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CHAPTER 18 

 

ELECTRICAL PROPERTIES 

 

PROBLEM SOLUTIONS 

 

Ohm’s Law 
Electrical Conductivity 

 

 18.1  This problem calls for us to compute the electrical conductivity and resistance of a silicon specimen. 

 (a)  We use Equations 18.3 and 18.4 for the conductivity, as 
 

  

σ = 1
ρ

= Il
VA

= Il

Vπ
d
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And, incorporating values for the several parameters provided in the problem statement, leads to 

 

  

σ = (0.25 A)(45 x 10−3 m)

(24 V)(π) 7.0 x 10−3 m
2
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⎝ 
⎜ ⎜ 

⎞ 

⎠ 
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2 = 12.2  (Ω - m)-1 

 

 (b)  The resistance, R, may be computed using Equations 18.2 and 18.4, as 
 

  

R = l
σA

 =  l

σπ
d
2
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= 57 x 10−3 m

12.2 (Ω − m)−1[ ](π) 7.0 x 10−3 m
2
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⎠ 
⎟ ⎟ 

2 = 121.4 Ω  
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 18.2  For this problem, given that an aluminum wire 10 m long must experience a voltage drop of less than 

1.0 V when a current of 5 A passes through it, we are to compute the minimum diameter of the wire.  Combining 

Equations 18.3 and 18.4 and solving for the cross-sectional area A leads to 

 

  
A = Il

Vσ
 

 

From Table 18.1, for aluminum σ = 3.8 x 107 (Ω-m)-1.  Furthermore, inasmuch as 
  
A = π

d
2

⎛ 
⎝ 
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⎞ 
⎠ 
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2

  for a cylindrical 

wire, then 

 

  
π

d
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Vσ

 

or 

 

  
d = 4 Il

πVσ
 

 

When values for the several parameters given in the problem statement are incorporated into this expression, we get 

 

    

d = (4)(5 A)(10 m)

(π)(1.0 V) 3.8 x 107 (Ω − m)−1[ ]
 

 

= 1.3 x 10-3 m = 1.3 mm 
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 18.3  This problem asks that we compute, for a plain carbon steel wire 3 mm in diameter, the maximum 

length such that the resistance will not exceed 20 Ω. From Table 18.1 for a plain carbon steel σ = 0.6 x 107 (Ω-m)-

1.  If d is the diameter then, combining Equations 18.2 and 18.4 leads to 

 

  
l = RσA = Rσπ

d
2
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2

 

 

  
= (20  Ω) 0.6 x 107 (Ω − m)−1[ ](π) 3 x 10−3 m

2
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⎟ ⎟ 

2
= 848 m 
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 18.4  Let us demonstrate, by appropriate substitution and algebraic manipulation, that Equation 18.5 may 

be made to take the form of Equation 18.1.  Now, Equation 18.5 is just 
 

J = σE 

 

(In this equation we represent the electric field with an “E”.)  But, by definition, J is just the current density, the 

current per unit cross-sectional area, or 
  
J =

I
A

.  Also, the electric field is defined by 
  
E =

V
l

.  And, substituting 

these expressions into Equation 18.5 leads to 
 

  
I
A

= σ
V
l

 

 

But, from Equations 18.2 and 18.4 
 

  
σ = l

RA
 

and 
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Solving for V from this expression gives V = IR, which is just Equation 18.1. 
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 18.5  (a)  In order to compute the resistance of this aluminum wire it is necessary to employ Equations 18.2 

and 18.4.  Solving for the resistance in terms of the conductivity, 
 

  

R = ρ l
A

= l
σA

=
l

σπ
d
2
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From Table 18.1, the conductivity of aluminum is 3.8 x 107 (Ω-m)-1, and  
 

    

R = l

σπ
d
2
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2 = 5 m

3.8 x 107 (Ω − m)−1[ ](π) 5 x 10−3 m
2
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2  

 

= 6.7 x 10-3 Ω 

 

 (b)  If V = 0.04 V then, from Equation 18.1 
 

    
I = V

R
= 0.04 V

6.7 x 10−3 Ω
= 6.0  A 

 

 (c)  The current density is just 
 

  

J = I
A

= I

π
d
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2 = 6.0 A

π
5 x 10−3 m

2
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⎝ 
⎜ ⎜ 
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⎠ 
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2 = 3.06 x 105  A/m2  

 

 (d)  The electric field is just 

 

    
E = V

l
= 0.04 V

5 m
= 8.0 x 10-3  V/m 
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 Electronic and Ionic Conduction 

 

 18.6  When a current arises from a flow of electrons, the conduction is termed electronic;  for ionic 

conduction, the current results from the net motion of charged ions. 
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 Energy Band Structures in Solids 

 

 18.7  For an isolated atom, there exist discrete electron energy states (arranged into shells and subshells);  

each state may be occupied by, at most, two electrons, which must have opposite spins.  On the other hand, an 

electron band structure is found for solid materials;  within each band exist closely spaced yet discrete electron 

states, each of which may be occupied by, at most, two electrons, having opposite spins.  The number of electron 

states in each band will equal the total number of corresponding states contributed by all of the atoms in the solid. 
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 Conduction in Terms of Band and Atomic Bonding Models 

 

 18.8  This question asks that we explain the difference in electrical conductivity of metals, semiconductors, 

and insulators in terms of their electron energy band structures. 

 For metallic materials, there are vacant electron energy states adjacent to the highest filled state;  thus, very 

little energy is required to excite large numbers of electrons into conducting states. These electrons are those that 

participate in the conduction process, and, because there are so many of them, metals are good electrical conductors. 

 There are no empty electron states adjacent to and above filled states for semiconductors and insulators, but 

rather, an energy band gap across which electrons must be excited in order to participate in the conduction process.  

Thermal excitation of electrons will occur, and the number of electrons excited will be less than for metals, and will 

depend on the band gap energy.  For semiconductors, the band gap is narrower than for insulators;  consequently, at 

a specific temperature more electrons will be excited for semiconductors, giving rise to higher conductivities. 
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 Electron Mobility 

 

 18.9  The drift velocity of a free electron is the average electron velocity in the direction of the force 

imposed by an electric field. 

 The mobility is the proportionality constant between the drift velocity and the electric field.  It is also a 

measure of the frequency of scattering events (and is inversely proportional to the frequency of scattering). 
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 18.10  (a)  The drift velocity of electrons in Si may be determined using Equation 18.7.  Since the room 

temperature mobility of electrons is 0.14 m2/V-s (Table 18.3), and the electric field is 500 V/m (as stipulated in the 

problem statement), 
 

  vd = µeE  

 

  = (0.14  m2/V- s)(500  V/m) = 70 m/s 

 

 (b)  The time, t, required to traverse a given length, l (= 25 mm), is just 
 

    
t = l

vd
= 25 x 10−3 m

70 m/s
= 3.6 x 10-4  s 
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 18.11  (a)  The number of free electrons per cubic meter for aluminum at room temperature may be 

computed using Equation 18.8 as 
 

  
n = σ

| e | µe
 

 

  
= 3.8 x 107 (Ω − m)−1

(1.602 x 10−19 C)(0.0012 m2 /V- s)
 

 

= 1.98 x 1029 m-3

 

 (b)  In order to calculate the number of free electrons per aluminum atom, we must first determine the 
number of copper atoms per cubic meter, NAl.  From Equation 4.2 (and using the atomic weight and density values 

for Al found inside the front cover—viz. 26.98 g/mol and 2.71 g/cm3) 
 

  
N Al =

N A ρ'

AAl
 

 

  
= (6.023 x 1023 atoms /mol)(2.71 g /cm3)(106 cm3 /m3)

26.98 g /mol
 

 

= 6.03 x 1028 m-3

 

(Note:  in the above expression, density is represented by ρ' in order to avoid confusion with resistivity which is 
designated by ρ.)   And, finally, the number of free electrons per aluminum atom is just n/NAl 
 

    

n
N Al

= 1.98 x 1029 m−3

6.03 x 1028 m−3 = 3.28 
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 18.12  (a)  This portion of the problem asks that we calculate, for silver, the number of free electrons per 

cubic meter (n) given that there are 1.3 free electrons per silver atom, that the electrical conductivity is 6.8 x 107 (Ω-

m)-1, and that the density 
  

 is 10.5 g/cm(ρAg
' ) 3.  (Note:  in this discussion, the density of silver is represented by 

 in order to avoid confusion with resistivity which is designated by ρ.)  Since n = 1.3NAg, and NAg is defined in 

Equation 4.2 (and using the atomic weight of Ag found inside the front cover—viz 107.87 g/mol), then  
  
ρAg

'

 

    

n = 1.3N Ag = 1.3 
ρAg

' N A
AAg

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 

 

  
= 1.3 (10.5 g /cm3)(6.023 x 1023 atoms /mol)

107.87 g /mol

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

= 7.62 x 1022 cm-3 = 7.62 x 1028 m-3

 
 (b)  Now we are asked to compute the electron mobility, µe.  Using Equation 18.8 

 

  
µe = σ

n | e |
 

 

  
=  6.8 x 107 (Ω − m)−1

(7.62 x 1028 m−3)(1.602 x 10−19 C)
= 5.57  x 10-3 m2/V - s 
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 Electrical Resistivity of Metals 

 

 18.13  We want to solve for the parameter A in Equation 18.11 using the data in Figure 18.37.  From 

Equation 18.11 
 

  
A =

ρi
ci (1 − ci )

 

 
However, the data plotted in Figure 18.37 is the total resistivity, ρtotal, and includes both impurity (ρi) and thermal 

(ρt) contributions (Equation 18.9).  The value of ρt is taken as the resistivity at ci = 0 in Figure 18.37, which has a 

value of 1.7 x 10-8 (Ω-m);  this must be subtracted out.  Below are tabulated values of A determined at ci = 0.10, 

0.20, and 0.30, including other data that were used in the computations.  (Note:  the ci values were taken from the 

upper horizontal axis of Figure 18.37, since it is graduated in atom percent zinc.) 

 
 ci 1 – ci ρtotal (Ω-m) ρi (Ω-m) A (Ω-m) 

 0.10 0.90 4.0 x 10-8 2.3 x 10-8 2.56 x 10-7

 0.20 0.80 5.4 x 10-8 3.7 x 10-8 2.31 x 10-7

 0.30 0.70 6.15 x 10-8 4.45 x 10-8 2.12 x 10-7

 
So, there is a slight decrease of A with increasing ci. 
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 18.14  (a)  Perhaps the easiest way to determine the values of ρ0 and a in Equation 18.10 for pure copper in 

Figure 18.8, is to set up two simultaneous equations using two resistivity values (labeled ρt1 and ρt2) taken at two 

corresponding temperatures (T1 and T2).  Thus, 

 

  ρt1 = ρ0 +  aT1 

 

  ρt2 = ρ0 +  aT2  

 
And solving these equations simultaneously lead to the following expressions for a and ρ0: 

 

  
a =

ρt1 − ρt2
T1 − T2

 

 

  
ρ0 = ρt1 −  T1

ρt1 − ρt2
T1 −T2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

  
= ρt2 −  T2

ρt1 − ρt2
T1 − T2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 
From Figure 18.8, let us take T1 = –150°C, T2 = –50°C, which gives ρt1 = 0.6 x 10-8 (Ω-m), and ρt2 = 1.25 x 10-8 

(Ω-m).  Therefore 

 

  
a =

ρt1 − ρt2
T1 − T2

 

 

  
=  

(0.6 x 10-8) −  (1.25 x 10-8)[ ]Ω - m( )
−150°C −  (−50°C)

 

 

6.5 x 10-11 (Ω-m)/°C 

 

and 
 

  
ρ0 = ρt1 −  T1

ρt1 − ρt2
T1 −T2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
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= (0.6 x 10-8) −  (−150) 

(0.6 x 10-8) −  (1.25 x 10-8)[ ]Ω - m( )
−150°C −  (−50°C)

 

 

= 1.58 x 10-8 (Ω-m) 

 

 (b)  For this part of the problem, we want to calculate A from Equation 18.11 
 

  ρi = Aci (1 −  ci )  

 
In Figure 18.8, curves are plotted for three ci values (0.0112, 0.0216, and 0.0332).  Let us find A for each of these 

ci's by taking a ρtotal from each curve at some temperature (say 0°C) and then subtracting out ρi for pure copper at 

this same temperature (which is 1.7 x 10-8 Ω-m).  Below is tabulated values of A determined from these three ci 

values, and other data that were used in the computations. 

 

 ci 1 – ci ρtotal (Ω-m) ρi (Ω-m) A (Ω-m) 

 0.0112 0.989 3.0 x 10-8 1.3 x 10-8 1.17 x 10-6

 0.0216 0.978 4.2 x 10-8 2.5 x 10-8 1.18 x 10-6

 0.0332 0.967 5.5 x 10-8 3.8 x 10-8 1.18 x 10-6

 

The average of these three A values is 1.18 x 10-6 (Ω-m). 

 (c)  We use the results of parts (a) and (b) to estimate the electrical resistivity of copper containing 2.50 
at% Ni (ci = 0.025) at120°C.  The total resistivity is just 
 

  ρtotal = ρt  +  ρi  

 
Or incorporating the expressions for ρt and ρi from Equations 18.10 and 18.11, and the values of ρ0, a, and A 

determined above, leads to 
 

    ρtotal = (ρ0 +  aT) +  Aci (1 −  ci )  

 

  =  {1.58 x 10 -8 (Ω - m) +  [6.5 x 10 -11 (Ω - m) /°C](120°C)} 

  + {[1.18 x 10 -6  (Ω - m)](0.0250) (1 −  0.0250)} 

 

= 5.24 x 10-8 (Ω-m) 
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 18.15  We are asked to determine the electrical conductivity of a Cu-Ni alloy that has a tensile strength of 

275 MPa.  From Figure 7.16(a), the composition of an alloy having this tensile strength is about 8 wt% Ni.  For this 

composition, the resistivity is about 14 x 10-8 Ω-m (Figure 18.9).  And since the conductivity is the reciprocal of the 

resistivity, Equation 18.4, we have 

 

  
σ = 1

ρ
= 1

14 x 10−8 Ω − m
= 7.1 x 106  (Ω - m)-1 
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 18.16  This problem asks for us to compute the room-temperature conductivity of a two-phase Cu-Sn alloy 

which composition is 89 wt% Cu-11 wt% Sn.  It is first necessary for us to determine the volume fractions of the α 

and ε phases, after which the resistivity (and subsequently, the conductivity) may be calculated using Equation 

18.12.  Weight fractions of the two phases are first calculated using the phase diagram information provided in the 

problem. 

 We may represent a portion of the phase diagram near room temperature as follows: 
 

 

Applying the lever rule to this situation 
 

    
Wα =

Cε − C0
Cε − Cα

= 37 − 11
37 − 0

= 0.703 

 

    
Wε =

C0 − Cα
Cε − Cα

= 11 − 0
37 − 0

= 0.297  

 

We must now convert these mass fractions into volume fractions using the phase densities given in the problem 

statement.  (Note:  in the following expressions, density is represented by ρ' in order to avoid confusion with 

resistivity which is designated by ρ.)  Utilization of Equations 9.6a and 9.6b leads to 

 

  

Vα =

Wα
ρ'α

Wα
ρ'α

+
Wε
ρ'ε
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=

0.703
8.94 g /cm3

0.703
8.94 g /cm3 +

0.297
8.25 g /cm3

 

 

= 0.686 

 

 

  

Vε =

Wε
ρ'ε

Wα
ρ'α

+
Wε
ρ'ε

 

 

  

=

0.297
8.25 g /cm3

0.703
8.94 g /cm3 +

0.297
8.25 g /cm3

 

 

= 0.314 

 

Now, using Equation 18.12 
 

  ρ = ραVα  +  ρεVε 

 

  = (1.88 x 10-8  Ω - m)(0.686) +  (5.32 x 10-7  Ω - m)(0.314)  

 

= 1.80 x 10-7 Ω-m 

 

Finally, for the conductivity (Equation 18.4) 
 

  
σ = 1

ρ
= 1

1.80 x 10−7 Ω − m
= 5.56  x106  (Ω - m)-1 
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 18.17  We are asked to select which of several metals may be used for a 3 mm diameter wire to carry 12 A, 

and have a voltage drop less than 0.01 V per foot (300 mm).  Using Equations 18.3 and 18.4, let us determine the 

minimum conductivity required, and then select from Table 18.1, those metals that have conductivities greater than 

this value.  Combining Equations 18.3 and 18.4, the minimum conductivity is just 
 

  

σ = Il
VA

= Il

Vπ
d
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2  

 

  

= (12 A)(300 x 10−3 m)

(0.01 V) (π) 3 x 10−3 m
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2 = 5.1 x 107  (Ω - m)-1 

 

Thus, from Table 18.1, only copper, and silver are candidates. 
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 Intrinsic Semiconduction 

 

 18.18  (a)  For this part of the problem, we first read, from Figure 18.16, the number of free electrons (i.e., 
the intrinsic carrier concentration) at room temperature (298 K).   These values are ni(Ge) = 5 x 1019 m-3 and ni(Si) 

= 7 x 1016 m-3. 
 Now, the number of atoms per cubic meter for Ge and Si (NGe and NSi, respectively) may be determined 

using Equation 4.2 which involves the densities (  and ) and atomic weights (AGe and ASi).  (Note:  here we 

use ρ' to represent density in order to avoid confusion with resistivity, which is designated by ρ.  Also, the atomic 

weights for Ge and Si, 72.59 and 28.09 g/mol, respectively, are found inside the front cover.)  Therefore, 

  ρGe
'

  ρSi
'

 

   
NGe =

N AρGe
'

AGe
 

 

  
= (6.023 x 1023 atoms /mol)(5.32 g /cm3)(106 cm3 /m3)

72.59 g /mol
 

 

= 4.4 x 1028 atoms/m3 

 

Similarly, for Si 
 

   
NSi =

N AρSi
'

ASi
 

 

  
= (6.023 x 1023 atoms /mol)(2.33 g /cm3)(106 cm3 /m3)

28.09 g /mol
 

 

= 5.00 x 1028 atoms/m3 

 
 Finally, the ratio of the number of free electrons per atom is calculated by dividing ni by N.  For Ge 

 

    

ni (Ge)
NGe

= 5 x 1019 electrons /m3

4.4 x 1028 atoms /m3  

 

1.1 x 10-9 electron/atom 

 

And, for Si 
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ni (Si)

NSi
= 7 x 1016 electrons /m3

5.00 x 1028 atoms /m3  

 

= 1.4 x 10-12 electron/atom 

 

 (b)  The difference is due to the magnitudes of the band gap energies (Table 18.3).  The band gap energy at 

room temperature for Si (1.11 eV) is larger than for Ge (0.67 eV), and, consequently, the probability of excitation 

across the band gap for a valence electron is much smaller for Si. 
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 18.19  This problem asks that we make plots of ln ni versus reciprocal temperature for both Si and Ge, 

using the data presented in Figure 18.16, and then determine the band gap energy for each material realizing that the 
slope of the resulting line is equal to – Eg/2k. 

 Below is shown such a plot for Si. 

 

 
 

The slope of the line is equal to 

 

    

Slope =  
∆ ln ηi

∆ 1
T

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

 =  
ln η1 −  ln η2

1
T1

 −  1
T2

 

 
Let us take 1/T1 = 0.001 and 1/T2 = 0.007;  their corresponding ln η values are ln η1 = 54.80 and ln η2 = 16.00.  

Incorporating these values into the above expression leads to a slope of 

 

  
Slope =  54.80ŹŹ− 16.00

0.001 − 0.007
 =  − 6470 

 
This slope leads to an Eg value of 
 

Eg = – 2k (Slope) 
 

  = −2(8.62 x 10−5 eV /K)(− 6470) = 1.115 eV 
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The value cited in Table 18.3 is 1.11 eV. 

 

 Now for Ge, an analogous plot is shown below. 

 
 

We calculate the slope and band gap energy values in the manner outlined above.  Let us take 1/T1 = 0.001 and 1/T2 

= 0.011;  their corresponding ln η values are ln η1 = 55.56 and ln η2 = 14.80.  Incorporating these values into the 

above expression leads to a slope of 

 

  
Slope =  55.56ŹŹ− 14.80

0.001 − 0.011
 =  − 4076  

 
This slope leads to an Eg value of 
 

Eg = – 2k (Slope) 
 

  = −2(8.62 x 10−5 eV /K)(− 4076) = 0.70 eV 

 

This value is in good agreement with the 0.67 eV cited in Table 18.3. 
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 18.20  The factor 2 in Equation 18.35a takes into account the creation of two charge carriers (an electron 

and a hole) for each valence-band-to-conduction-band intrinsic excitation;  both charge carriers may participate in 

the conduction process. 
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 18.21  In this problem we are asked to compute the intrinsic carrier concentration for PbS at room 

temperature.  Since the conductivity and both electron and hole mobilities are provided in the problem statement, all 
we need do is solve for n and p (i.e., ni) using Equation 18.15.  Thus, 

 

 
ni =

σ
|e |(µe + µh)  

 

  
= 25 (Ω - m)−1

(1.602 x 10−19 C)(0.06 + 0.02) m2 /V - s
 

 

= 1.95 x 1021 m-3 
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 18.22  Yes, compound semiconductors can exhibit intrinsic behavior.  They will be intrinsic even though 

they are composed of two different elements as long as the electrical behavior is not influenced by the presence of 

other elements. 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 18-27 

 18.23  This problem calls for us to decide for each of several pairs of semiconductors, which will have the 

smaller band gap energy and then cite a reason for the choice. 

 (a)  Germanium will have a smaller band gap energy than C (diamond) since Ge is lower in row IVA of the 
periodic table (Figure 2.6) than is C.  In moving from top to bottom of the periodic table, Eg decreases. 

 (b)  Indium antimonide will have a smaller band gap energy than aluminum phosphide.  Both of these 

semiconductors are III-V compounds, and the positions of both In and Sb are lower vertically in the periodic table 

(Figure 2.6) than Al and P. 

 (c)  Gallium arsenide will have a smaller band gap energy than zinc selenide.  All four of these elements 

are in the same row of the periodic table, but Zn and Se are more widely separated horizontally than Ga and As;  as 

the distance of separation increases, so does the band gap. 

 (d)  Cadmium telluride will have a smaller band gap energy than zinc selenide.  Both are II-VI compounds, 

and Cd and Te are both lower vertically in the periodic table than Zn and Se. 

 (e)  Cadmium sulfide will have a smaller band gap energy than sodium chloride since Na and Cl are much 

more widely separated horizontally in the periodic table than are Cd and S. 
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 Extrinsic Semiconduction 

 

 18.24  These semiconductor terms are defined in the Glossary.  Examples are as follows:  intrinsic--high 

purity (undoped) Si, GaAs, CdS, etc.; extrinsic--P-doped Ge, B-doped Si, S-doped GaP, etc.;  compound--GaAs, 

InP, CdS, etc.;  elemental--Ge and Si. 
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 18.25  For this problem we are to determine the electrical conductivity of and n-type semiconductor, given 

that n = 5 x 1017 m-3 and the electron drift velocity is 350 m/s in an electric field of 1000 V/m.  The conductivity of 

this material may be computed using Equation 18.16.  But before this is possible, it is necessary to calculate the 
value of µe from Equation 18.7.  Thus, the electron mobility is equal to 

 

 
µe =

vd
E

 

 

  
=

350 m/s
1000 V/m

= 0.35 m2 /V − s 

 

Thus, from Equation 18.16, the conductivity is 

 

 σ = n | e |µe  

 

  = (5 x 1017 m−3)(1.602 x 10−19 C)(0.35 m2 /V − s)  

 

= 0.028 (Ω-m)-1 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 18-30 

 18.26  The explanations called for are found in Section 18.11. 
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 18.27  (a)  No hole is generated by an electron excitation involving a donor impurity atom because the 

excitation comes from a level within the band gap, and thus, no missing electron is created within the normally 

filled valence band. 

 (b)  No free electron is generated by an electron excitation involving an acceptor impurity atom because the 

electron is excited from the valence band into the impurity level within the band gap;  no free electron is introduced 

into the conduction band. 
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 18.28  Nitrogen will act as a donor in Si.  Since it (N) is from group VA of the periodic table (Figure 2.6), 

and an N atom has one more valence electron than an Si atom. 

 Boron will act as an acceptor in Ge.  Since it (B) is from group IIIA of the periodic table, a B atom has one 

less valence electron than a Ge atom. 

 Sulfur will act as a donor in InSb.  Since S is from group VIA of the periodic table, it will substitute for Sb;  

also, an S atom has one more valence electron than an Sb atom. 

 Indium will act as a donor in CdS.  Since In is from group IIIA of the periodic table, it will substitute for 

Cd;  and, an In atom has one more valence electron than a Cd atom. 

 Arsenic will act as an acceptor in ZnTe.  Since As is from group VA of the periodic table, it will substitute 

for Te;  furthermore, an As atom has one less valence electron than a Te atom. 
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 18.29  (a)  In this problem, for a Si specimen, we are given values for p (2.0 x 1022 m-3)  and σ [500 (Ω-
m)-1], while values for µh and µe (0.05 and 0.14 m2/V-s, respectively) are found in Table 18.3.  In order to solve 

for n we must use Equation 18.13, which, after rearrangement, leads to 
 

  
n =

σ − p | e | µh
| e | µe

 

 

  
=  500 (Ω − m)−1 − (2.0 x 1022 m−3)(1.602 x 10−19 C)(0.05 m2 /V- s)

(1.602 x 10−19 C)(0.14 m2 /V - s)
 

 

= 2.97 x 1020 m-3 

 

 (b)  This material is p-type extrinsic since p (2.0 x 1022 m-3) is greater than n (2.97 x 1020 m-3). 
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 18.30  (a)  This germanium material to which has been added 1024 m-3 As atoms is n-type since As is a 

donor in Ge.  (Arsenic is from group VA of the periodic table--Ge is from group IVA.) 

 (b)  Since this material is n-type extrinsic, Equation 18.16 is valid.  Furthermore, each As atom will donate 

a single electron, or the electron concentration is equal to the As concentration since all of the As atoms are ionized 
at room temperature;  that is n = 1024 m-3, and, as given in the problem statement, µe = 0.1 m2/V-s.  Thus 

 

  σ = n | e |µe  

 

  = (10 24  m-3)(1.602 x  10-19  C)(0.1  m2/V - s) 

 

= 1.6 x 104 (Ω-m)-1 
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 18.31  In order to solve for the electron and hole mobilities for GaSb, we must write conductivity 

expressions for the two materials, of the form of Equation 18.13—i.e., 
 

  σ = n | e | µe +  p | e | µh 

 

For the intrinsic material 
 

    8.9 x 104  (Ω - m)-1 =  (8.7 x 1023 m-3)(1.602 x 10-19  C) µe  

    + (8.7 x 1023 m-3)(1.602 x 10-19  C)µh  

 

which reduces to 

  0.639 = µe +  µh 

 

Whereas, for the extrinsic GaSb 
 

    2.3 x 105 (Ω - m)-1 =  (7.6 x 1022  m-3)(1.602 x 10-19  C) µe 

    + (1.0 x 1025 m-3)(1.602 x 10-19  C) µh  

 

which may be simplified to 

 

    0.1436  =  7.6 x 10-3 µe +  µh 

 

Thus, we have two independent expressions with two unknown mobilities. Upon solving these equations 
simultaneously, we get µe = 0.50 m2/V-s and µh = 0.14 m2/V-s. 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 18-36 

 The Temperature Dependence of Carrier Concentration 

 
 18.32  In order to estimate the electrical conductivity of intrinsic silicon at 80°C, we must employ Equation 

18.15.  However, before this is possible, it is necessary to determine values for ni, µe, and µh.  According to Figure 

18.16, at 80°C (353 K), ni = 1.5 x 1018 m-3, whereas from the "<1020 m-3" curves of Figures 18.19a and 18.19b, at 

80ºC (353 K), µe = 0.10 m2/V-s and µh = 0.035 m2/V-s (realizing that the mobility axes of these two plot are scaled 

logarithmically).  Thus, the conductivity at 80°C is 

 

  σ =  ni | e |(µe +  µh) 

 

  σ =  (1.5 x  1018 m−3)(1.602 x 10−19 C)(0.10 m2/V- s  +  0.035 m2 /V− s) 

 

 = 0.032 (Ω - m)-1 
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 18.33  This problem asks for us to assume that electron and hole mobilities for intrinsic Ge are 

temperature-dependent, and proportional to T -3/2 for temperature in K.  It first becomes necessary to solve for C in 

Equation 18.36 using the room-temperature (298 K) conductivity [2.2 (Ω-m)-1] (Table 18.3).  This is accomplished 

by taking natural logarithms of both sides of Equation 18.36 as 

 

    
ln σ = ln C −

3
2

lnT −  
Eg

2 kT
 

 
and after rearranging and substitution of values for Eg (0.67 eV, Table 18.3), and the room-temperature 

conductivity, we get 

 

    
ln C = ln σ +  3

2
lnT +  

Eg
2 kT

 

 

  
= ln (2.2) +  3

2
ln (298) +  0.67 eV

(2)(8.62 x 10−5 eV /K)(298 K)
 

 

= 22.38 

 

Now, again using Equation 18.36, we are able to compute the conductivity at 448 K (175°C) 

 

  
ln σ = ln C −

3
2

ln T −
Eg

2 kT
 

 

  
= 22.38 −

3
2

ln (448 K) −
0.67 eV

(2)(8.62 x 10−5 eV /K)(448 K)
 

 

= 4.548 

 

which leads to 

 

σ = e4.548 = 94.4 (Ω-m)-1. 
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 18.34  This problem asks that we determine the temperature at which the electrical conductivity of intrinsic 

Ge is 40 (Ω-m)-1, using Equation 18.36 and the results of Problem 18.33.  First of all, taking logarithms of Equation 

18.36 

 

  
ln σ = ln C −

3
2

ln T −
Eg

2 kT
 

 

And, from Problem 18.33 the value of ln C was determined to be 22.38.  Using this and σ = 40 (Ω-m)-1, the above 

equation takes the form 

 

    
ln 40 = 22.38 −

3
2

ln T −
0.67 eV

(2)(8.62 x 10−5 eV /K)(T)
 

 

In order to solve for T from the above expression it is necessary to use an equation solver.  For some solvers, the 

following set of instructions may be used: 

 

ln(40) = 22.38 –1.5*ln(T) – 0.67/(2*8.62*10^-5*T) 

 

The resulting solution is T = 400, which value is the temperature in K;  this corresponds to T(ºC) = 400 – 273 = 

127°C. 
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 18.35  This problem asks that we estimate the temperature at which GaAs has an electrical conductivity of 

1.6 x 10-3 (Ω-m)-1 assuming that the conductivity has a temperature dependence as shown in Equation 18.36.  From 

the room temperature (298 K) conductivity [10-6 (Ω-m)-1] and band gap energy (1.42 eV) of Table 18.3 we 

determine the value of C (Equation 18.36) by taking natural logarithms of both sides of the equation, and after 

rearrangement as follows: 

 

    
ln C = ln σ + 3

2
ln T +

Eg
2 kT

 

 

  
=  ln 10−6 (Ω − m)−1[ ] +  3

2
ln (298 K) +  1.42 eV

(2)(8.62 x 10−5 eV /K)(298 K)
 

 

= 22.37 

 

Now we substitute this value into Equation 18.36  in order to determine the value of T for which σ = 1.6 x 10-3 (Ω-

m)-1,  thus 

 

    
ln σ = ln C −

3
2

ln T −
Eg

2 kT
 

 

    
ln 1.6 x 10-3 (Ω - m)-1[ ]= 22.37 −

3
2

lnT −
1.42 eV

(2)(8.62 × 10−5 eV /K) (T)
 

 

This equation may be solved for T using an equation solver.  For some solvers, the following set of instructions may 

be used: 

 

ln(1.6*10^–3) = 22.37 – 1.5*ln(T) – 1.42/(2*8.62*10^–5*T) 

 

The resulting solution is T = 417; this value is the temperature in K which corresponds to T(ºC) = 417 K – 273 = 

144°C. 
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 18.36  This question asks that we compare and then explain the difference in temperature dependence of 

the electrical conductivity for metals and intrinsic semiconductors. 

 For metals, the temperature dependence is described by Equation 18.10 (and converting from resistivity to 

conductivity using Equation 18.4), as 
 

  
σ = 1

ρ0 + aT
 

 

That is, the electrical conductivity decreases with increasing temperature. 

 Alternatively, from Equation 18.8, the conductivity of metals is equal to 

 

  σ =  n | e |µe  

 
As the temperature rises, n will remain virtually constant, whereas the mobility (µe) will decrease, because the 

thermal scattering of free electrons will become more efficient.  Since |e| is independent of temperature, the net 

result will be diminishment in the magnitude of σ. 

 

 For intrinsic semiconductors, the temperature-dependence of conductivity is just the opposite of that for 

metals—i.e, conductivity increases with rising temperature.  One explanation is as follows:  Equation 18.15 

describes the conductivity;  i.e., 
 

    

σ =  n | e |(µe +  µh) =  p | e |(µe +  µh)
= ni | e |(µe +  µh)  

 

Both n and p increase dramatically with rising temperature (Figure 18.16), since more thermal energy becomes 
available for valence band-conduction band electron excitations.  The magnitudes of µe and µh will diminish 

somewhat with increasing temperature (per the upper curves of Figures 18.19a and 18.19b), as a consequence of the 
thermal scattering of electrons and holes.  However, this reduction of µe and µh will be overwhelmed by the 

increase in n and p, with the net result is that σ increases with temperature. 

 An alternative explanation is as follows:  for an intrinsic semiconductor the temperature dependence is 

represented by an equation of the form of Equation 18.36.  This expression contains two terms that involve 

temperature—a preexponential one (in this case T -3/2) and the other in the exponential.  With rising temperature the 
preexponential term decreases, while the exp (–Eg/2kT) parameter increases.  With regard to relative magnitudes, 

the exponential term increases much more rapidly than the preexponential one, such that the electrical conductivity 

of an intrinsic semiconductor increases with rising temperature. 
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 Factors That Affect Carrier Mobility 

 

 18.37  This problems asks that we determine the room-temperature electrical conductivity of silicon that 

has been doped with 1023 m-3 of arsenic atoms.  Inasmuch as As is a group VA element in the periodic table 

(Figure 2.6) it acts as a donor in silicon.   Thus, this material is n-type extrinsic, and it is necessary to use Equation 

18.16), with n = 1023 m-3 since at room temperature all of the As donor impurities are ionized.  The electron 

mobility, from Figure 18.18 at an impurity concentration of 1023 m-3, is 0.065 m2/V-s.  Therefore, the conductivity 

is equal to 

 

    σ = n | e | µe = (1023 m−3)(1.602 x 10−19 C)(0.065 m2 / V − s) = 1040 (Ω − m)−1 
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 18.38  Here we are asked to calculate the room-temperature electrical conductivity of silicon that has been 

doped with 2 x 1024 m-3 of boron atoms.  Inasmuch as B is a group IIIA element in the periodic table (Figure 2.6) it 

acts as an acceptor in silicon.   Thus, this material is p-type extrinsic, and it is necessary to use Equation 18.17, with 

p = 2 x 1024 m-3 since at room temperature all of the B acceptor impurities are ionized.  The hole mobility, from 

Figure 18.18 at an impurity concentration of 2 x 1024 m-3, is 0.0065 m2/V-s.  Therefore, the conductivity is equal to 

 

    σ = p | e | µe = (2 × 1024 m−3)(1.602 × 10−19 C)(0.0065 m2 /V − s) = 2080 (Ω − m)−1 
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 18.39  In this problem we are to estimate the electrical conductivity, at 75°C, of silicon that has been doped 

with 1022 m-3 of phosphorous atoms.  Inasmuch as P is a group VA element in the periodic table (Figure 2.6) it acts 

as a donor in silicon.  Thus, this material is n-type extrinsic, and it is necessary to use Equation 18.16;  n in this 

expression is 1022 m-3 since at 75°C all of the P donor impurities are ionized.  The electron mobility is determined 
using Figure 18.19a.  From the 1022 m-3 impurity concentration curve and at 75°C (348 K), µe = 0.08 m2/V-s.  

Therefore, the conductivity is equal to 

 

    σ = n | e | µe = (1022 m−3)(1.602 x 10−19 C)(0.08 m2 /V − s) = 128 (Ω − m)−1 
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 18.40  In this problem we are to estimate the electrical conductivity, at 135°C, of silicon that has been 

doped with 1024 m-3 of aluminum atoms.  Inasmuch as Al is a group IIIA element in the periodic table (Figure 2.6) 

it acts as an acceptor in silicon.  Thus, this material is p-type extrinsic, and it is necessary to use Equation 18.17;  p 

in this expression is 1024 m-3 since at 135°C all of the Al acceptor impurities are ionized.  The hole mobility is 
determined using Figure 18.19b.  From the 1024 m-3 impurity concentration curve and at 135°C (408 K,) µh = 0.007 

m2/V-s.  Therefore, the conductivity is equal to 

 

    σ = p | e | µh = (1024 m−3)(1.602 × 10−19 C)(0.007 m2 /V − s) = 1120 (Ω − m)−1 
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 The Hall Effect 

 

 18.41  (a) This portion of the problem calls for us to determine the electron mobility for some hypothetical 

metal using the Hall effect.  This metal has an electrical resistivity of 3.3 x 10-8 (Ω-m), while the specimen 
thickness is 15 mm, Ix = 25 A and Bz = 0.95 tesla;  under these circumstances a Hall voltage of –2.4 x 10-7 V is 

measured.  It is first necessary to convert resistivity to conductivity (Equation 18.4).  Thus 

 

  
σ = 1

ρ
= 1

3.3 x10−8 (Ω − m)
= 3.0 x 107  (Ω - m)-1 

 

The electron mobility may be determined using Equation 18.20b;  and upon incorporation of Equation 18.18, we 

have 

 

  µe =  RH σ  

 

  
=  

VH d σ

I xBz
 

 

  
=

− 2.4 x 10−7 V⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ (15 x 10−3 m) 3.0 x 107 (Ω − m)−1[ ]
(25 A)(0.95 tesla)

 

 

 =  0.0045 m2/V - s 

 

 (b)  Now we are to calculate the number of free electrons per cubic meter.  From Equation 18.8 we have 

 

  
n  = σ

| e | µe
 

 

  
=  3.0 x 107 (Ω - m)−1

(1.602 x 10−19 C)(0.0045 m2 / V - s)
 

 

 = 4.17 x 1028  m-3 
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 18.42  In this problem we are asked to determine the magnetic field required to produce a Hall voltage of    
-3.5 x 10-7 V, given that σ = 1.2 x 107 (Ω-m)-1, µe = 0.0050 m2/V-s, Ix = 40 A, and d = 35 mm.  Combining 

Equations 18.18 and 18.20b, and after solving for Bz, we get 

 

  
Bz =

VH σd

I xµe
 

 

  
=  

−3.5 x 10−7 V⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 1.2 x 107 (Ω − m)−1[ ](35 x 10−3 m)

(40 A)(0.0050 m2 /V - s)
 

 

= 0.74 tesla 
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 Semiconducting Devices 

 

 18.43  The explanations called for are found in Section 18.15. 
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 18.44  The energy generated by the electron-hole annihilation reaction, Equation 18.21, is dissipated as 

heat. 
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 18.45  In an electronic circuit, a transistor may be used to (1) amplify an electrical signal, and (2) act as a 

switching device in computers. 
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 18.46  The differences in operation and application for junction transistors and MOSFETs are described in 

Section 18.15. 
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 Conduction in Ionic Materials 

 

 18.47  We are asked in this problem to determine the electrical conductivity for the nonstoichiometric   
Fe(1 - x)O, given x = 0.040 and that the hole mobility is 1.0 x 10-5 m2/V-s.  It is first necessary to compute the 

number of vacancies per cubic meter for this material.  For this determination let us use as our basis 10 unit cells.  

For the sodium chloride crystal structure there are four cations and four anions per unit cell.  Thus, in ten unit cells 

of FeO there will normally be forty O2- and forty Fe2+ ions.  However, when x = 0.04, (0.04)(40) = 1.6 of the Fe2+ 

sites will be vacant.  (Furthermore, there will be 3.2 Fe3+ ions in these ten unit cells inasmuch as two Fe3+ ions are 

created for every vacancy).  Therefore, each unit cell will, on the average contain 0.16 vacancies.  Now, the number 

of vacancies per cubic meter is just the number of vacancies per unit cell divided by the unit cell volume;  this 

volume is just the unit cell edge length (0.437 nm) cubed.  Thus 

 

  

# vacancies
m3 = 0.16 vacancies /unit cell

(0.437 × 10−9 m)3  

 

 = 1.92 x 1027 vacancies/m3 

 

Inasmuch as it is assumed that the vacancies are saturated, the number of holes (p) is also 1.92 x 1027 m-3.  It is 

now possible, using Equation 18.17, to compute the electrical conductivity of this material as 

 

  σ =  p | e |µh  

 

  =  (1.92 ×  1027  m-3)(1.602 ×  10-19  C)(1.0 ×  10-5 m2/V- s) =  3076 (Ω - m)-1 
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 18.48  For this problem, we are given, for NaCl, the activation energy (173,000 J/mol) and preexponential 

(4.0 x 10-4 m2/s) for the diffusion coefficient of Na+ and are asked to compute the mobility for a Na+ ion at 873 K.  
The mobility, µNa+, may be computed using Equation 18.23;  however, this expression also includes the diffusion 

coefficient DNa+, which is determined using Equation 5.8 as 

 

  
D

Na+ = D0 exp −
Qd
RT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

  
= (4.0 x 10-4  m2/s) exp −

173,000 J /mol
(8.31 J /mol - K)(873 K)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 

 = 1.76  x  10-14  m2/s  

 
Now solving for µNa+ yields 

 

  
µ

Na+ =
n

Na+ eD
Na+

kT
 

 

  
=  (1)(1.602 x 10−19 C /atom)(1.76 x 10−14 m2 /s)

(1.38 x 10−23 J /atom- K)(873 K)
 

 

 =  2.34 x 10-13 m2/V- s  

 
(Note:  the value of nNa+ is unity, since the valence for sodium is one.) 
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 Capacitance 

 

 18.49  We want to compute the plate spacing of a parallel-plate capacitor as the dielectric constant is 

increased form 2.2 to 3.7, while maintaining the capacitance constant.  Combining Equations 18.26 and 18.27 yields 

 

  
C =

εrε0 A
l

 

 
Now, let us use the subscripts 1 and 2 to denote the initial and final states, respectively.  Since C1 = C2, then 

 

  

εr1ε0 A
l1

=  
εr2 ε0 A

l2
 

 
And, solving for l2

 

 

    
l2 =  

εr2l1
εr1

=  (3.7)(2 mm)
2.2

=  3.36 mm 
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 18.50  This problem asks for us to ascertain which of the materials listed in Table 18.5 are candidates for a 

parallel-plate capacitor that has dimensions of 38 mm by 65 mm, a plate separation of 1.3 mm so as to have a 

minimum capacitance of 7 x 10-11 F, when an ac potential of 1000 V is applied at 1 MHz.  Upon combining 
Equations 18.26 and 18.27 and solving for the dielectric constant εr we get 

 

  
εr  =  lC

ε0 A
 

 

  
=  (1.3 x 10−3 m)(7 x 10−11 F)

(8.85 x 10−12 F /m)(38 x 10−3 m)(65 x 10−3 m)
 

 

= 4.16 

 
Thus, the minimum value of εr to achieve the desired capacitance is 4.16 at 1 MHz.  Of those materials listed in the 

table, titanate ceramics, mica, steatite, soda-lime glass, porcelain, and phenol-formaldehyde are candidates. 
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 18.51  In this problem we are given, for a parallel-plate capacitor, its area (3225 mm2), the plate separation 
(1 mm), and that a material having an εr of 3.5 is positioned between the plates. 

 (a)  We are first asked to compute the capacitance.  Combining Equations 18.26 and 18.27, and solving for 

C yields 

 

  
C =  

εrε0 A
l

 

 

  
=  (3.5)(8.85 x 10−12 F /m)(3225 mm2)(1 m2 /106 mm2)

10−3 m
 

 

= 10-10 F = 100 pF 

 

 (b)  Now we are asked to compute the electric field that must be applied in order that 2 x 10-8 C be stored 

on each plate.  First we need to solve for V in Equation 18.24 as 

 

    
V =  Q

C
=  2 x 10−8 C

10−10 F
=  200 V  

 

The electric field E may now be determined using Equation 18.6;  thus 

 

    
E =  V

l
=  200 V

10−3 m
=  2.0 x 105 V/m 
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 18.52  This explanation is found in Section 18.19. 
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 Field Vectors and Polarization 
 Types of Polarization 

 

 18.53  Shown below are the relative positions of Ca2+ and O2- ions, without and with an electric field 

present. 

 

 
 

Now, 
 

    
d =  r

Ca2+  +  r
O2-  =  0.100  nm +  0.140 nm =  0.240 nm 

 

and 
 

    ∆d =  0.05 d =  (0.05)(0.240  nm) =  0.0120  nm =  1.20 x 10 -11 m 

 

From Equation 18.28, the dipole moment, p, is just 
 

  p = q ∆d  

 

  =  (1.602 x 10-19  C)(1.20  x 10-11 m) 

 

= 1.92 x 10-30 C-m 
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 18.54  (a)  In order to solve for the dielectric constant in this problem, we must employ Equation 18.32, in 
which the polarization and the electric field are given.  Solving for εr from this expression gives 

 

  
εr  =  P

ε0E
+ 1 

 

  
=  4.0 x 10−6 C / m2

(8.85 x 10−12 F /m)(1 x 105 V /m)
+  1 

 

= 5.52 

 

 (b)  The dielectric displacement may be determined using Equation 18.31, as 
 

  D =  ε0E +  P  

 

  =  (8.85 x 10-12  F/m)(1 x 105 V/m) +  4.0 x 10-6  C/m2 

 

= 4.89 x 10-6 C/m2 
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 18.55  (a)  We want to solve for the voltage when Q = 2.0 x 10-10 C, A = 650 mm2, l = 4.0 mm, and εr = 

3.5.  Combining Equations 18.24, 18.26, and 18.27 yields 
 

  
C = Q

V
=  ε A

l
= εrε0

A
l

 

 

Or 

  
Q
V

= εrε0
A
l

 

 

And, solving for V, and incorporating values provided in the problem statement, leads to 

 

  
V =  Q l

εrε0 A
 

 

  
=  (2.0 x 10−10 C)(4.0 x 10−3 m)

(3.5)(8.85 x 10−12 F /m)(650 mm2)(1 m2 /106 mm2)
 

 

= 39.7 V 

 

 (b)  For this same capacitor, if a vacuum is used 

 

  
V =  Q l

ε0 A
 

 

  
=  (2.0 x 10−10 C)(4.0 x 10−3 m)

(8.85 x 10−12 F / m)(650 x 10−6 m2)
 

 

= 139 V 

 

 (c)  The capacitance for part (a) is just 

 

    
C =  Q

V
=  2.0 x 10−10 C

39.7 V
=  5.04 x 10-12  F  

 

While for part (b) 
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C =  Q

V
=  2.0 x 10−10 C

139 V
=  1.44 x 10-12  F  

 

 (d)  The dielectric displacement may be computed by combining Equations 18.31, 18.32 and 18.6, as 

 

    
D = ε0E + P =  ε0E + ε0(εr − 1)E  = ε0εrE =

ε0εrV
l

 

 
And incorporating values for εr and l provided in the problem statement, as well as the value of V computed in part 

(a) 

 

    
D =  (8.85 x 10−12 F /m) (3.5)(39.7 V)

4.0 x 10−3 m
 

 

= 3.07 x 10-7 C/m2 

 

 (e)  The polarization is determined using Equations 18.32 and 18.6 as 

 

    
P =  ε0(εr − 1)E =  ε0(εr − 1) V

l
 

 

  
=  (8.85 x 10−12 F /m) (3.5 − 1)(39.7 V)

4.0 x 10−3 m
 

 

= 2.20 x 10-7 C/m2 
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 18.56  (a)  For electronic polarization, the electric field causes a net displacement of the center of the 

negatively charged electron cloud relative to the positive nucleus.  With ionic polarization, the cations and anions 

are displaced in opposite directions as a result of the application of an electric field.  Orientation polarization is 

found in substances that possess permanent dipole moments;  these dipole moments become aligned in the direction 

of the electric field. 

 (b)  Only electronic polarization is to be found in gaseous argon;  being an inert gas, its atoms will not be 

ionized nor possess permanent dipole moments. 

 Both electronic and ionic polarizations will be found in solid LiF, since it is strongly ionic.  In all 

probability, no permanent dipole moments will be found in this material. 
 Both electronic and orientation polarizations are found in liquid H2O.  The H2O molecules have permanent 

dipole moments that are easily oriented in the liquid state. 

 Only electronic polarization is to be found in solid Si;  this material does not have molecules with 

permanent dipole moments, nor is it an ionic material. 
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 18.57  (a)  This portion of the problem asks that we compute the magnitude of the dipole moment 
associated with each unit cell of BaTiO3, which is illustrated in Figure 18.35.  The dipole moment p is defined by 

Equation 18.28 as p = qd in which q is the magnitude of each dipole charge, and d is the distance of separation 

between the charges.  Each Ti4+ ion has four units of charge associated with it, and thus q = (4)(1.602 x 10-19 C) = 

6.41 x 10-19 C.  Furthermore, d is the distance the Ti4+ ion has been displaced from the center of the unit cell, 

which is just 0.006 nm + 0.006 nm = 0.012 nm [Figure 18.35(b)].  Hence 

 

    p =  qd =  (6.41 x 10-19  C)(0.012 x 10 -9  m) 

 

= 7.69 x 10-30 C-m 

 

 (b)  Now it becomes necessary to compute the maximum polarization that is possible for this material.  The 

maximum polarization will exist when the dipole moments of all unit cells are aligned in the same direction.  

Furthermore, it is computed by dividing the above value of p by the volume of each unit cell, which is equal to the 

product of three unit cell edge lengths, as shown in Figure 18.35.  Thus 

 

  
P =  p

VC
 

 

  
=  7.69 x 10−30 C − m

(0.403 x 10−9 m)(0.398 x 10−9 m)(0.398 x 10−9 m)
 

 

= 0.121 C/m2 
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 Frequency Dependence of the Dielectric Constant 

 

 18.58  For this soda-lime glass, in order to compute the fraction of the dielectric constant at low 
frequencies that is attributed to ionic polarization, we must determine the εr within this low-frequency regime;  such 

is tabulated in Table 18.5, and at 1 MHz its value is 6.9.  Thus, this fraction is just 

 

    
fraction =  

εr (low) − εr (high)
εr (low)

 

 

 
=  6.9 − 2.3

6.9
=  0.67  
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 Ferroelectricity 

 
 18.59  The ferroelectric behavior of BaTiO3 ceases above its ferroelectric Curie temperature because the 

unit cell transforms from tetragonal geometry to cubic;  thus, the Ti4+ is situated at the center of the cubic unit cell, 

there is no charge separation, and no net dipole moment. 
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DESIGN PROBLEMS 

 

Electrical Resistivity of Metals 

 

 18.D1  This problem asks that we calculate the composition of a copper-nickel alloy that has a room 

temperature resistivity of 2.5 x 10-7 Ω-m. The first thing to do is, using the 90 Cu-10 Ni resistivity data, determine 

the impurity contribution, and, from this result, calculate the constant A in Equation 18.11.  Thus, 
 

    ρtotal =  1.90 x 10-7  (Ω - m) =  ρi  +  ρt  

 

From Table 18.1, for pure copper, and using Equation 18.4 
 

    
ρt  =  1

σ
=  1

6.0 x 107 (Ω − m)−1 =  1.67 x 10-8  (Ω - m) 

 

Thus, for the 90 Cu-10 Ni alloy 
 

    ρi  =  ρtotal −  ρt  =  1.90 x 10-7  −  1.67 x 10-8 

 

= 1.73 x 10-7 (Ω-m) 

 

In the problem statement, the impurity (i.e., nickel) concentration is expressed in weight percent.  However, 

Equation 18.11 calls for concentration in atom fraction (i.e., atom percent divided by 100).  Consequently, 

conversion from weight percent to atom fraction is necessary.  (Note:  we now choose to denote the atom fraction of 

nickel as       , and the weight percents of Ni and Cu by CNi and CCu, respectively.)  Using these notations, this 

conversion may be accomplished by using a modified form of Equation 4.6a as 

cNi
'

 

      
cNi

'  =  
CNi

'

100
=

CNi ACu
CNi ACu + CCu ANi

 

 
Here ANi and ACu denote the atomic weights of nickel and copper (which values are 58.69 and 63.55 g/mol, 

respectively).  Thus 

 

      
cNi

'  =  (10 wt%)(63.55 g /mol)
(10 wt%)(63.55 g /mol) + (90 wt%)(58.69 g /mol)
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= 0.107 

 

Now, solving for A in Equation 18.11 
 

   

A =  
ρi

cNi
' 1 − cNi

'⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

 

 

  
=  1.73 x 10−7 (Ω − m)

(0.107 )(1 − 0.107 )
=  1.81 x 10-6  (Ω - m)  

 

Now it is possible to compute the        to give a room temperature resistivity of 2.5 x 10-7 Ω-m.  Again, we must 

determine ρi as 
cNi

'

 

  ρi  =  ρtotal −  ρt  

 

  =  2.5 x 10-7  −  1.67 x 10-8  =  2.33 x 10-7  (Ω - m)  

 

If Equation 18.11 is expanded, then 
 

   ρi  =  A cNi
'  −  A cNi

' 2
 

 

Or, rearranging this equation, we have 

 

   A cNi
' 2

 −  A cNi
'  +  ρi  =  0  

 

 

Now, solving for        (using the quadratic equation solution) cNi
'

 

   
cNi

'  =   
A ± A2 − 4Aρi

2A
 

 

Again, from the above 

 A = 1.81 x 10-6 (Ω-m) 
 ρi = 2.33 x 10-7 (Ω-m) 
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which leads to 

 
 

      
cNi

'  =   
1.81 x 10−6 ± (1.81 x 10−6)2 − (4)(1.81 x 10−6)(2.33 x 10−7)

(2)(1.81 x 10−6)
 

 

And, taking the negative root, 
 

   cNi
'  = 0.152  

 

Or, in terms of atom percent, 

 

      CNi
' = 100cNi

' = (100)(0.152) = 15.2 at% 

 

While the concentration of copper is 

 

      CCu
' = 100 − CNi

' = 100 − 15.2 = 84.8 at% 

 

Now, converting this composition to weight percent Ni, requires that we use Equation 4.7a as 

 

      

CNi =  
CNi

' ANi

CNi
' ANi + CCu

' ACu

x 100 

 

  
=  (15.2 at%)(58.69 g /mol)

(15.2 at%)(58.69 g /mol) + (84.8 at%)(63.55 g /mol)
x 100 

 

= 14.2 wt% 
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 18.D2  This problem asks that we determine the electrical conductivity of an 85 wt% Cu-15 wt% Zn alloy 

at –100°C using information contained in Figures 18.8 and 18.37.  In order to solve this problem it is necessary to 

employ Equation 18.9 which is of the form 

 

  ρtotal =  ρt  +  ρi  

 
since it is assumed that the alloy is undeformed.  Let us first determine the value of ρi at room temperature (25°C) 

which value will be independent of temperature.  From Figure 18.8, at 25°C and for pure Cu, ρt(25) = 1.75 x 10-8 

Ω-m.  Now, since it is assumed that the curve in Figure 18.37 was generated also at room temperature, we may take 
ρ as ρtotal(25) at 85 wt% Cu-15 wt% Zn which has a value of 4.7 x 10-8 Ω-m.  Thus 

 

  ρi  =  ρtotal (25) −  ρt (25)  

 

  =  4.7 x 10-8  Ω - m - 1.75 x 10-8 Ω - m = 2.95 x 10-8 Ω - m 

 
Finally, we may determine the resistivity at –100°C, ρtotal(–100), by taking the resistivity of pure Cu at –100°C 

from Figure 18.8, which gives us ρt(–100) = 0.90 x 10-8 Ω-m.  Therefore 

 

    
ρtotal (−100) =  ρi  +  ρt (−100)  

 

  =  2.95 x 10-8  Ω - m + 0.90 x 10-8 Ω - m = 3.85 x 10-8 Ω - m 

 

And, using Equation 18.4 the conductivity is calculated as 

 

  
σ =  1

ρ
=  1

3.85 x 10−8 Ω − m
=  2.60 x 107  (Ω - m)-1 
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 18.D3  To solve this problem, we want to consult Figures 7.16(b) and 18.9 in order to determine the Ni 

concentration ranges over which the yield strength is greater than 130 MPa (19,000 psi) and the conductivity 

exceeds 4.0 x 106 (Ω-m)-1. 

 From Figure 7.16(b), a Ni concentration greater than about 23 wt% is necessary for a yield strength in 

excess of 130 MPa.  In Figure 18.9 is plotted the resistivity versus the Ni content.  Since conductivity is the 

reciprocal of resistivity, the resistivity must be less than 25 x 10-8 Ω-m--i.e., 
 

1
4.0 x 106 (Ω − m)−1 .  According to 

the figure, this will be the case for Ni concentrations less than 17 wt%. 

 Hence, it is not possible to prepare an alloy meeting the criteria;  for the stipulated yield strength the 

required Ni content must be greater than 23 wt%, whereas for the required conductivity, less than 17 wt% Ni is 

necessary. 
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 Extrinsic Semiconduction 
 Factors That Affect Carrier Mobility 

 

 18.D4  First of all, those elements which, when added to silicon render it n-type, lie one group to the right 

of silicon in the periodic table;  these include the group VA elements (Figure 2.6)--i.e., nitrogen, phosphorus, 

arsenic, and antimony. 

 Since this material is extrinsic and n-type, n >> p, and the electrical conductivity is a function of the hole 

concentration according to Equation 18.16.  Also, the number of free electrons is about equal to the number of 
donor impurities, Nd.  That is 

 
n ~ Nd 

 

From Equation 18.16, the conductivity is a function of both the electron concentration (n) and the electron mobility 
(µe).  Furthermore, the room-temperature electron mobility is dependent on impurity concentration (Figure 18.18).  

One way to solve this problem is to use an iterative approach—i.e., assume some donor impurity concentration 

(which will also equal the value of n), then determine a "calculated" electron mobility from Equation 18.16—i.e., 

 

 
µe =

σ
n | e |

 

 
and, finally, compare this mobility with the "measured" value from Figure 18.18, taken at the assumed n (i.e., Nd) 

value. 
 Let us begin by assuming that Nd = 1022 m-3.  Thus, the "calculated" mobility value is 

 

    
µe =

σ
n | e |

=
200 (Ω − m)−1

(1022 m−3)(1.602 x 10−19 C)
= 0.125 m2 /V− s 

 

From Figure 18.18, at an impurity concentration of 1022 m-3 the "measured" electron mobility is 0.10 m2/V-s, 

which is slightly lower than the "calculated" value. 

 For our next choice, let us assume a higher impurity concentration, say 1023 m-3.  At this higher 

concentration there will be a reduction of both "calculated" and "measured" electron mobilities.  The "calculated" 

value is just 

 

    
µe =

σ
n | e |

=
200 (Ω − m)−1

(1023 m−3)(1.602 x 10−19 C)
= 0.0125 m2 /V − s  

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 18-71 

Whereas, Figure 18.18 yields a "measured" µe of 0.06 m2/V-s, which is higher than the "calculated" value.  

Therefore, the correct impurity concentration will lie somewhere between 1022 and 1023 m-3 probably closer to the 
lower of these two values.  At 1.3 x 1022 m-3, both "measured" and "calculated" µe values are about equal (0.095 

m2/V-s). 

 It next becomes necessary to calculate the concentration of donor impurities in atom percent.  This 
computation first requires the determination of the number of silicon atoms per cubic meter, NSi, using Equation 

4.2, which is as follows 

 

   
NSi =  

N A ρSi
'

ASi
 

 

 
=  (6.023 x 1023 atoms /mol)(2.33 g /cm3)(106 cm3 /m3)

28.09 g /mol
 

 

= 5 x 1028 m-3 

 

(Note:  in the above discussion, the density of silicon is represented by  in order to avoid confusion with 

resistivity, which is designated by ρ.) 
  ρSi

'

 
 The concentration of donor impurities in atom percent  is just the ratio of Nd and (Nd + NSi) 

multiplied by 100 as 

  (Cd
' )

 

   
Cd

' =  
N d

N d + NSi
x 100 

 

  
=  1.3 x 1022 m−3

(1.3 x 1022 m−3) + (5 x 1028 m−3)
x 100 =  2.6 x 10-5 at% 

 
Now, conversion to weight percent (Cd) is possible using Equation 4.7a as 

 

      
Cd  =  

Cd
' Ad

Cd
' Ad + CSi

' ASi
x 100 

 
where Ad and ASi are the atomic weights of the donor and silicon, respectively.  Thus, the concentration in weight 

percent will depend on the particular donor type.  For example, for nitrogen 
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CN =  

CN
' AN

CN
' AN + CSi

' ASi
x 100 

 

  
=  (2.6 x 10−5at%) (14.01 g /mol)

(2.6 x 10−5 at%) (14.01 g /mol) + (99.999974 at%)(28.09 g /mol)
x 100 

 

= 1.3 x 10-5 wt% 

 

Similar calculations may be carried out for the other possible donor impurities which yield 

 

  CP =  2.87 x 10-5 wt%  

 

  CAs =  6.93 x 10-5 wt% 

 

  CSb =  1.127 x 10-4  wt%  

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 18-73 

 18.D5  This problem asks for us to determine the temperature at which boron is to be diffused into high-

purity silicon in order to achieve a room-temperature electrical conductivity of 1000 (Ω-m)-1 at a distance 0.2 µm 

from the surface if the B concentration at the surface is maintained at 1.0 x 1025 m-3.  It is first necessary for us to 

compute the hole concentration (since B is an acceptor in Si) at this 0.2 µm location. 

 From Equation 18.17, the conductivity is a function of both the hole concentration (p) and the hole 
mobility (µh).  Furthermore, the room-temperature hole mobility is dependent on impurity concentration (Figure 

18.18).  One way to solve this problem is to use an iterative approach—i.e., assume some boron concentration, NB 

(which will also equal the value of p), then determine a "calculated" hole mobility from Equation 18.17—i.e., 

 

 
µh =

σ
p | e |

 

 
and then compare this mobility with the "measured" value from Figure 18.18, taken at the assumed p (i.e., NB). 

 Let us begin by assuming that NB = 1024 m-3.  Thus, the "calculated" mobility value is 

 

    
µh =

σ
p | e |

=
1000 (Ω − m)−1

(1024 m−3)(1.602 x 10−19 C)
= 0.0062 m2 /V− s 

 

From Figure 18.18, at an impurity concentration of 1024 m-3 the "measured" hole mobility is 0.01 m2/V-s, which is 

higher than the "calculated" value. 

 For our next choice, let us assume a lower boron concentration, say 1023 m-3.  At this lower concentration 

there will be an increase of both "calculated" and "measured" hole mobilities.  The "calculated" value is just 

 

    
µh =

σ
p | e |

=
1000 (Ω − m)−1

(1023 m−3)(1.602 x 10−19 C)
= 0.062 m2 /V − s  

 
Whereas, Figure 18.18 yields a "measured" µh of 0.024 m2/V-s, which is lower than the "calculated" value. 

Therefore, the correct impurity concentration will lie somewhere between 1023 and 1024 m-3.  At 4.0 x 1023 m-3, 

"measured" and "calculated" values are about equal (0.015 m2/V-s). 

 

 With regard to diffusion, the problem is one involving the nonsteady-state diffusion of B into the Si, 

wherein we have to solve for temperature.  Temperature is incorporated into the diffusion coefficient expression 

given in the problem.  But we must first employ the solution to Fick's second law for constant surface composition 
boundary conditions, Equation 5.5;  in this expression C0 is taken to be zero inasmuch as the problem stipulates that 

the initial boron concentration may be neglected.  Thus, 
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Cx − C0
Cs − C0

=  1 −  erf x
2 Dt

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

    

4.0 x 1023 m−3 − 0
1.0 x 1025 m−3 − 0

=  1 −  erf x
2 Dt

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

which reduces to 

 

  
0.9600 =  erf x

2 Dt

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

In order to solve this expression for a value 
  

x
2 Dt

 of it is necessary to interpolate using data in Table 5.1.  Thus 

 

 z erf(z)

 1.4 0.9523 

 z 0.9600 

 1.5 0.9661 

 

 

    

z − 1.4
1.5 − 1.4

=  0.9600 − 0.9523
0.9661 − 0.9523

 

 

From which, z = 1.4558;  which is to say 

 

  
1.4558 = x

2 Dt
 

 

Inasmuch as there are 3600 s/h (= t) and x = 0.2 µm (= 2 x 10-7 m) the above equation becomes 

 

  
1.4558 =  2 x 10−7 m

2 (D)(3600 s)
 

 

which, when solving for the value of D, leads to 

 

    
D = 1

3600 s
2 × 10−7 m
(2)(1.4558)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

2
= 1.31 × 10−18 m2 /s  
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Now, equating this value to the expression for D given in the problem gives 

 

    
D =  1.31 x 10-18  m2/s =  (2.4 x 10-4) exp −

347,000 J /mol
(8.31 J /mol - K)(T)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 

To solve for T, let us take the natural logarithms of both sides of the above equation;  this leads to 

 

    
ln(1.31 x 10−18) = ln(2.4 x 10−4) −

347,000
8.31T

 

 

    
−41.176 = − 8.335 −

4.176 x 104

T
 

 
which yields a value for T of 1271 K (998°C). 
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 Conduction in Ionic Materials 
 

 18.D6  This problem asks, for the nonstoichiometric Fe(1 - x)O, given the electrical conductivity [1200 (Ω-

m)-1] and hole mobility (1.0 x 10-5 m2/V-s) that we determine the value of x.  It is first necessary to compute the 

number of holes per unit volume (p) using Equation 18.17.  Thus 

 

  
p = σ

| e | µh
 

 

  
=  1200 (Ω − m)-1

(1.602 × 10−19 C)(1.0 × 10−5 m2 / V - s)
=  7.49 ×  1026  holes/m3 

 

Inasmuch as it is assumed that the acceptor states are saturated, the number of vacancies is also 7.49 x 1026 m-3.  

Next, it is possible to compute the number of vacancies per unit cell by taking the product of the number of 

vacancies per cubic meter times the volume of a unit cell.  This volume is just the unit cell edge length (0.437 nm) 

cubed: 

 

  

# vacancies
unit cell

= (7.49 × 1026 m−3)(0.437 x 10−9 m)3 = 0.0625 

 

A unit cell for the sodium chloride structure contains the equivalence of four cations and four anions.  Thus, if we 

take as a basis for this problem 10 unit cells, there will be 0.625 vacancies, 40 O2- ions, and 39.375 iron ions (since 

0.625 of the iron sites is vacant).  (It should also be noted that since two Fe3+ ions are created for each vacancy, that 

of the 39.375 iron ions, 38.125 of them are Fe2+ and 1.25 of them are Fe3+).  In order to find the value of (1 – x)  in 

the chemical formula, we just take the ratio of the number of total Fe ions (39.375) and the number of total Fe ion 

sites (40).  Thus 

 

  
(1 − x ) =  39.375

40
=  0.984  

 
Or the formula for this nonstoichiometric material is Fe0.984O. 
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 Semiconductor Devices 

 

 18.D7  (a)  In this portion of the problem we are asked to determine the time required to grow a layer of 
SiO2 that is 100 nm (i.e., 0.100 µm) thick on the surface of a silicon chip at 1000°C, in an atmosphere of O2 

(oxygen pressure = 1 atm).  Thus, using Equation 18.37, it is necessary to solve for the time t.  However, before this 

is possible, we must calculate the value of B from Equation 18.38a as follows: 

 

    
B =  800 exp − 1.24 eV

kT
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  =  (800) exp −

1.24 eV
(8.62 ×  10-5 eV/atom- K)(1000 +  273 K)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

= 0.00990 µm2/h 

 

Now, solving for t from Equation 18.37 using the above value for B and that x = 0.100 µm, we have 

 

    
t =  x2

B
 =  (0.100 µm)2

0.00990 µm2 /h
 

 

= 1.01 h 

 

 Repeating the computation for B at 700°C: 

 

    
B =  (800) exp −

1.24 eV
(8.62 ×  10-5 eV/atom- K)(700 +  273 K)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

= 3.04 × 10-4 µm2/h 

 

And solving for the oxidation time as above 

 

    
t  =  (0.100 µm)2

3.04 ×  10-4  µm2 /h
 =  32.9 h 

 

 

 (b)  This part of the problem asks for us to compute the heating times to form an oxide layer 100 nm thick at 

the same two temperatures (1000°C and 700°C) when the atmosphere is water vapor (1 atm pressure).  At 1000°C, 

the value of B is determined using Equation 18.38b, as follows: 
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B =  215 exp − 0.70 eV

kT
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  =  (215) exp − 0.70 eV

(8.62 ×  10-5 eV/atom- K)(1000 +  273 K)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

= 0.365 µm2/h 

 

And computation of the time t from the rearranged form of Equation 18.37, leads to 

 

  
t =  x2

B
 =  (0.100 µm)2

0.365 µm2 /h
 

 

= 0.0274 h = 98.6 s 

 

 And at 700°C, the value of B is 

 

    
B =  (215) exp − 0.70 eV

(8.62 ×  10-5 eV/atom- K)(700 +  273 K)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 =  0.0510 µm2 /h  

 

Whereas the time required to grow the 100 nm oxide layer is 

 

  
t =  x2

B
 =  (0.100 µm)2

0.0510 µm2 /h
 

 

= 0.196 h = 706 s 

 

 

 From the above computations, it is very apparent (1) that the 100 nm oxide layer forms more rapidly at 

1000°C (than at 700°C) in both O2 and H2O gaseous atmospheres, and (2) that the oxide layer formation is more 

rapid in water vapor than in oxygen. 
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 18.D8  We are asked to compare silicon and gallium arsenide semiconductors relative to properties and 

applications. 

 The following are the characteristics and applications for Si:  (1)  being an elemental semiconductor, it is 

cheaper to grow in single-crystalline form;  (2)  because of its electron band structure, it is best used in transistors;  

(3)  electronic processes are relatively slow due to the low mobilities for electrons and holes (Table 18.3). 

 For GaAs:  (1)  it is much more expensive to produce inasmuch as it is a compound semiconductor;  (2)  

because of its electron band structure it is best used in light-emitting diodes and semiconducting lasers;  (3) its band 

gap may be altered by alloying;  (4)  electronic processes are more rapid than in Si due to the greater mobilities for 

electrons and holes;  (5) absorption of electromagnetic radiation is greater in GaAs, and therefore, thinner layers are 

required for solar cells. 
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