1 −  x)[ ] =  27.08  

 
which leads to x = 0.308.  Thus, if 30.8 at% of the Fe2+ in Fe3O4 are replaced with Ni2+, the saturation 

magnetization will be decreased to 4.25 x 105 A/m. 

 
 Upon going through this same procedure for Co and Cu, we find that xCo = 0.615 (or 61.5 at%) and xCu = 

0.205 (20.5 at%) will yield the 4.25 x 105 A/m saturation magnetization. 
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