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CHAPTER 16 

 

COMPOSITES 

 

PROBLEM SOLUTIONS 

 

 

Large-Particle Composites 

 

 16.1  The elastic modulus versus volume percent of WC is shown below, on which is included both upper 

and lower bound curves;  these curves were generated using Equations 16.1 and 16.2, respectively, as well as the 

moduli of elasticity for cobalt and WC given in the problem statement. 
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 16.2  This problem asks for the maximum and minimum thermal conductivity values for a TiC-Ni cermet.  
Using a modified form of Equation 16.1 the maximum thermal conductivity kmax is calculated as 

 

    
kmax =  kmVm +  k pVp =  kNiVNi +  kTiCVTiC 

 

  =  (67 W/m- K)(0.10) + (27 W/m- K)(0.90) = 31.0 W/m - K 

 
 Using a modified form of Equation 16.2, the minimum thermal conductivity kmin will be 

 

  
kmin =

kNikTiC
VNikTiC + VTiCkNi

 

 

  
=  (67 W /m- K)(27 W /m- K)

(0.10)(27 W /m- K) + (0.90)(67 W /m- K)
 

 

= 28.7 W/m-K 
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 16.3  Given the elastic moduli and specific gravities for copper and tungsten we are asked to estimate the 

upper limit for specific stiffness when the volume fractions of tungsten and copper are 0.70 and 0.30, respectively.  

There are two approaches that may be applied to solve this problem.  The first is to estimate both the upper limits of 
elastic modulus [Ec(u)] and specific gravity (ρc) for the composite, using expressions of the form of Equation 16.1, 

and then take their ratio.  Using this approach 

 

  Ec(u) =  ECuVCu +  EWVW  

 

  =  (110 GPa)(0.30) + (407 GPa)(0.70)  

 

= 318 GPa 

 

And 

 

  ρc =  ρCuVCu +  ρWVW 

 

  =  (8.9)(0.30) + (19.3)(0.70) = 16.18 

 

Therefore 

 

    
Specific Stiffness =  

Ec (u)
ρc

=
318 GPa

16.18
= 19.65 GPa  

 

 With the alternate approach, the specific stiffness is calculated, again employing a modification of 

Equation 16.1, but using the specific stiffness-volume fraction product for both metals, as follows: 

 

    
Specific Stiffness =  

ECu
ρCu

VCu +  
EW
ρW

VW 

 

  
=  110 GPa

8.9
(0.30) +  407 GPa

19.3
(0.70) =  18.47 GPa  
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 16.4  (a)  Concrete consists of an aggregate of particles that are bonded together by a cement. 

 (b)  Three limitations of concrete are:  (1) it is a relatively weak and brittle material;  (2) it experiences 

relatively large thermal expansions (contractions) with changes in temperature;  and (3) it may crack when exposed 

to freeze-thaw cycles. 

 (c)  Three reinforcement strengthening techniques are:  (1) reinforcement with steel wires, rods, etc.;  (2) 

reinforcement with fine fibers of a high modulus material;  and (3) introduction of residual compressive stresses by 

prestressing or posttensioning. 
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 Dispersion-Strengthened Composites 

 

 16.5  The similarity between precipitation hardening and dispersion strengthening is the strengthening 

mechanism--i.e., the precipitates/particles effectively hinder dislocation motion. 

 The two differences are:  (1) the hardening/strengthening effect is not retained at elevated temperatures for 

precipitation hardening--however, it is retained for dispersion strengthening;  and (2) the strength is developed by a 

heat treatment for precipitation hardening--such is not the case for dispersion strengthening. 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 



 16-6 

 Influence of Fiber Length 

 

 16.6  This problem asks that, for a glass fiber-epoxy matrix combination, to determine the fiber-matrix 
bond strength if the critical fiber length-fiber diameter ratio is 40.  Thus, we are to solve for τc in Equation 16.3.  

Since we are given that  = 3.45 GPa from Table 16.4, and that 
  
σ f

∗
 

lc
d

 = 40, then 

 

    
τc =  σ f

∗ d
2 lc

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =  (3.45 x 103 MPa) 1

(2)(40)
=  43.1 MPa  
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 16.7  (a)  The plot of reinforcement efficiency versus fiber length is given below. 

 

 
 

 (b)  This portion of the problem asks for the length required for a 0.90 efficiency of reinforcement.  

Solving for l from the given expression 

 

  
l =  2x

1 − η
 

 

Or, when x = 1.25 mm (0.05 in.) and η = 0.90, then 

 

    
l =  (2)(1.25 mm)

1 − 0.90
=  25 mm  (1.0 in.)  
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 Influence of Fiber Orientation and Concentration 

 

 16.8  This problem calls for us to compute the longitudinal tensile strength and elastic modulus of an 

aramid fiber-reinforced polycarbonate composite. 

 (a)  The longitudinal tensile strength is determined using Equation 16.17 as 
 

    
σcl

∗  =  σm' (1 − Vf ) +   σ f
∗ Vf  

 

  =  (35 MPa)(0.55) + (3600)(0.45)  

 

 = 1640 MPa  (238,000 psi)  

 

 (b)  The longitudinal elastic modulus is computed using Equation 16.10a as 
 

  
Ecl =  EmVm +  E f Vf  

 

  =  (2.4 GPa)(0.55) + (131 GPa)(0.45) 

 

  =  60.3 GPa (8.74 x 106  psi)  

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 



 16-9 

 16.9  This problem asks for us to determine if it is possible to produce a continuous and oriented aramid 

fiber-epoxy matrix composite having longitudinal and transverse moduli of elasticity of 35 GPa and 5.17 GPa, 

respectively, given that the modulus of elasticity for the epoxy is 3.4 GPa.  Also, from Table 16.4 the value of E for 
aramid fibers is 131 GPa.  The approach to solving this problem is to calculate values of Vf for both longitudinal and 

transverse cases using the data and Equations 16.10b and 16.16;  if the two Vf values are the same then this 

composite is possible. 
 For the longitudinal modulus Ecl (using Equation 16.10b), 

 

    
Ecl =  Em(1 −  Vfl) +  E f V fl  

 

    
35 GPa =  (3.4 GPa)(1 −  Vfl) +  (131 GPa)Vfl  

 
Solving this expression for Vfl (i.e., the volume fraction of fibers for the longitudinal case) yields Vfl = 0.248. 

 Now, repeating this procedure for the transverse modulus Ect (using Equation 16.16) 

 

    
Ect  =  

EmE f
(1 − Vft)E f + VftEm

 

 

    
5.17 GPa =  (3.4 GPa)(131 GPa)

(1 − Vft ) (131 GPa) + Vft (3.4 GPa)
 

 
Solving this expression for Vft (i.e., the volume fraction of fibers for the transverse case), leads to Vft = 0.351.  

Thus, since Vfl and Vft are not equal, the proposed composite is not possible. 
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 16.10  This problem asks for us to compute the elastic moduli of fiber and matrix phases for a continuous 

and oriented fiber-reinforced composite.  We can write expressions for the longitudinal and transverse elastic 

moduli using Equations 16.10b and 16.16, as 

 

    
Ecl =  Em(1 −  Vf ) +  E f Vf  

 

    
33.1 GPa =  Em(1 −  0.30) +  E f (0.30)  

 

And 
 

    
Ect  =  

EmE f
(1 − Vf )E f +Vf Em

 

 

    
3.66 GPa =  

EmE f
(1 − 0.30)E f + 0.30Em

 

 
Solving these two expressions simultaneously for Em and Ef leads to 

 

    Em =  2.6 GPa  (3.77 x 105 psi)  

    
E f  =  104 GPa  (15 x 106  psi)  
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 16.11  (a)  In order to show that the relationship in Equation 16.11 is valid, we begin with Equation 16.4—

i.e., 

 

 
Fc = Fm + Ff  

 

which may be manipulated to the form 
 

  

Fc
Fm

=  1 +  
Ff
Fm

 

or 

 

  

Ff
Fm

=  
Fc
Fm

−  1 

 

For elastic deformation, combining Equations 6.1 and 6.5 
 

  
σ = F

A
=  εE  

 

or 

 

  F = AεE  

 
We may write expressions for Fc and Fm of the above form as 

 

  Fc =  AcεEc  

 

  Fm =  AmεEm  

 
which, when substituted into the above expression for Ff/Fm, gives 

 

  

Ff
Fm

=  
AcεEc
AmεEm

−  1 

 
But, Vm = Am/Ac, which, upon rearrangement gives 
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Ac
Am

=
1

Vm
 

 

which, when substituted into the previous expression leads to 

 

  

Ff
Fm

=  
Ec

EmVm
− 1 

 
Also, from Equation 16.10a, Ec = EmVm + EfVf, which, when substituted for Ec into the previous expression, yields 

 

  

Ff
Fm

=  
EmVm + E f Vf

EmVm
−  1 

 

    
=  

EmVm + E f Vf − EmVm
EmVm

=  
E f Vf
EmVm

 

 

the desired result. 
 (b)  This portion of the problem asks that we establish an expression for Ff/Fc.  We determine this ratio in a 

similar manner.  Now Fc = Ff + Fm (Equation 16.4), or division by Fc leads to 

 

  
1 =

Ff
Fc

+  
Fm
Fc

 

 

which, upon rearrangement, gives 

 

  

Ff
Fc

=  1 −
Fm
Fc

 

 
Now, substitution of the expressions in part (a) for Fm and Fc that resulted from combining Equations 6.1 and 6.5 

results in 

    

Ff
Fc

=  1 −
AmεEm
AcεEc

=  1 −
AmEm
AcEc

 

 

 
Since the volume fraction of fibers is equal to Vm = Am/Ac, then the above equation may be written in the form 
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Ff
Fc

=  1 −
VmEm

Ec
 

 
And, finally substitution of Equation 16.10(a) for Ec into the above equation leads to the desired result as follows: 

 

  

Ff
Fc

=  1 −
VmEm

VmEm + Vf E f
 

 

  
=  

VmEm + Vf E f − VmEm
VmEm + Vf E f

 

 

 
=

Vf E f
VmEm + Vf E f

 

 

  
=

Vf E f
(1 − Vf )Em + Vf E f
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 16.12  (a)  Given some data for an aligned and continuous carbon-fiber-reinforced nylon 6,6 composite, we 

are asked to compute the volume fraction of fibers that are required such that the fibers carry 97% of a load applied 

in the longitudinal direction.  From Equation 16.11 
 

    

Ff
Fm

=  
E f Vf
EmVm

=  
E f Vf

Em (1 − Vf )  

 
Now, using values for Ff and Fm from the problem statement 

 

  

Ff
Fm

=  0.97
0.03

=  32.3 

 
And when we substitute the given values for Ef and Em into the first equation leads to 

 

    

Ff
Fm

=  32.3 =  
(260 GPa)Vf

(2.8 GPa)(1 − Vf )  

 
And, solving for Vf yields, Vf = 0.258. 

 

 (b)  We are now asked for the tensile strength of this composite. From Equation 16.17, 

 

    
σcl

∗  =  σm
' (1 − Vf ) + σ f

∗ Vf  

 

  =  (50 MPa)(1 − 0.258) + (4000 MPa)(0.258) 

 

= 1070 MPa  (155,000 psi) 

 

since values for  (4000 MPa) and    (50 MPa) are given in the problem statement. 
  
σ f

∗ σm
'
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 16.13  The problem stipulates that the cross-sectional area of a composite, Ac, is 480 mm2 (0.75 in.2), and 

the longitudinal load, Fc, is 53,400 N (12,000 lbf) for the composite described in Problem 16.8. 

 (a)  First, we are asked to calculate the Ff/Fm ratio.  According to Equation 16.11 

 

    

Ff
Fm

=  
E f Vf
EmVm

=  (131 GPa)(0.45)
(2.4 GPa)(0.55)

=  44.7  

 
Or, Ff = 44.7Fm 

 (b)  Now, the actual loads carried by both phases are called for.  From Equation 16.4 
 

    
Ff  +  Fm =  Fc =  53, 400  N  

 

  44.7Fm +  Fm =  53, 400  N  

 

which leads to  

  Fm =  1168  N  (263 lbf ) 

 

    
Ff  =  Fc − Fm = 53, 400  N − 1168  N =  52,232 N  (11,737 lbf )  

 

 (c)  To compute the stress on each of the phases, it is first necessary to know the cross-sectional areas of 

both fiber and matrix.  These are determined as 
 

    
Af  =  Vf Ac =  (0.45)(480  mm2) =  216 mm2  (0.34  in.2)  

 

    Am =  VmAc =  (0.55)(480  mm2) =  264 mm2  (0.41 in.2)  

 

Now, the stresses are determined using Equation 6.1 as 
 

    
σ f  =  

Ff
Af

=  52,232 N
(216 mm2)(1 m/1000 mm)2 =  242 ×106 N/m2 = 242  MPa  (34,520  psi)  

 

    
σm =  

Fm
Am

=  1168 N
(264 mm2)(1 m/1000 mm)2 =  4.4 ×  106 N/m2 = 4.4 MPa  (641 psi)  
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 (d)  The strain on the composite is the same as the strain on each of the matrix and fiber phases;  applying 

Equation 6.5 to both matrix and fiber phases leads to 
 

    
εm =  

σm
Em

=  4.4 MPa
2.4 x 103 MPa

=  1.83 x 10-3 

 

    
ε f  =  

σ f
E f

=  242 MPa
131 x 103 MPa

=  1.84 x 10-3 
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 16.14  For a continuous and aligned fibrous composite, we are given its cross-sectional area (970 mm2), 

the stresses sustained by the fiber and matrix phases (215 and 5.38 MPa), the force sustained by the fiber phase 

(76,800 N), and the total longitudinal strain (1.56 x 10-3). 

 (a)  For this portion of the problem we are asked to calculate the force sustained by the matrix phase.  It is 
first necessary to compute the volume fraction of the matrix phase, Vm.  This may be accomplished by first 

determining Vf and then Vm from Vm = 1 – Vf.  The value of Vf may be calculated since, from the definition of stress 

(Equation 6.1), and realizing Vf = Af/Ac as 

 

  
σ f  =  

Ff
Af

=  
Ff

V f Ac
 

 
Or, solving for Vf

 

    
V f  =  

Ff
σ f Ac

=  76,800 N
(215 x 106 N /m2)(970 mm2)(1 m/1000 mm)2 =  0.369  

 

Also 

 

    
Vm =  1 − Vf  =  1 − 0.369 = 0.631 

 
And, an expression for σm analogous to the one for σf above is 

 

  
σm =  

Fm
Am

=  
Fm

VmAc
 

 

From which 

 

    Fm =  VmσmAc =  (0.631)(5.38 x 106  N/m2)(0.970 x 10-3 m2) =  3290  N   (738  lbf ) 

 

 (b)  We are now asked to calculate the modulus of elasticity in the longitudinal direction.  This is possible 

realizing that 
    
Ec =

σc
ε

 (from Equation 6.5) and that 
  
σc =  

Fm + Ff
Ac

 (from Equation 6.1).  Thus 

 

    
Ec =  

σc
ε

=

Fm + Ff
Ac
ε

=
Fm + Ff

εAc
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=  3290 N + 76,800 N

(1.56 x 10−3)(970 mm2)(1 m/1000 mm)2 =  52.9 ×109 N/m2 = 52.9  GPa  (7.69 x 106  psi)  

 

 (c)  Finally, it is necessary to determine the moduli of elasticity for the fiber and matrix phases.  This is 

possible assuming Equation 6.5 for the matrix phase—i.e.,  

 

  
Em =  

σm
εm

 

 
and, since this is an isostrain state, εm = εc = 1.56 x 10-3.  Thus 

 

    
Em =  

σm
εc

=  5.38 x 106 N /m2

1.56 x 10−3 =  3.45 x 109  N/m2 

 

 =  3.45 GPa  (5.0 x 105 psi)  

 

The elastic modulus for the fiber phase may be computed in an analogous manner: 

 

    
E f  =  

σ f
ε f

=  
σ f
εc

=  215 x 106 N /m2

1.56 x 10−3 =  1.38 x 1011  N/m2 

 

 =  138 GPa  (20 x 106  psi) 
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 16.15  In this problem, for an aligned carbon fiber-epoxy matrix composite, we are given the volume 

fraction of fibers (0.20), the average fiber diameter (6 x 10-3 mm), the average fiber length (8.0 mm), the fiber 

fracture strength (4.5 GPa), the fiber-matrix bond strength (75 MPa), the matrix stress at composite failure (6.0 

MPa), and the matrix tensile strength (60 MPa);  and we are asked to compute the longitudinal strength.  It is first 

necessary to compute the value of the critical fiber length using Equation 16.3.  If the fiber length is much greater 
than lc, then we may determine the longitudinal strength using Equation 16.17, otherwise, use of either Equation 

16.18 or Equation 16.19 is necessary.  Thus, from Equation 16.3 

 

    
lc =  

σ f
∗ d

2τc
=  (4.5 x 103 MPa)(6 x 10−3 mm)

2 (75 MPa)
=  0.18 mm 

 
Inasmuch as l >> lc (8.0 mm >> 0.18 mm), then use of Equation 16.17 is appropriate.  Therefore, 

 

  
σcl

∗  =  σm' (1 − Vf ) + σ f
∗ Vf  

 

= (6 MPa)(1 – 0.20) + (4.5 x 103 MPa)(0.20) 

 

= 905 MPa  (130,700 psi) 
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 16.16  In this problem, for an aligned carbon fiber-epoxy matrix composite, we are given the desired 

longitudinal tensile strength (500 MPa), the average fiber diameter (1.0 x 10-2 mm), the average fiber length (0.5 

mm), the fiber fracture strength (4 GPa), the fiber-matrix bond strength (25 MPa), and the matrix stress at composite 

failure (7.0 MPa);  and we are asked to compute the volume fraction of fibers that is required.  It is first necessary to 
compute the value of the critical fiber length using Equation 16.3.  If the fiber length is much greater than lc, then 

we may determine Vf using Equation 16.17, otherwise, use of either Equation 16.18 or Equation 16.19 is necessary.  

Thus, 

 

    
lc =  

σ f
∗ d

2τc
=  (4 x 103 MPa)(1.0 x 10−2 mm)

2 (25 MPa)
=  0.80  mm 

 
Inasmuch as l < lc (0.50 mm < 0.80 mm), then use of Equation 16.19 is required.  Therefore, 

 

    
σcd'

∗  =  
lτc
d

Vf  +  σm' (1 − Vf ) 

 

    
500 MPa =  (0.5 x 10−3 m) (25 MPa)

0.01 x 10−3 m
(Vf ) +  (7  MPa)(1 − Vf ) 

 
Solving this expression for Vf leads to Vf = 0.397. 
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 16.17  In this problem, for an aligned glass fiber-epoxy matrix composite, we are asked to compute the 

longitudinal tensile strength given the following:  the average fiber diameter (0.015 mm), the average fiber length 

(2.0 mm), the volume fraction of fibers (0.25), the fiber fracture strength (3500 MPa), the fiber-matrix bond strength 

(100 MPa), and the matrix stress at composite failure (5.5 MPa).  It is first necessary to compute the value of the 

critical fiber length using Equation 16.3.  If the fiber length is much greater than lc, then we may determine  

using Equation 16.17, otherwise, use of either Equations 16.18 or 16.19 is necessary.  Thus, 
 σcl

∗

 

    
lc =  

σ f
∗ d

2τc
=  (3500 MPa)(0.015 mm)

2 (100 MPa)
=  0.263 mm  (0.010  in.)  

 
Inasmuch as l > lc (2.0 mm > 0.263 mm), but since l is not much greater than lc, then use of Equation 16.18 is 

necessary.  Therefore, 

 

    
σcd

∗  =  σ f
∗ Vf 1 −

lc
2 l

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +  σm' (1 − Vf )  

 

  
=  (3500 MPa)(0.25) 1 −

0.263 mm
(2)(2.0 mm)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +  (5.5 MPa)(1 − 0.25)  

 

= 822 MPa  (117,800 psi) 
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 16.18  (a)  This portion of the problem calls for computation of values of the fiber efficiency parameter.  

From Equation 16.20 
 

  
Ecd  =  KE f Vf  +  EmVm  

 

Solving this expression for K yields 
 

    
K =  

Ecd − EmVm
E f Vf

=  
Ecd − Em(1 − Vf )

E f V f
 

 
For glass fibers, Ef = 72.5 GPa (Table 16.4);  using the data in Table 16.2, and taking an average of the extreme Em 

values given, Em = 2.29 GPa (0.333 x 106 psi).  And, for Vf = 0.20 

 

    
K =  5.93 GPa − (2.29 GPa)(1 − 0.2)

(72.5 GPa)(0.2)
=  0.283 

 
 For Vf = 0.3 

 

    
K =  8.62 GPa − (2.29 GPa)(1 − 0.3)

(72.5 GPa)(0.3)
=  0.323 

 
 And, for Vf = 0.4 

 

    
K =  11.6 GPa − (2.29 GPa)(1 − 0.4)

(72.5 GPa)(0.4)
=  0.353 

 
 (b)  For 50 vol% fibers (Vf = 0.50), we must assume a value for K. Since it is increasing with Vf, let us 

estimate it to increase by the same amount as going from 0.3 to 0.4—that is, by a value of 0.03.  Therefore, let us 

assume a value for K of 0.383.  Now, from Equation 16.20 
 

  
Ecd  =  KE f Vf  +  EmVm  

 

  =  (0.383)(72.5 GPa)(0.5) + (2.29 GPa)(0.5)  

 

  =  15.0 GPa  (2.18 x 106  psi) 
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 The Fiber Phase 
 The Matrix Phase 

 

 16.19  (a)  For polymer-matrix fiber-reinforced composites, three functions of the polymer-matrix phase 

are:  (1) to bind the fibers together so that the applied stress is distributed among the fibers;  (2) to protect the 

surface of the fibers from being damaged;  and (3) to separate the fibers and inhibit crack propagation. 

 (b)  The matrix phase must be ductile and is usually relatively soft, whereas the fiber phase must be stiff 

and strong. 

 (c)  There must be a strong interfacial bond between fiber and matrix in order to:  (1) maximize the stress 

transmittance between matrix and fiber phases;  and (2) minimize fiber pull-out, and the probability of failure. 
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 16.20  (a)  The matrix phase is a continuous phase that surrounds the noncontinuous dispersed phase. 

 (b)  In general, the matrix phase is relatively weak, has a low elastic modulus, but is quite ductile.  On the 

other hand, the fiber phase is normally quite strong, stiff, and brittle. 
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 Polymer-Matrix Composites 

 

 16.21  (a)  This portion of the problem calls for us to calculate the specific longitudinal strengths of glass-

fiber, carbon-fiber, and aramid-fiber reinforced epoxy composites, and then to compare these values with the 

specific strengths of several metal alloys. 
 The longitudinal specific strength of the glass-reinforced epoxy material (Vf = 0.60) in Table 16.5 is just 

the ratio of the longitudinal tensile strength and specific gravity as 
 

 
1020 MPa

2.1
=  486  MPa  

 

 For the carbon-fiber reinforced epoxy 

 

 
1240 MPa

1.6
=  775 MPa  

 

 And, for the aramid-fiber reinforced epoxy 

 

 
1380 MPa

1.4
=  986 MPa  

 

 Now, for the metal alloys we use data found in Tables B.1 and  B.4 in Appendix B (using the density 

values from Table B.1 for the specific gravities).  For the cold-rolled 7-7PH stainless steel 

 

 
1380 MPa

7.65
=  180  MPa  

 

 For the normalized 1040 plain carbon steel, the ratio is 
 

 
590 MPa

7.85
=  75 MPa  

 

 For the 7075-T6 aluminum alloy 
 

 
572 MPa

2.80
=  204 MPa  

 

 For the C26000 brass (cold worked) 
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525 MPa

8.53
=  62  MPa  

 

 For the AZ31B (extruded) magnesium alloy 

 

 
262 MPa

1.77
=  148 MPa  

 

 For the annealed Ti-5Al-2.5Sn  titanium alloy 

 

 
790 MPa

4.48
=  176  MPa  

 

 (b)  The longitudinal specific modulus is just the longitudinal tensile modulus-specific gravity ratio.  For 

the glass-fiber reinforced epoxy, this ratio is 

 

 
45 GPa

2.1
=  21.4 GPa  

 

 For the carbon-fiber reinforced epoxy 

 

 
145 GPa

1.6
=  90.6 GPa  

 

 And, for the aramid-fiber reinforced epoxy 

 

 
76 GPa

1.4
=  54.3  GPa  

 

 The specific moduli for the metal alloys (Tables B.1 and B.2) are as follows: 

 For the cold rolled 17-7PH stainless steel 
 

 
204 GPa

7.65
=  26.7 GPa  

 

 For the normalized 1040 plain-carbon steel 
 

 
207 GPa

7.85
=  26.4  GPa  

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 



 16-27 

 For the 7075-T6 aluminum alloy 
 

 
71 GPa

2.80
=  25.4  GPa  

 

 For the cold worked C26000 brass 
 

 
110 GPa

8.53
=  12.9  GPa  

 

 For the extruded AZ31B magnesium alloy 
 

 
45 GPa

1.77
=  25.4 GPa  

 

 For the Ti-5Al-2.5Sn titanium alloy 

 

 
110 GPa

4.48
=  24.6 GPa  
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 16.22  (a)  The four reasons why glass fibers are most commonly used for reinforcement are listed at the 

beginning of Section 16.8 under "Glass Fiber-Reinforced Polymer (GFRP) Composites." 

 (b)  The surface perfection of glass fibers is important because surface flaws or cracks act as points of 

stress concentration, which will dramatically reduce the tensile strength of the material. 

 (c)  Care must be taken not to rub or abrade the surface after the fibers are drawn.  As a surface protection, 

newly drawn fibers are coated with a protective surface film. 
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 16.23  "Graphite" is crystalline carbon having the structure shown in Figure 12.17, whereas "carbon" will 

consist of some noncrystalline material as well as areas of crystal misalignment. 
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 16.24  (a)  Reasons why fiberglass-reinforced composites are utilized extensively are:  (1) glass fibers are 

very inexpensive to produce;  (2) these composites have relatively high specific strengths;  and (3) they are 

chemically inert in a wide variety of environments. 

 (b)  Several limitations of these composites are:  (1) care must be exercised in handling the fibers inasmuch 

as they are susceptible to surface damage;  (2)  they are lacking in stiffness in comparison to other fibrous 

composites;  and (3) they are limited as to maximum temperature use. 
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 Hybrid Composites 

 

 16.25  (a)  A hybrid composite is a composite that is reinforced with two or more different fiber materials 

in a single matrix. 

 (b)  Two advantages of hybrid composites are:  (1) better overall property combinations, and (2) failure is 

not as catastrophic as with single-fiber composites. 
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 16.26  (a)  For a hybrid composite having all fibers aligned in the same direction 
 

    
Ecl =  EmVm +  E f 1Vf 1 +  E f 2Vf 2  

 

in which the subscripts f1 and f2 refer to the two types of fibers. 

 (b)  Now we are asked to compute the longitudinal elastic modulus for a glass- and aramid-fiber hybrid 

composite.  From Table 16.4, the elastic moduli of aramid and glass fibers are, respectively, 131 GPa (19 x 106 psi) 

and 72.5 GPa (10.5 x 106 psi).  Thus, from the previous expression 
 

    Ecl =  (4 GPa)(1.0 −  0.25 −  0.35) +  (131 GPa)(0.25) +  (72.5 GPa)(0.35)  

 

  =  59.7 GPa  (8.67 x 106  psi)  
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 16.27  This problem asks that we derive a generalized expression analogous to Equation 16.16 for the 

transverse modulus of elasticity of an aligned hybrid composite consisting of two types of continuous fibers.  Let us 

denote the subscripts f1 and f2 for the two fiber types, and m , c, and t subscripts for the matrix,  composite, and 

transverse direction, respectively.  For the isostress state, the expressions analogous to Equations 16.12 and 16.13 

are 

 

  
σc =  σm =  σ f 1 =  σ f 2  

 

And 

 

    
εc =  εmVm +  ε f 1Vf 1 +  ε f 2Vf 2  

 

Since ε = σ/E (Equation 6.5), making substitutions of the form of this equation into the previous expression yields 

 

    

σ
Ect

=  σ
Em

Vm +  σ
E f 1

Vf 1 +  σ
E f 2

Vf 2  

 

Thus 

 

    

1
Ect

=  
Vm
Em

+  
Vf 1
E f 1

+  
Vf 2
E f 2

 

 

    
=  

VmE f 1E f 2 + Vf 1EmE f 2 + Vf 2EmE f 1
EmE f 1E f 2

 

 

And, finally, taking the reciprocal of this equation leads to 

 

    
Ect  =  

EmE f 1E f 2
VmE f 1E f 2 + Vf 1EmE f 2 + Vf 2EmE f 1
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 Processing of Fiber-Reinforced Composites 

 

 16.28  Pultrusion, filament winding, and prepreg fabrication processes are described in Section 16.13. 

 For pultrusion, the advantages are:  the process may be automated, production rates are relatively high, a 

wide variety of shapes having constant cross-sections are possible, and very long pieces may be produced.  The 

chief disadvantage is that shapes are limited to those having a constant cross-section. 

 For filament winding, the advantages are:  the process may be automated, a variety of winding patterns are 

possible, and a high degree of control over winding uniformity and orientation is afforded.  The chief disadvantage 

is that the variety of shapes is somewhat limited. 

 For prepreg production, the advantages are:  resin does not need to be added to the prepreg, the lay-up 

arrangement relative to the orientation of individual plies is variable, and the lay-up process may be automated.  The 

chief disadvantages of this technique are that final curing is necessary after fabrication, and thermoset prepregs must 

be stored at subambient temperatures to prevent complete curing. 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 



 16-35 

 Laminar Composites 
 Sandwich Panels 

 

 16.29  Laminar composites are a series of sheets or panels, each of which has a preferred high-strength 

direction.  These sheets are stacked and then cemented together such that the orientation of the high-strength 

direction varies from layer to layer. 

 These composites are constructed in order to have a relatively high strength in virtually all directions 

within the plane of the laminate. 
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 16.30  (a)  Sandwich panels consist of two outer face sheets of a high-strength material that are separated 

by a layer of a less-dense and lower-strength core material. 

 (b)  The prime reason for fabricating these composites is to produce structures having high in-plane 

strengths, high shear rigidities, and low densities. 

 (c)  The faces function so as to bear the majority of in-plane tensile and compressive stresses.  On the other 

hand, the core separates and provides continuous support for the faces, and also resists shear deformations 

perpendicular to the faces. 
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DESIGN PROBLEMS 

 

 16.D1  Inasmuch as there are a number of different sports implements that employ composite materials, no 

attempt will be made to provide a complete answer for this question.  However, a list of this type of sporting 

equipment would include skis and ski poles, fishing rods, vaulting poles, golf clubs, hockey sticks, baseball and 

softball bats, surfboards and boats, oars and paddles, bicycle components (frames, wheels, handlebars), canoes, and 

tennis and racquetball rackets. 
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 Influence of Fiber Orientation and Concentration 

 

 16.D2  In order to solve this problem, we want to make longitudinal elastic modulus and tensile strength 

computations assuming 40 vol% fibers for all three fiber materials, in order to see which meet the stipulated criteria 

[i.e., a minimum elastic modulus of 55 GPa (8 x 106 psi), and a minimum tensile strength of 1200 MPa (175,000 
psi)].  Thus, it becomes necessary to use Equations 16.10b and 16.17 with Vm = 0.6 and Vf = 0.4, Em = 3.1 GPa, and 

 = 69 MPa.   σm∗

 For glass, Ef = 72.5 GPa and  = 3450 MPa.  Therefore, 
  
σ f

∗

 

    
Ecl =  Em(1 −  V f ) +  E f V f  

 

  =  (3.1 GPa)(1 −  0.4) +  (72.5 GPa)(0.4) =  30.9 GPa  (4.48 x 106  psi)  

 

Since this is less than the specified minimum (i.e., 55 GPa), glass is not an acceptable candidate. 

 

 For carbon (PAN standard-modulus), Ef = 230 GPa and  = 4000 MPa (the average of the range of 

values in Table B.4), thus, from Equation 16.10b 
 
σ f

∗

 

    Ecl =  (3.1 GPa)(0.6) +  (230 GPa)(0.4) =  93.9 GPa  (13.6 x 106  psi)  

 

which is greater than the specified minimum.  In addition, from Equation 16.17 
 

  
σcl

∗  =  σmÕ(1 − Vf ) + σ f
∗ Vf  

 

  =  (30 MPa)(0.6) + (4000 MPa)(0.4) = 1620 MPa (234,600 psi)  

 

which is also greater than the minimum (1200 MPa).  Thus, carbon (PAN standard-modulus) is a candidate. 

 

 For aramid, Ef = 131 GPa and  = 3850 MPa (the average of the range of values in Table B.4), thus 

(Equation 16.10b) 
  
σ f

∗

 

    Ecl =  (3.1 GPa)(0.6) +  (131 GPa)(0.4) =  54.3 GPa  (7.87 x 106  psi)  
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which value is also less than the minimum.  Therefore, aramid also not a candidate, which means that only the 

carbon (PAN standard-modulus) fiber-reinforced epoxy composite meets the minimum criteria. 
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 16.D3  This problem asks us to determine whether or not it is possible to produce a continuous and 

oriented carbon fiber-reinforced epoxy having a modulus of elasticity of at least 69 GPa in the direction of fiber 

alignment, and a maximum specific gravity of 1.40.  We will first calculate the minimum volume fraction of fibers 

to give the stipulated elastic modulus, and then the maximum volume fraction of fibers possible to yield the 

maximum permissible specific gravity;  if there is an overlap of these two fiber volume fractions then such a 

composite is possible. 

 With regard to the elastic modulus, from Equation 16.10b 
 

    
Ecl =  Em(1 −  Vf ) +  E f V f  

 

    
69 GPa =  (2.4 GPa)(1 − Vf ) +  (260 GPa)(Vf )  

 
Solving for Vf yields Vf = 0.26.  Therefore, Vf > 0.26 to give the minimum desired elastic modulus. 

 Now, upon consideration of the specific gravity (or density), ρ, we employ the following modified form of 

Equation 16.10b 
 

    
ρc =  ρm(1 − Vf ) +  ρ f V f  

 

    
1.40 =  1.25(1 − Vf ) +  1.80(Vf ) 

 
And, solving for Vf from this expression gives Vf = 0.27.  Therefore, it is necessary for Vf < 0.27 in order to have a 

composite specific gravity less than 1.40. 
 Hence, such a composite is possible if 0.26 < Vf < 0.27 
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 16.D4  This problem asks us to determine whether or not it is possible to produce a continuous and 

oriented glass fiber-reinforced polyester having a tensile strength of at least 1250 MPa in the longitudinal direction, 

and a maximum specific gravity of 1.80.  We will first calculate the minimum volume fraction of fibers to give the 

stipulated tensile strength, and then the maximum volume fraction of fibers possible to yield the maximum 

permissible specific gravity;  if there is an overlap of these two fiber volume fractions then such a composite is 

possible. 

 With regard to tensile strength, from Equation 16.17 

 

  
σcl

∗  =  σm' (1 − Vf ) + σ f
∗ Vf  

 

    
1250 MPa =  (20 MPa)(1 − V f ) +  (3500 MPa) (V f )  

 
 Solving for Vf yields Vf = 0.353.  Therefore, Vf > 0.353 to give the minimum desired tensile strength. 

 Now, upon consideration of the specific gravity (or density), ρ, we employ the following modified form of 

Equation 16.10b: 
 

    
ρc =  ρm(1 − V f ) +  ρ f V f  

 

    
1.80 =  1.35(1 − V f ) +  2.50 (V f ) 

 
And, solving for Vf from this expression gives Vf = 0.391.  Therefore, it is necessary for Vf < 0.391 

in order to have a composite specific gravity less than 1.80. 
 Hence, such a composite is possible if 0.353 < Vf < 0.391. 
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 16.D5  In this problem, for an aligned and discontinuous glass fiber-epoxy matrix composite having a 

longitudinal tensile strength of 1200 MPa, we are asked to compute the required fiber fracture strength, given the 

following:  the average fiber diameter (0.015 mm), the average fiber length (5.0 mm), the volume fraction of fibers 

(0.35), the fiber-matrix bond strength (80 MPa), and the matrix stress at fiber failure (6.55 MPa). 

 To begin, since the value of  is unknown, calculation of the value of lc in Equation 16.3 is not possible, 

and, therefore, we are not able to decide which of Equations 16.18 and 16.19 to use.  Thus, it is necessary to 

substitute for lc in Equation 16.3 into Equation 16.18, solve for the value of , then, using this value, solve for lc 

from Equation 16.3.  If l > lc, we use Equation 16.18, otherwise Equation 16.19 must be used.  Note:  the  

parameters in Equations 16.18 and 16.3 are the same.  Realizing this, and substituting for lc in Equation 16.3 into 

Equation 16.18 leads to 

  
σ f

∗

 
σ f

∗

 
σ f

∗

 

    

σcd
∗  =  σ f

∗ Vf 1 −
σ f

∗ d

4τcl

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

+  σm' (1 − Vf )  

 

    
=  σ f

∗ Vf  −  
σ f

∗2Vf d

4τcl
+  σm' −  σm' Vf  

 

This expression is a quadratic equation in which  is the unknown.  Rearrangement into a more convenient form 

leads to 
 
σ f

∗

 

    
σ f

∗2
Vf d

4τcl

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

−  σ f
∗ (Vf ) +  σcd

∗ − σm' (1 − Vf )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ =  0 

 

Or 

 

  
aσ f

∗2  +  bσ f
∗ +  c =  0 

 

where 

 

  
a =  

Vf d

4τcl
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=  (0.35)(0.015 x 10−3 m)

(4)(80 MPa)(5 x 10−3 m)
=  3.28 x 10-6  (MPa)-1  2.23 x 10−8 (psi)−1[ ] 

 

Furthermore, 

 

  
b = −Vf  = − 0.35 

 

And 

  
c =  σcd

∗  −  σm
' (1 − Vf ) 

 

  =  1200 MPa −  (6.55 MPa)(1 − 0.35) = 1195.74 MPa  (174,383 psi)  

 

Now solving the above quadratic equation for  yields 
 
σ f

∗

 

  
σ f

∗ =  
− b ± b2 − 4ac

2a
 

 

  

=  
− (−0.35) ± (−0.35)2 − (4) 3.28 x 10−6 (MPa)−1[ ](1195.74 MPa)

(2) 3.28 x 10−6 (MPa)−1[ ]
 

 

  
=  0.3500 ± 0.3268

6.56 x 10−6 MPa   0.3500 ± 0.3270
4.46 x 10−8 psi

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

This yields the two possible roots as 

 

    
σ f

∗ (+) =  0.3500 + 0.3268
6.56 x 10−6 MPa =  103,200  MPa  (15.2 x 106  psi)  

 

    
σ f

∗ (−) =  0.3500 − 0.3268
6.56 x 10−6 MPa =  3537  MPa  (515,700 psi) 

 

Upon consultation of the magnitudes of  for various fibers and whiskers in Table 16.4, only  is 

reasonable.  Now, using this value, let us calculate the value of lc using Equation 16.3 in order to ascertain if use of 

Equation 16.18 in the previous treatment was appropriate.  Thus 

 
σ f

∗
 
σ f

∗ (−)
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lc =  

σ f
∗ d

2τc
=  (3537 MPa)(0.015 mm)

(2)(80 MPa)
=  0.33 mm  (0.0131 in.)  

 

Since l > lc (5.0 mm > 0.33 mm), our choice of Equation 16.18 was indeed appropriate, and  = 3537 MPa 

(515,700 psi). 
  
σ f

∗
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 16.D6  (a)  This portion of the problem  calls for a determination of which of the four fiber types is suitable 

for  a tubular shaft, given that the fibers are to be continuous and oriented with a volume fraction of 0.40.   Using 

Equation 16.10 it is possible to solve for the elastic modulus of the shaft for each of the fiber types.  For example, 

for glass (using moduli data in Table 16.6) 

 

  
Ecs = Em (1 − Vf ) + E f Vf  

 

  = (2.4 GPa)(1.00 − 0.40) + (72.5 GPa)(0.40) = 30.4 GPa  

 
This value for Ecs as well as those computed in a like manner for the three carbon fibers are listed in Table 16.D1. 

 
Table 16.D1 Composite Elastic Modulus for Each of Glass and Three Carbon Fiber Types for Vf = 0.40 
 

 
 Fiber Type Ecs (GPa) 

 

 Glass 30.4 

 Carbon—standard modulus 93.4 

 Carbon—intermediate modulus 115 

 Carbon—high modulus 161 

 

 

 
 It now becomes necessary to determine, for each fiber type, the inside diameter di.  Rearrangement of 

Equation 16.23 such that di is the dependent variable leads to 

 

  
di  =  d0

4 −
4FL3

3πE∆y

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/4
 

 
The di values may be computed by substitution into this expression for E the Ecs data in Table 16.D1 and the 

following 

 

  F = 1700 N 

  L = 1.25 m 

  ∆y = 0.20 mm 
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  d0 = 100 mm 

 
These di data are tabulated in the second column of Table 16.D2.  No entry is included for glass.  The elastic 

modulus for glass fibers is so low that it is not possible to use them for a tube that meets the stipulated criteria;  
mathematically, the term within brackets in the above equation for di is negative, and no real root exists.  Thus, only 

the three carbon types are candidate fiber materials. 

 

 

 

Table 16.D2  Inside Tube Diameter, Total Volume, and Fiber, Matrix, and Total Costs for Three Carbon-Fiber 

Epoxy-Matrix Composites 

 

  
  Inside Total Fiber Matrix Total 
  Diameter Volume Cost Cost Cost 
 Fiber Type (mm) (cm3) ($) ($) ($) 

 
 Glass – – – – – 

 Carbon--standard 
     modulus 70.4 3324 83.76 20.46 104.22 

 Carbon--intermediate 
     modulus 78.9 2407 121.31 14.82 136.13 

 Carbon--high modulus 86.6 1584 199.58 9.75 209.33 

 

 

 (b)  Also included in Table 16.D2 is the total volume of material required for the tubular shaft for each 
carbon fiber type;  Equation 16.24 was utilized for these computations.  Since Vf = 0.40, 40% this volume is fiber 

and the other 60% is epoxy matrix.  In the manner of Design Example 16.1, the masses and costs of fiber and matrix 

materials were determined, as well as the total composite cost.  These data are also included in Table 16.D2.  Here it 

may be noted that the carbon standard-modulus fiber yields the least expensive composite, followed by the 

intermediate- and high-modulus materials. 
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