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CHAPTER 19 

 

THERMAL PROPERTIES 

 

PROBLEM SOLUTIONS 

 

Heat Capacity 

 

 19.1  The energy, E, required to raise the temperature of a given mass of material, m, is the product of the 

specific heat, the mass of material, and the temperature change, ∆T, as 
 

  
E =  cpm ∆T  

 

The ∆T in this problem is equal to 150°C – 20°C = 130°C (= 130 K), while the mass is 5 kg, and the specific heats 

are presented in Table 19.1.  Thus, 

 

    E(aluminum) =  (900 J/kg - K)(5 kg)(130 K) =  5.85 x 105 J  

 

    E(brass) =  (375 J/kg - K)(5 kg)(130 K) =  2.44 x 105 J  

 

    E(alumina) =  (775 J/kg - K)(5 kg)(130 K) =  5.04 x 105 J  

 

    E(polypropylene) =  (1925 J/kg - K)(5 kg)(130 K) =  1.25 x 106  J  
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 19.2  We are asked to determine the temperature to which 10 lbm of brass initially at 25°C would be raised 

if 65 Btu of heat is supplied.  This is accomplished by utilization of a modified form of Equation 19.1 as 

 

  
∆T =  ∆Q

m cp
 

 
in which ∆Q is the amount of heat supplied, m is the mass of the specimen, and cp is the specific heat.  From Table 

19.1, cp = 375 J/kg-K for brass, which in Customary U.S. units is just 

 

    
cp =  (375 J/kg - K)

2.39 x 10−4 Btu /lbm - °F
1 J /kg - K

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ =  0.090 Btu/lbm - °F  

 

Thus 

 

    
∆T =  65 Btu

(10 lbm)(0.090 Btu /lbm - °F) =  72.2°F  

 

and 

 

    
Tf  =  T0 +  ∆T =  77°F +  72.2°F =  149.2°F  (65.1°C)  
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 19.3  (a)  This problem asks that we determine the room-temperature heat capacities at constant pressure, 
Cp, for copper, iron, gold, and nickel.  All we need do is multiply the cp values in Table 19.1 by the atomic weights 

(values are found inside the front cover), taking into account the conversion from grams to kilograms (for the 

atomic weights).  Thus, for Cu 

 

    
C p =  (386 J/kg - K)(1 kg/1000 g)(63.55 g/mol) =  24.5 J/mol - K  

 

 For Fe 

 

    
C p =  (448 J/kg - K)(1 kg/1000 g)(55.85 g/mol) =  25.0 J/mol - K  

 

 For Au 

 

    
C p =  (128 J/kg - K)(1 kg/1000 g)(196.97 g/mol) =  25.2 J/mol - K  

 

 For Ni 

 

    
C p =  (443 J/kg - K)(1 kg/1000 g)(58.69 g/mol) =  26.0 J/mol - K  

 
 (b)  These values of Cp are very close to one another because room temperature is considerably above the 

Debye temperature for these metals;  therefore, the values of Cp should be about equal to 3R [(3)(8.31 J/mol-K) = 

24.9 J/mol-K], which is indeed the case for all four of these metals. 
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 19.4  (a)  For copper, Cv at 20 K may be approximated by Equation 19.2, since this temperature is 

significantly below the Debye temperature (340 K).  The value of Cv at 20 K is given, and thus, we may compute 

the constant A as 
 

    
A =  

Cv
T 3 =  0.38 J /mol - K

(20 K)3 =  4.75 x 10-5 J/mol - K4  

 

Therefore, at 40 K 
 

    Cv =  AT 3 =  (4.75 x 10-5 J/mol - K4)(40 K)3 =  3.04 J/mol - K  

 

and 

 

    cv =  (3.04 J/mol - K)(1 mol/63.55 g)(1000 g/kg) =  47.8 J/kg - K 

 
 (b)  Since 400 K is above the Debye temperature, a good approximation for Cv is 

 

  Cv =  3R 

 

  =  (3)(8.31 J/mol - K) = 24.9 J/mol - K  

 

And, converting this to specific heat 
 

    cv =  (24.9 J/mol - K)(1 mol/63.55 g)(1000 g/kg) =  392 J/kg - K  
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 19.5  For aluminum, we want to compute the Debye temperature, θD, given the expression for A in 

Equation 19.2 and the heat capacity at 15 K.  First of all, let us determine the magnitude of A, as 
 

  
A =  

Cv
T 3  

 

  
=  (4.60 J /mol - K)(1 kg /1000 g)(26.98 g /mol)

(15 K)3  

 

 = 3.68 x 10-5 J/mol - K4 

 

As stipulated in the problem statement 
 

  
A =  12 π4R

5θD
3  

 
Or, solving for θD

 

  
θD =  12 π4R

5A

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/3
 

 

  
=  (12)(π)4 (8.31 J /mol - K)

(5)(3.68 x 10−5 J /mol - K4)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/3
= 375 K  
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 19.6  (a)  The reason that Cv rises with increasing temperature at temperatures near 0 K is because, in this 

temperature range, the allowed vibrational energy levels of the lattice waves are far apart relative to the available 

thermal energy, and only a portion of the lattice waves may be excited.  As temperature increases, more of the 

lattice waves may be excited by the available thermal energy, and, hence, the ability of the solid to absorb energy 

(i.e., the magnitude of the heat capacity) increases. 
 (b)  At temperatures far removed from 0 K, Cv becomes independent of temperature because all of the 

lattice waves have been excited and the energy required to produce an incremental temperature change is nearly 

constant. 
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 Thermal Expansion 

 

 19.7  The two metals from which a bimetallic strip is constructed have different coefficients of thermal 

expansion.  Consequently, a change in temperature will cause the strip to bend.  For a thermostat that operates a 

furnace, as the temperature drops below a lower limit, the bimetallic strip bends so as to make an electrical contact, 

thus, turning on the furnace.  With rising temperature, the strip bends in the opposite direction, breaking the contact 

(and turning the furnace off) when an upper-limit temperature is exceeded. 
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 19.8  In order to determine the change in length of the copper wire, we must employ a rearranged form of 
Equation 19.3b and using the value of αl taken from Table 19.1 [17.0 x 10-6 (°C)-1] as 

 

    
∆l =  l0αl∆T = l0αl (Tf − T0)  

 

  
=  (15 m) 17.0 x 10−6 (°C)-1[ ](−9°C − 40°C) 

 

  =  −1.25 x 10-2  m =  −12.5 mm  (−0.49 in.)  
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 19.9  The linear coefficient of thermal expansion for this material may be determined using a rearranged 

form of Equation 19.3b as 
 

    
αl =  ∆ l

l0∆T
=  ∆ l

l0 (Tf − T0)
=

0.48 x 10−3 m
(0.4 m)(100°C − 20°C)

 

 

 =  15.0 x 10-6  (°C)-1 
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 19.10  The phenomenon of thermal expansion using the potential energy-versus-interatomic spacing curve 

is explained in Section 19.3. 
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 19.11  In this problem we are asked to determine the density of iron at 700°C.  Let us use as the basis for 

this determination 1 cm3 of material at 20°C, which has a mass of 7.870 g;  it is assumed that this mass will remain 

constant upon heating to 700°C.  Let us compute the volume expansion of this cubic centimeter of iron as it is 

heated to 700°C.  A volume expansion expression is given in Equation 19.4—viz., 

 

  

∆V
V0

=  αv∆T  

or 

 

  ∆V = V0αv∆T  

 
Also, αv = 3αl, as stipulated in the problem.  The value of αl given in Table 19.1 for iron is 11.8 x 10-6 (°C)-1.  

Therefore, the volume, V, of this specimen of Fe at 700°C is just 

 

    
V =  V0 +  ∆V =  V0 1 + αv∆T( ) =  V0 1 + 3αl∆T( ) 

 

  
=  (1 cm3) 1 + (3) 11.8 x 10−6 (°C)−1[ ](700°C − 20°C){ } 

 

 = 1.02471 cm3 

 

 Thus, the density is just the 7.870 g divided by this new volume—i.e., 

 

  
ρ =  7.870 g

1.02471 cm3 =  7.680 g/cm3 
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 19.12  (a)  In this portion of the problem we are asked to determine the density of gold at 800°C on the 

basis of thermal expansion considerations.  The basis for this determination will be 1 cm3 of material at 20°C;  this 

volume of gold has a mass of 19.320 g, which mass is assumed to remain constant upon heating to the 800°C.  Let 

us first compute the volume expansion of this cubic centimeter of copper as it is heated to 800°C.  According to 

Equation 19.4 volume expansion is equal to  

 

  

∆V
V0

=  αv∆T  

 
where αv, the volume coefficient of thermal expansion, as stipulated in the problem statement, is equal to 3αl.  The 

value of αl given in Table 19.1 for gold is 14.2 x 10-6 (°C)-1.  Therefore, the volume of this specimen of Au at 

800°C (V) is equal to 

 

    V =  V0 +  ∆V =  V0 + V0αv∆T = V0(1 + αv∆T)  

 

    
= V0(1 + 3αl∆T) = V0 1 + 3αl(Tf − T0)⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥  

 

  
=  (1 cm3) 1 + (3) 14.2 × 10−6 (°C)−1[ ](800°C − 20°C){ } 

 

 = 1.03323 cm3 

 

Thus, the density is just the 19.320 g divided by this new volume—i.e., 

 

  
ρ =  19.320 g

1.03323 cm3 =  18.699 g/cm3 

 

 (b)  Now we are asked to compute the density at 800°C  taking into consideration the creation of vacancies 

which will further lower the density.  To begin, this determination requires that we calculate the number of 

vacancies using Equation 4.1.  But it first becomes necessary to compute the number of Au atoms per cubic 
centimeter (NAu) at 800°C using Equation 4.2.  Thus, 

 

  
N Au =  

N A ρAu
AAu

 

 

  
=  (6.023 x 1023atoms /mol)(18.699 g /cm3)

196.97 g /mol
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 = 5.72 x 1022 atoms/cm3 

 
Now, from Equation 4.1, the total number of vacancies, Nv, is computed as 

 

  
N v =  N Au exp −

Qv
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

  
=  (5.72 ×  1022  atoms/cm3) exp −

0.98 eV /atom
(8.62 × 10−5 eV/K) (800 + 273 K)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

  = 1.432 × 1018 vacancies/cm3 

 

We now want to determine the number of vacancies per unit cell, which is possible if the unit cell volume is 
multiplied by Nv.  The unit cell volume (VC) may be calculated using Equation 3.5 taking n = 4 inasmuch as Au has 

the FCC crystal structure.  Thus, from a rearranged form of Equation 3.5 

 

  
VC  =  

nAAu
ρAu  N A

 

 

  
=  (4 atoms /unit cell)(196.97 g /mol)

(18.699 g /cm3)(6.023 × 1023 atoms /mol)
 

 

  =  6.996 ×  10-23 cm3/unit cell  

 
Now, the number of vacancies per unit cell, nv, is just 

 

  nv =  N vVC  

 

  =  (1.432 ×  1018  vacancies/cm3)(6.996 ×  10-23 cm3/unit cell) 

 

= 0.0001002 vacancies/unit cell 

 

What this means is that instead of there being 4.0000 atoms per unit cell, there are only 4.0000 – 0.0001002 = 

3.9998998 atoms per unit cell.  And, finally, the density may be computed using Equation 3.5 taking n = 3.9998998;  

thus 
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ρAu =  

nAAu
VC  N A

 

 

  
=  (3.9998998 atoms /unit cell)(196.97 g /mol)

(6.996 × 10−23 cm3 /unit cell)(6.023 x 1023 atoms /mol)
 

 

 =  18.698 g/cm3 

 

Thus, the influence of the vacancies is almost insignificant--their presence reduces the density by only 0.001 g/cm3 

(from 18.699 g/cm3 to 18.698 g/cm3). 
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 19.13  This problem asks that we calculate the values of cv for aluminum and iron at room temperature 

using Equation 19.10, the data in Table 19.1, given that αv = 3αl, and also values of the compressibility.  From 

Equation 19.10 

 

  
cv = cp −

α v
2 v0T
β

 

 

And, from Table 19.1 and the problem statement 

 
 cp(Al) = 900 J/kg-K 

 cp(Fe) = 448 J/kg-K 

 αv(Al) = (3)[23.6 x 10-6 (°C)-1] = 7.08 x 10-5 (°C)-1

 αv(Fe) = (3)[(11.8 x 10-6 (°C)-1] = 3.54 x 10-5 (°C)-1

 β(Al) = 1.77 x 10-11 (Pa)-1

 β(Fe) = 2.65 x 10-12 (Pa)-1 

 

The specific volume is just the reciprocal of the density;  thus, in units of m3/kg 

 

    
v0(Al) = 1

ρ
=

1
2.71 g/cm3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1000 g
kg

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1 m
100 cm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3

= 3.69 x 10−4 m3 /kg  

 

    
v0(Fe) = 1

7.87 g/cm3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1000 g
kg

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1 m
100 cm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3

= 1.27 x 10−4 m3 /kg  

 

Therefore, for aluminum 

 

    
cv(Al) = cp(Al) −

α v
2 (Al) v0 (Al)T

β(Al)
 

 

  
=  900 J/kg - K −  

7.08 x 10−5 (°C)−1⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
2
(3.69 x10−4 m3 /kg) (293 K)

1.77 x 10−11 (N /m2)−1  

 

= 869 J/kg-K 

 

And, also for iron 
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cv(Fe) =  448 J/kg - K −  

3.54 x 10−5 (°C)−1⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
2(1.27 x 10−4 m3 /kg)(293 K)

2.65 x 10−12 (N /m2)−1  

 

= 430 J/kg-K 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 19-17 

 19.14  This problem asks for us to determine the temperature to which a cylindrical rod of tungsten 15.025 

mm in diameter must be heated in order for it of just fit into a 15.000 mm diameter circular hole in a plate of 1025 

steel (which, of course, is also heated), assuming that the initial temperature is 25°C.  This requires the use of 

Equation 19.3a, which is applied to the diameters of both the rod and hole.  That is 

 

  

d f − d0
d0

=  αl (Tf  −  T0) 

 
Solving this expression for df yields 

 

  
d f  =  d0 1 + αl (T f −T0)⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥  

 
Now all we need do is to establish expressions for df(steel) and df (W), set them equal to one another, and solve for 

Tf.  According to Table 19.1, αl(steel) = 12.0 x 10-6 (°C)-1 and αl (W) = 4.5 x 10-6 (°C)-1.  Thus 

 

  
d f (steel) =  d f (W) 

 

    
(15.000 mm) 1 + {12.0 x 10−6 (°C)−1}(Tf − 25°C)[ ] 

 

    
= (15.025 mm) 1 + {4.5 x 10−6 (°C)−1}(Tf − 25°C)[ ] 

 
Now solving for Tf gives Tf = 222.4°C 
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 Thermal Conductivity 

 

 19.15  (a)  The steady-state heat flux through the plate may be computed using Equation 19.5;  the thermal 

conductivity for brass, found in Table 19.1, is 120 W/m-K.  Therefore, 
 

  
q = − k ∆T

∆x
 

 

  
=  − (120 W/m- K) ŹŹ(50 + 273 K) − (150 + 273 K)

7.5 x 10−3 m

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

 = 1.60 x 106 W/m2 

 

 (b)  Let dQ/dt represent the total heat loss such that 
 

  
dQ
dt

=  qAt  

 

where A and t are the cross-sectional area and time, respectively. Thus, 
 

    
dQ
dt

=  (1.60 x 106  J/s - m2)(0.5 m2)(60 s/min)(60 min/h) 

 

  =  2.88 x 109  J/h  (2.73 x 106  Btu/h)  

 

 (c)  If soda-lime glass is used (k = 1.7 W/m-K, Table 19.1), 
 

  
dQ
dt

= − k A t ∆T
∆x

 

 

  
=  −  (1.7 J/s - m- K)(0.5 m2)(3600 s/h) −100 K

7.5 x 10−3 m

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

  =  4.08 x 107  J/h  (3.9 x 104  Btu/h)  

 

 (d)  If the thickness of the brass is increased to 15 mm, then 
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dQ
dt

= − k A t ∆T
∆x

= − (120 W/m - K)(0.5 m2)(3600 s/h) − 100 K
15 x 10−3 m

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

  =  1.44 x 109  J/h  (1.36 x 106  Btu/h)  
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 19.16  (a)  Equation 19.7 is not valid for ceramic and polymeric materials since, in the development of this 

expression, it is assumed that free electrons are responsible for both electrical and thermal conduction.  Such is the 

case for most metals.  For ceramics and polymers, free electrons are the primary contributors to the electrical 

conductivity.  However, free electrons do not contribute significantly to the thermal conductivity.  For ceramics, 

thermal conduction is primarily by means of phonons;  for polymers, the energy transfer is made by chain 

vibrations, translations, and rotations. 

 (b)  Estimated room-temperature values of L, in Ω-W/(K)2, for the several materials are determined below.  

Electrical conductivity values were determined by taking reciprocals of the electrical resistivities given in Table B.9, 

Appendix B;  thermal conductivities are taken from Table B.7 in the same appendix.  (Note:  when a range of values 

is given in these tables, an average value is used in the computation.) 

 
 For zirconia (3 mol% Y2O3) 

 

    

L =  k
σT

=  2.65 W /m- K

1
1010 (Ω − m)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

(293 K)

=  9.0 x 107  Ω - W/K2 

 

 For synthetic diamond 
 

    

L =  3150 W /m- K

1
1.5 x 10−2 (Ω − m)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

(293 K)

=  0.161  Ω - W/K2 

 

 For intrinsic gallium arsenide 
 

    

L =  45.5 W /m- K

1
106 (Ω − m)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

(293 K)

=  1.55 x 105  Ω - W/K2 

 

 For poly(ethylene terephthalate) (PET) 
 

    

L =  0.15 W /m- K

1
1012 (Ω − m)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

(293 K)

=  5.12 x 108  Ω - W/K2 

 

 For silicone 
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L =  0.23 W /m- K

1
1013 (Ω − m)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

(293 K)

=  7.8 x 109  Ω - W/K2 
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 19.17  Thermal conductivities are higher for crystalline than for noncrystalline ceramics because, for 

noncrystalline, phonon scattering, and thus the resistance to heat transport, is much more effective due to the highly 

disordered and irregular atomic structure. 
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 19.18  Metals are typically better thermal conductors than are ceramic materials because, for metals, most 

of the heat is transported by free electrons (of which there are relatively large numbers).  In ceramic materials, the 

primary mode of thermal conduction is via phonons, and phonons are more easily scattered than are free electrons. 
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 19.19  (a)  Porosity decreases the thermal conductivity of ceramic and polymeric materials because the 

thermal conductivity of a gas phase that occupies pore space is extremely small relative to that of the solid material.  

Furthermore, contributions from gaseous convection are generally insignificant. 

 (b)  Increasing the degree of crystallinity of a semicrystalline polymer enhances its thermal conductivity;  

the vibrations, rotations, etc. of the molecular chains are more effective modes of thermal transport when a 

crystalline structure prevails. 
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 19.20  For some ceramic materials, the thermal conductivity first decreases with rising temperature because 

the scattering of lattice vibrations increases with temperature.  At higher temperatures, the thermal conductivity will 

increase for some ceramics that are porous because radiant heat transfer across pores may become important, which 

process increases with rising temperature. 
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 19.21  This question asks for us to decide, for each of several pairs of materials, which has the larger 

thermal conductivity and why. 

 (a)  Pure silver will have a larger conductivity than sterling silver because the impurity atoms in the latter 

will lead to a greater degree of free electron scattering. 

 (b)  Polycrystalline silica will have a larger conductivity than fused silica because fused silica is 

noncrystalline and lattice vibrations are more effectively scattered in noncrystalline materials. 

 (c)  The poly(vinyl chloride) will have the larger conductivity than the polystyrene because the former will 

have the higher degree of crystallinity.  Both polymers are syndiotactic and have the same degree of polymerization.  

However, with regard to side-group bulkiness, the PVC is more likely to crystallize.  Since heat transfer is 

accomplished by molecular chain vibrations, and the coordination of these vibrations increases with percent 

crystallinity, the higher the crystallinity, the greater the thermal conductivity. 

 (d)  The isotactic polypropylene will have a larger thermal conductivity than the atactic polypropylene 

because isotactic polymers have a higher degree of crystallinity.  The influence of crystallinity on conductivity is 

explained in part (c). 
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 19.22  This problem asks that we treat a porous material as a composite wherein one of the phases is a pore 

phase, and that we estimate upper and lower limits for the room-temperature thermal conductivity of an aluminum 
oxide material having a 0.25 volume fraction of pores.  The upper limit of k (kupper) may be determined using 

Equation 16.1 with thermal conductivity substituted for the elastic modulus, E.  From Table 19.1, the value of k for 
Al2O3 is 39 W/m-K, while for still air in the pore phase, k = 0.02 W/m-K (Section 19.4).  Thus 

 

    
kupper  =  Vpkair  +  VAl2O3

kAl2O3
 

 

= (0.25)(0.02 W/m-K) + (0.75)(39 W/m-K) = 29.3 W/m-K 

 

 For the lower limit we employ a modification of Equation 16.2 as 

 

    

klower  =  
kairkAl2O3

VpkAl2O3
+ VAl2O3

kair
 

 

  
=  (0.02 W /m- K)(39 W /m- K)

(0.25)(39 W /m - K) + (0.75)(0.02 W /m- K)
=  0.080 W/m- K 
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 19.23  (a)  The units of DT are 

 

    

DT  =  k (J /s - m- K)
ρ(kg /m3) cp (J /kg - K)

= m2 /s 

 
 (b)  The values of DT for the several materials are given below. (Note:  values for k and cp are taken from 

Table 19.1;  density values are from Table B.1, Appendix B, and converted to units of kilograms per meter cubed): 

 

 For copper 
 

    
DT  =  k

ρ cp
=  398 W /m- K

(8.94 x 103 kg /m3) (386 J /kg - K)
=  1.15 x 10-4  m2/s  

 

 For brass 
 

    
DT  =  120 W /m- K

(8.53 x 103 kg /m3) (375 J /kg - K)
=  3.75 x 10-5 m2/s  

 

 For magnesia 
 

    
DT  =  37.7 W /m- K

(3.58 x 103 kg /m3) (940 J /kg - K)
=  1.12 x 10-5 m2/s  

 

 For fused silica 
 

    
DT  =  1.4 W /m- K

(2.2 x 103 kg /m3) (740 J /kg - K)
=  8.6 x 10-7  m2/s  

 

 For polystyrene 

 

    
DT  =  0.13 W /m- K

(1.05 x 103 kg /m3) (1170 J /kg - K)
=  1.06 x 10-7  m2/s 

 

 For polypropylene 
 

    
DT  =  0.12 W /m- K

(0.91 x 103 kg /m3) (1925 J /kg - K)
=  6.9 x 10-8  m2/s  
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 Thermal Stresses 

 

 19.24  We want to show that Equation 19.8 is valid beginning with Equation 19.3.  Upon examination of 

Equation 19.3b, 
 

  

∆l
l0

=  αl∆T  

 

it may be noted that the term on the left-hand side is the same expression as that for the definition of engineering 

strain (Equation 6.2);  that is 

 

  
ε = ∆l

l0
 

 

Furthermore, elastic stress and strain are related through Hooke's law, Equation 6.5: 

 

  σ = Eε 

 

Making appropriate substitutions and algebraic manipulations gives 
 

  

∆l
l0

=  ε =  σ
E

=  αl∆T  

Or, solving for σ 
 

  σ =  Eαl∆T  

 

which is the form of Equation 19.8. 
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 19.25  (a)  Thermal stresses may be introduced into a structure by rapid heating or cooling because 

temperature gradients will be established across the cross section due to more rapid temperature changes at the 

surface than within the interior;  thus, the surface will expand or contract at a different rate than the interior and 

since this surface expansion or contraction will be restrained by the interior, stresses will be introduced. 

 (b)  For cooling, the surface stresses will be tensile in nature since the interior contracts to a lesser degree 

than the cooler surface. 

 (c)  For heating, the surface stresses will be compressive in nature since the interior expands to a lesser 

degree than the hotter surface. 
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 19.26  (a)  We are asked to compute the magnitude of the stress within a brass rod that is heated while its 

ends are maintained rigid.  To do this we employ Equation 19.8, using a value of 97 GPa for the modulus of 
elasticity of brass (Table 6.1), and a value of 20.0 x 10-6 (°C)-1 for αl (Table 19.1).  Therefore 

 

  
σ =  Eα l (T0 −  Tf )  

 

  
=  (97 x 103 MPa) 20.0 x 10−6 (°C)−1[ ](15°C − 85°C) 

 

= –136 MPa   (–20,000 psi) 

 

The stress will be compressive since its sign is negative. 

 (b)  The stress will be the same [–136 MPa (–20,000 psi )], since stress is independent of bar length. 

 (c)  Upon cooling the indicated amount, the stress becomes 
 

  
σ =  Eα l (T0 −  Tf )  

 

  
=  (97 x 103 MPa) 20.0 x 10−6 (°C)−1[ ] (15°C − (−15°C)[ ] 

 

= +58 MPa  (+8400 psi) 

 

This stress will be tensile since its sign is positive. 
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 19.27  We want to heat the steel wire in order to reduce the stress level from 70 MPa to 17 MPa;  in doing 

so, we reduce the stress in the wire by 70 MPa – 17 MPa = 53 MPa, which stress will be a compressive one (i.e., σ 
= –53 MPa).  Solving for Tf from Equation 19.8 [and using values for E and αl of 207 GPa (Table 6.1) and 12.0 x 

10-6 (°C)-1 (Table 19.1),  respectively] yields 
 

  
Tf  =  T0 −

σ
Eαl

 

 

  

=  20°C −  −53 MPa

(207 x 103 MPa) 12.0 x 10−6 (°C)−1[ ]
 

 

= 20°C + 21.3°C = 41.3°C  (106°F) 
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 19.28  This problem asks for us to determine the change in diameter of a cylindrical brass rod 150.00 mm 

long and 10.000 mm in diameter when it is heated from 20°C to 160°C while its ends are maintained rigid.  There 

will be two contributions to the diameter increase of the rod;  the first is due to thermal expansion (which will be 
denoted as ∆d1), while the second is from Poisson's lateral expansion as a result of elastic deformation from stresses 

that are established from the inability of the rod to elongate as it is heated (denoted as ∆d2).  The magnitude of ∆d1 

may be computed using a modified form of Equation 19.3 as 

 

  
∆d1 =  d0 αl (Tf − T0)  

 
From Table 19.1 the value of αl for brass is 20.0 x 10-6 (°C)-1.  Thus, 

 

    
∆d1 =  (10.000 mm) 20.0 x 10−6 (°C)−1[ ](160°C − 20°C) 

 

= 0.0280 mm 

 
 Now, ∆d2 is related to the transverse strain (εx) according to a modified form of Equation 6.2 as 

 

  

∆d2
d0

= εx  

 
Also, transverse strain and longitudinal strain (εz) are related according to Equation 6.8: 

 

 εx = − νεz  

 
where ν is Poisson’s ratio.  Substitution of this expression for εx into the first equation above leads to 

 

  

∆d2
d0

= − νεz  

 

Furthermore, the longitudinal strain is related to the modulus of elasticity through Equation 6.5—i.e., 

 

 
εz =

σ
E

 

 

And, therefore, 
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∆d2
d0

= − ν
σ
E

 

 

Now, from Equation 19.8 stress is equal to 

 

  
σ = Eαl(T0 − Tf ) 

 

which, when substituted into the preceding equation leads to 

 

    

∆d2
d0

= −
νEαl(T0 − Tf )

E
= − ναl(T0 − Tf )  

 
Solving for ∆d2 and realizing that, for brass, ν = 0.34 (Table 6.1) yields 

 

  
∆d2 = − d0να l(T0 −  Tf ) 

 

  
=  − (10.000 mm)(0.34) 20.0 x 10−6 (°C)−1[ ](20°C − 160°C)  

 

= 0.0095 mm 

 
Finally, the total ∆d is just ∆d1 + ∆d2 = 0.0280 mm + 0.0095 mm = 0.0375 mm. 
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 19.29  This problem asks for us to determine to what temperature a cylindrical rod of nickel 120.00 mm 

long and 12.000 mm in diameter must be cooled from 70°C in order to have a 0.023-mm reduction in diameter if the 

rod ends are maintained rigid.  There will be two contributions to the diameter decrease of the rod;  the first is due 
to thermal contraction (which will be denoted as ∆d1), while the second is from Poisson's lateral contraction as a 

result of elastic deformation from stresses that are established from the inability of the rod to contract as it is cooled 
(denoted as ∆d2).  The magnitude of ∆d1 may be computed using a modified form of Equation 19.3b as 

 

  
∆d1 =  d0 αl (Tf − T0)  

 
 Now, ∆d2 is related to the transverse strain (εx) according to a modified form of Equation 6.2 as 

 

  

∆d2
d0

= εx  

 
Also, transverse strain and longitudinal strain (εz) are related according to Equation 6.8: 

 

 εx = − νεz  

 
where ν is Poisson’s ratio.  Substitution of this expression for εx into the first equation above leads to 

 

  

∆d2
d0

= − νεz  

 

Furthermore, the longitudinal strain is related to the modulus of elasticity through Equation 6.5—i.e., 

 

 
εz =

σ
E

 

 

And, therefore, 

 

  

∆d2
d0

= − ν
σ
E

 

 

Now, from Equation 19.8 stress is equal to 

 

  
σ = Eαl(T0 − Tf ) 
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which, when substituted into the preceding equation leads to 

 

    

∆d2
d0

= −
νEαl(T0 − Tf )

E
= − ναl(T0 − Tf )  

 
And, solving for ∆d2 from this expression 

 

  
∆d2 = − d0να l(T0 −  Tf ) 

 
The total ∆d is just ∆d = ∆d1 + ∆d2, and 

 

    
∆d =  d0αl(Tf − T0) +  d0ναl(Tf − T0) =  d0αl(Tf − T0)(1 +  ν)  

 
The values of ν and αl for nickel are 0.31 and 13.3 x 10-6 (°C)-1, respectively (Tables 6.1 and 19.1).  Incorporating, 

into the above equation, these values, as well as those for ∆d, d0, and T0 cited in the problem statement gives 

 

    
− (0.023 mm) = (12.000 mm) 13.3 x 10−6 (°C)−1[ ](Tf − 70°C) (1 + 0.31)  

 
And, finally, solving the above expression for Tf yields Tf = – 40°C. 
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 19.30  According to Equation 19.9, the thermal shock resistance of a ceramic piece may be enhanced by 

increasing the fracture strength and thermal conductivity, and by decreasing the elastic modulus and linear 
coefficient of thermal expansion.  Of these parameters, σf and αl are most amenable to alteration, usually be 

changing the composition and/or the microstructure. 
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DESIGN PROBLEMS 
 

 Thermal Expansion 

 

 19.D1  For these railroad tracks, each end is allowed to expand one-half of the joint space distance, or the 
track may expand a total of this distance (5.4 mm).  Equation 19.3a is used to solve for Tf, where the value αl for the 

1025 steel [12.0 x 10-6 (°C)-1] is found in Table 19.1.  Thus, solving for Tf from Equation 19.3a leads to 

 

  
Tf  = ∆ l

αll0
+  T0 

 

  

=  5.4 x 10−3 m

12.0 x 10−6 (°C)−1[ ](11.9 m)
+  4°C 

 

= 37.8°C + 4°C = 41.8°C  (107.3°F) 
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 Thermal Stresses 

 

 19.D2  This is a materials selection problem wherein we must decide for which of the five metals listed, the 

stress in the rod will not exceed 138 MPa (20,000 psi), when it is heated while its ends are mounted between rigid 
supports.  Upon examination of Equation 19.8, it may be noted that all we need do is to compute the Eαl∆T product 

for each of the candidate materials, and then note for which of them the stress is less than the stipulated maximum.  
[The value of ∆T is T0 – Tf  = 20°C – (–60°C) = 80°C.] These parameters and their product for each of the alloys 

are tabulated below.  (Modulus of elasticity values were taken from Table 6.1, while the αl values came from Table 

19.1.) 

 
 Alloy αl (°C)-1 E (MPa) αlE∆T (MPa) 

 Aluminum 23.6 x 10-6 69 x 103 130 

 Copper 17.0 x 10-6 110 x 103 150 

 Brass 20.0 x 10-6 97 x 103 155 

 1025 Steel 12.0 x 10-6 207 x 103 200 

 Tungsten 4.5 x 10-6 407 x 103 145 

 

Thus, aluminum is the only suitable candidate. 
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 19.D3  (a)  This portion of the problem asks that we cite the units for the thermal shock resistance 

parameter (TSR).  From Equation 19.9 

 

    
TSR =  

σ f (N /m2) k (W /m- K)

E(N /m2) αl (°C)−1 = W /m 

 

(Note:  in reducing units in the above expression, we have assumed that units of temperature in K and °C are 

equivalent) 

 

 (b)  Now we are asked to rank soda-lime glass, fused silica, and silicon as to their thermal shock resistance.  
Thus, all we need do is calculate, for each, the value of TSR using Equation 19.9.  Values of E, σf, αl, and k are 

found, respectively, in Tables B.2, B.4, B.6, and B.7, Appendix B.  (Note:  whenever a range for a property value in 

these tables is cited, the average of the extremes is used.) 

 For soda-lime glass 

 

  
TSR =  

σ f  k

E αl
 

 

  

=  (69 MPa)(1.7 W /m- K)

(69 x 103 MPa) 9.0 x 10−6 (°C)−1[ ]
=  189 W/m 

 

 For fused silica 

 

    

TSR = (104 MPa)(1.4 W /m- K)

(73 x 103 MPa) 0.4 x 10−6 (°C)−1[ ]
=  4986 W/m 

 

 And, for silicon 

 

    

TSR = (130 MPa)(141 W /m- K)

(129 x 103 MPa) 2.5 x 10−6 (°C)−1[ ]
=  56,800 W/m 

 

 Thus, these materials may be ranked according to their thermal shock resistance from the greatest to the 

least as follows:  silicon, fused silica, and soda-lime glass. 
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 19.D4  We want to compute the maximum temperature change allowable without thermal shock for these 

several ceramic materials, which temperature change is a function of the fracture strength, elastic modulus, and 
linear coefficient of thermal expansion.  These data and the ∆Tf's are tabulated below.  (Values for E, σf, and αl are 

taken from Tables B.2, B.4, B.6 in Appendix B.) 

 
 Material σf (MPa) E (MPa) αl (°C)-1 ∆Tf (°C) 

 Soda-lime glass 69 69 x 103 9.0 x 10-6 111 

 Borosilicate glass 69 70 x 103 3.3 x 10-6 300 

 Aluminum oxide (96%) 358 303 x 103 7.4 x 10-6 160 

 Gallium arsenide 57 85 x 103 5.9 x 10-6 114 
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