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CHAPTER 12 

 

STRUCTURES AND PROPERTIES OF CERAMICS 

 

PROBLEM SOLUTIONS 

 

 

 Crystal Structures 

 

 12.1  The two characteristics of component ions that determine the crystal structure of a ceramic compound 

are:  1) the magnitude of the electrical charge on each ion, and 2) the relative sizes of the cations and anions. 
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 12.2  In this problem we are asked to show that the minimum cation-to-anion radius ratio for a 

coordination number of four is 0.225.  If lines are drawn from the centers of the anions, then a tetrahedron is 

formed.  The tetrahedron may be inscribed within a cube as shown below. 

 

 
 

The spheres at the apexes of the tetrahedron are drawn at the corners of the cube, and designated as positions A, B, 

C, and D.  (These are reduced in size for the sake of clarity.)  The cation resides at the center of the cube, which is 

designated as point E.  Let us now express the cation and anion radii in terms of the cube edge length, designated as 

a.  The spheres located at positions A and B touch each other along the bottom face diagonal.  Thus, 

 

  AB =  2rA  

 

But 

  (AB)2  =  a2 + a2 = 2a2 

 

or 

 

  AB =  a 2 =  2rA 

And 

 

  
a =  

2rA
2
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There will also be an anion located at the corner, point F (not drawn), and the cube diagonal   AEF  will be related to 

the ionic radii as 

 

  AEF =  2(rA +  rC) 

 

(The line AEF has not been drawn to avoid confusion.)  From the triangle ABF 

 

  (AB)2  +  (FB)2  =  ( AEF)2 

 

But,  

  
FB =  a =  

2rA
2

 

and 

 

  AB =  2rA  

from above.  Thus, 

 

    
(2rA)2  +  

2rA
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

 =  2(rA +  rC)[ ]2 

 
Solving for the rC/rA ratio leads to

 

  

rC
rA

 =  
6 −  2

2
 =  0.225 
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 12.3  This problem asks us to show that the minimum cation-to-anion radius ratio for a coordination 

number of 6 is 0.414 (using the rock salt crystal structure).  Below is shown one of the faces of the rock salt crystal 

structure in which anions and cations just touch along the edges, and also the face diagonals. 

 

 
 

From triangle FGH, 

 

  GF =  2rA 

and 

 

  FH =  GH =  rA +  rC 

 

Since FGH is a right triangle 

 

  (GH )2  +  (FH )2  =  (FG)2  

or 

 

    (rA +  rC)2  +  (rA +  rC)2  =  (2rA)2  

 

which leads to 

 

  
rA +  rC =  

2rA
2

 

 
Or, solving for rC/rA 
 

  

rC
rA

 =  2
2

 −  1
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  =  0.414 
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 12.4  This problem asks us to show that the minimum cation-to-anion radius ratio for a coordination 

number of 8 is 0.732.  From the cubic unit cell shown below 

 

 
 
the unit cell edge length is 2rA, and from the base of the unit cell 

 

    x
2 =  (2rA)2  +  (2rA)2  =  8rA

2  

Or 

 

  x =  2rA 2  

 

Now from the triangle that involves x, y, and the unit cell edge 

 

    x
2 +  (2rA)2  =  y2 =  (2rA + 2rC)2  

 

    (2rA 2)2  +  4rA
2 =  (2rA +  2rC)2 

 

Which reduces to 

 

  2rA( 3 −  1) =  2rC  

Or 

  

rC
rA

=  3 −  1 =  0.732 
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 12.5  This problem calls for us to predict crystal structures for several ceramic materials on the basis of 

ionic charge and ionic radii. 

 (a)  For CaO, using data from Table 12.3 

 

    

r
Ca2+

r
O2−

=  0.100  nm
0.140  nm

=  0.714 

 

Now, from Table 12.2, the coordination number for each cation (Ca2+) is six, and, using Table 12.4, the predicted 

crystal structure is sodium chloride. 

 (b)  For MnS, using data from Table 12.3 

 

    

r
Mn2+

r
S2−

=  0.067  nm
0.184  nm

=  0.364  

 

The coordination number is four (Table 12.2), and the predicted crystal structure is zinc blende (Table 12.4). 

 (c)  For KBr, using data from Table 12.3 

 

  

r
K+

r
Br−

=  0.138  nm
0.196  nm

=  0.704  

 

The coordination number is six (Table 12.2), and the predicted crystal structure is sodium chloride (Table 12.4). 

 (d)  For CsBr, using data from Table 12.3 

 

  

r
Cs+

r
Br−

=  0.170  nm
0.196  nm

=  0.867  

 

The coordination number is eight (Table 12.2), and the predicted crystal structure is cesium chloride (Table 12.4). 
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 12.6  We are asked to cite the cations in Table 12.3 which would form fluorides having the cesium chloride 

crystal structure.  First of all, the possibilities would include only the monovalent cations Cs+, K+, and Na+.  
Furthermore, the coordination number for each cation must be 8, which means that 0.732 < rC/rA < 1.0 (Table 

12.2).  From Table 12.3 the rC/rA ratios for these three cations and the F- ion are as follows: 

 

  

r
Cs+

r
F−

=  0.170  nm
0.133 nm

=  1.28 

 

  

r
K+

r
F−

=  0.138  nm
0.133 nm

=  1.04 

 

  

r
Na+

r
F−

=  0.102  nm
0.133 nm

=  0.77  

 

Thus, only sodium will form the CsCl crystal structure with fluorine. 
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 12.7  This problem asks that we compute the atomic packing factor for the rock salt crystal structure when 
rC/rA = 0.414.  From Equation 3.2 

 

  
APF =  

VS
VC

 

 
With regard to the sphere volume, VS, there are four cation and four anion spheres per unit cell.  Thus, 

 

    
VS  =  (4) 4

3
π rA

3⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +  (4) 4

3
π rC

3⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
  ⎟

 
But, since rC/rA = 0.414 

 

    
VS  =  16

3
π rA

3 1 +  (0.414)3[ ]=  (17.94) rA
3 

 
Now, for rC/rA = 0.414 the corner anions in Table 12.2 just touch one another along the cubic unit cell edges such 

that 

 

  VC  =  a3 =  2(rA + rC)[ ]3 

 

    = 2(rA + 0.414rA)[ ]3
= (22.62) rA

3  

Thus 

 

    
APF =  

VS
VC

=  
(17.94) rA

3

(22.62) rA
3 =  0.79 
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 12.8  This question is concerned with the zinc blende crystal structure in terms of close-packed planes of 

anions. 

 (a)  The stacking sequence of close-packed planes of anions for the zinc blende crystal structure will be the 

same as FCC (and not HCP) because the anion packing is FCC (Table 12.4). 

 (b)  The cations will fill tetrahedral positions since the coordination number for cations is four (Table 

12.4). 

 (c)  Only one-half of the tetrahedral positions will be occupied because there are two tetrahedral sites per 

anion, and yet only one cation per anion. 
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 12.9  This question is concerned with the corundum crystal structure in terms of close-packed planes of 

anions. 

 (a)  For this crystal structure, two-thirds of the octahedral positions will be filled with Al3+ ions since there 

is one octahedral site per O2- ion, and the ratio of Al3+ to O2- ions is two-to-three. 

 (b)  Two close-packed O2- planes and the octahedral positions between these planes that will be filled with 

Al3+ ions are sketched below. 
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 12.10  (a)  This portion of the problem asks that we specify which type of interstitial site the Be2+ ions will 

occupy in BeO if the  ionic radius of Be2+ is 0.035 nm and the O2- ions form an HCP arrangement.  Since, from 
Table 12.3, rO2- = 0.140 nm, then 

 

    

r
Be2+

r
O2−

=  0.035 nm
0.140  nm

=  0.250 

 
Inasmuch as rC/rA is between 0.225 and 0.414, the coordination number for Be2+ is 4 (Table 12.2);  therefore, 

tetrahedral  interstitial positions are occupied. 

 (b)  We are now asked what fraction of these available interstitial sites are occupied by Be2+ ions.  Since 

there are two tetrahedral sites per O2- ion, and the ratio of Be2+ to O2- is 1:1, one-half of these sites are occupied 

with Be2+ ions. 
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 12.11  (a)  We are first of all asked to cite, for FeTiO3, which type of interstitial site the Fe2+ ions will 

occupy.  From Table 12.3, the cation-anion radius ratio is 

 

    

r
Fe2+

r
O2−

=  0.077  nm
0.140  nm

=  0.550  

 

Since this ratio is between 0.414 and 0.732, the Fe2+ ions will occupy octahedral sites (Table 12.2). 

 (b)  Similarly, for the Ti4+ ions 

 

  

r
Ti4+

r
O2−

=  0.061 nm
0.140  nm

=  0.436 

 

Since this ratio is between 0.414 and 0.732, the Ti4+ ions will also occupy octahedral sites. 

 (c)  Since both Fe2+ and Ti4+ ions occupy octahedral sites, no tetrahedral sites will be occupied. 
 (d)  For every FeTiO3 formula unit, there are three O2- ions, and, therefore, three octahedral sites;  since 

there is one ion each of Fe2+ and Ti4+, two-thirds of these octahedral sites will be occupied. 
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 12.12  First of all, open the “Molecular Definition Utility”;  it may be found in either of “Metallic Crystal 

Structures and Crystallography” or “Ceramic Crystal Structures” modules. 

 In the “Step 1” window, it is necessary to define the atom types, colors for the spheres (atoms/ions), and 

specify atom/ion sizes.  Let us enter “Pb” as the name for the lead ions (since “Pb” the symbol for lead), and “O” as 

the name for the oxygen ions.  Next it is necessary to choose a color for each ion type from the selections that 

appear in the pull-down menu—for example, “LtBlue” (light blue) for Pb and LtRed (light red) for O.  In the “Atom 

Size” window, it is necessary to enter an atom/ion size.  In the instructions for this step, it is suggested that the 

atom/ion diameter in nanometers be used.  From the table found inside the front cover of the textbook, the ionic 

radii for lead and oxygen are 0.120 nm and 0.140 nm, respectively, and, therefore, their ionic diameters are twice 

these values (i.e., 0.240 nm and 0.280 nm);  therefore, we enter the values “0.240” and “0.280” for the two atom 

types.  Now click on the “Register” button, followed by clicking on the “Go to Step 2” button. 

 In the “Step 2” window we specify positions for all of the ions within the unit cell;  their point coordinates 

are specified in the problem statement.  Now we must enter a name in the box provided for each of the ions in the 

unit cell.  For example, for oxygen let us name the first ion “O1”.  Its point coordinates are 000, and, therefore, we 

enter a “0” (zero) in each of the “x”, “y”, and “z” atom position boxes.  Next, in the “Atom Type” pull-down menu 

we select “O”, the name we specified in Step 1.  For the next oxygen ion, which has point coordinates of 100, let us 

name it “O2”;  since it is located a distance of a units along the x-axis the value of “0.397” is entered in the “x” 

atom position box (since this is the value of a given in the problem statement);  zeros are entered in each of the “y” 

and “z” position boxes.  We next click on the “Register” button.  This same procedure is repeated for all 10 the 

point coordinates for the oxygen ions, as well as the four coordinates for lead ions;  these values are specified in the 

problem statement.  For the oxygen ion having point coordinates of “111” respective values of “0.397”, “0.397”, 

and “0.502” are entered in the x, y, and z atom position boxes, since the unit cell edge length along the y and z axes 

are a (0.397) and c (0.502 nm), respectively.  For fractional point coordinates, the appropriate a or c value is 

multiplied by the fraction.  For example, for oxygen ions, the last point coordinate set in the left-hand column, 

  
1
2

1
2

0, the x, y, and z atom positions are 
  
1
2

(0.397)  = 0.1985, 
 
1
2

(0.397)= 0.1985, and 0, respectively.  The x, y, and 

z position entries for the 10 sets of point coordinates for the oxygen ions are as follows: 

 0, 0, and 0 0, 0, and 0.502 

 0.397, 0, and 0 0.397, 0, and 0.502 

 0, 0.397, and 0 0, 0.397, and 0.502 

 0.397, 0.397, and 0 0.397, 0.397, and 0.502 

 0.1985, 0.1985, and 0 0.1985, 0.1985, and 0.502 

Likewise, for the lead ions, x, y, and z position entries for the four sets of points coordinates are the following: 

 0.1985, 0, and 0.383 0, 0.1985, and 0.1190 

 0.1985, 0.397, and 0.383 0.397, 0.1985, and 0.1190 
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 In Step 3, we may specify which atoms are to be represented as being bonded to one another, and which 

type of bond(s) to use (single solid, single dashed, double, and triple are possibilities), or we may elect to not 

represent any bonds at all (in which case we click on the “Go to Step 4” button).  If it is decided to show bonds, 

probably the best thing to do is to represent unit cell edges as bonds. 

 The window in Step 4 presents all the data that have been entered;  you may review these data for 

accuracy.  If any changes are required, it is necessary to close out all windows back to the one in which corrections 

are to be made, and then reenter  data in succeeding windows.  When you are fully satisfied with your data, click on 

the “Generate” button, and the image that you have defined will be displayed.  The image may then be rotated by 

using mouse click-and-drag. 

 Your image should appear as follows: 

 

 
 

 

Here the darker spheres represent oxygen ions, while lead ions are depicted by the lighter balls. 

[Note:  Unfortunately, with this version of the Molecular Definition Utility, it is not possible to save either the data 

or the image that you have generated.  You may use screen capture (or screen shot) software to record and store 

your image.] 
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 12.13  We are asked to calculate the theoretical density of NiO.  This density may be computed using 

Equation (12.1) as 
 

  
ρ  =  

n' ANi +  AO( )
VC N A

 

 

Since the crystal structure is rock salt, n' = 4 formula units per unit cell.  Using the ionic radii for Ni2+ and O2- from 

Table 12.3, the unit cell volume is computed as follows: 
 

    
VC = a3 =  2r

Ni2+  +  2r
O2-

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
3

 =  2 (0.069  nm)  +  2 (0.140  nm)[ ]3

 

  
=  0.0730 nm3

unit cell
=  7.30 x 10-23 cm3

unit cell
 

 

Thus, 
 

  

ρ  =  (4 formula units/unit cell)(58.69 g/mol + 16.00 g/mol)

7.30 x 10-23 cm3/unit cell( )6.023 x 1023 formula units/mol( )
 

 

= 6.79 g/cm3 
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 12.14  (a)  This part of the problem calls for us to determine the unit cell edge length for FeO.  The density 

of FeO is 5.70 g/cm3 and the crystal structure is rock salt.  From Equation 12.1 

 

    
ρ  =  

n' ( AFe +  AO)
VC N A

 =  
n' (AFe +  AO)

a3 N A
 

 

Or, solving for a 

 

  
a  =  

n' (AFe +  AO)
ρ N A

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/3
 

 

  
=  (4 formula units/unit cell)(55.85 g/mol +  16.00 g/mol)

(5.70 g/cm3)(6.023 x 1023 formula units/mol)
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/3
 

 

  = 4.37 x 10ū-8 cm = 0.437 nm 

 

 (b)  The edge length is determined from the Fe2+ and O2- radii for this portion of the problem.  Now 

 

  
a =  2r

Fe2+  +  2r
O2-  

 

From Table 12.3 

 

    a =  2(0.077  nm) + 2(0.140  nm) = 0.434  nm 
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 12.15  This problem asks that we compute the theoretical density of diamond given that the C—C distance 

and bond angle are 0.154 nm and 109.5°, respectively.  The first thing we need do is to determine the unit cell edge 

length from the given C—C distance.  The drawing below shows the cubic unit cell with those carbon atoms that 

bond to one another in one-quarter of the unit cell. 

 
 

From this figure, φ is one-half of the bond angle or φ = 109.5°/2 = 54.75°, which means that 

 

 θ = 90° − 54.75 = 35.25° ° 

 

since the triangle shown is a right triangle.  Also, y = 0.154 nm, the carbon-carbon bond distance. 

Furthermore, x = a/4, and therefore, 

 

  
x =  a

4
=  y sin θ 

Or 

    a =  4 y sin θ = (4)(0.154 nm)(sin 35.25°) = 0.356 nm 

 

= 3.56 x 10-8 cm 

 
The unit cell volume, VC is just a3, that is 

 

    VC  =  a3 =  (3.56 x 10-8  cm)3  =  4.51 x 10−23 cm3 

 

We must now utilize a modified Equation 12.1 since there is only one atom type.  There are 8 equivalent atoms per 

unit cell, and therefore 

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 12-18 

  
ρ =  

n' AC
VC N A

 

 

  
=  (8 atoms/unit cell)(12.01 g/g- atom)

(4.51 x 10-23 cm3/unit cell)(6.023 x 1023 atoms/g - atom)
 

 

= 3.54 g/cm3 

 

The measured density is 3.51 g/cm3. 
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 12.16  This problem asks that we compute the theoretical density of ZnS given that the Zn—S distance and 

bond angle are 0.234 nm and 109.5°, respectively.  The first thing we need do is to determine the unit cell volume 
from the given Zn—S distance.  From the previous problem, the unit cell volume VC is just a3, a being the unit cell 

edge length, and 
 

    VC  =  (4y sin θ)3 =  (4)(0.234 nm)(sin 35.25°)[ ]3 

 

= 0.1576 nm3 = 1.576 x 10-22 cm3 

 
Now we must utilize Equation 12.1 with n' = 4 formula units, and AZn and AS being 65.39 and 32.06 g/mol, 

respectively.  Thus 

 

  
ρ =

n'Ź(AZn +  AS)
VC N A

 

 

  
=  (4 formula units/unit cell)(65.39 g/mol + 32.06 g/mol)

(1.576 x 10-22  cm3/unit cell)(6.023 x 1023 formula units/mol)
 

 

= 4.11 g/cm3 

 

The measured value of the density is 4.10 g/cm3. 
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 12.17  We are asked to determine the number of Si4+ and O2- ions per unit cell for a crystalline form of 
silica (SiO2).  For this material, a = 0.700 nm and ρ = 2.32 g/cm3.  Solving for  from Equation 12.1, we get  n'

 

  
n'  =  

ρVC NA
ASi + 2AO

 =  
ρa3NA

ASi + 2AO
 

 

  
=  (2.32g /cm3)(7.00 x 10−8cm)3(6.023 x 1023 formula units / mol)

(28.09g /mol + 2[16.00]g / mol)
 

 

= 7.98 or almost 8 

 

Therefore, there are eight Si4+ and sixteen O2- per unit cell. 
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 12.18  (a)  We are asked to compute the density of CsCl.  Modifying the result of Problem 3.3, we get 

 

    
a =  

2r
Cs+ + 2r

Cl−

3
=  2 (0.170  nm) + 2 (0.181 nm)

3
 

 

= 0.405 nm = 4.05 x 10-8 cm 

 

From Equation 12.1 

 

    
ρ  =  

n' (ACs +  ACl)
VC N A

 =  
n' (ACs +  ACl)

a3 N A
 

 

For the CsCl crystal structure, n' = 1 formula unit/unit cell, and thus 

 

  
ρ  =  (1 formula unit/unit cell)(132.91 g/mol + 35.45 g/mol)

(4.05 x 10-8  cm)3/unit cell (6.023 x 1023 formula units/mol)
 

 

= 4.20 g/cm3 

 

 (b)  This value of the density is greater than the measured density (3.99 g/cm3).  The reason for this 

discrepancy is that the ionic radii in Table 12.3, used for this computation, were for a coordination number of six, 

when, in fact, the coordination number of both Cs+ and Cl- is eight.  The ionic radii should be slightly greater, 
leading to a larger VC value, and a lower density. 
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 12.19  This problem asks that we compute the density of CaF2.  A unit cell of the fluorite structure is 

shown in Figure 12.5.  It may be seen that there are four CaF2 units per unit cell (i.e., n' = 4 formula units/unit cell).  

Assume that for each of the eight small cubes in the unit cell 

 

  
a =  

2r
Ca2+ + 2r

F−

3
 

 

and, from Table 12.3 

 

    
a =  2 (0.100  nm) + 2 (0.133 nm)

3
=  0.269  nm =  2.69 x 10-8  cm 

 

The volume of the unit cell is just 

 

    
VC =  (2a)3 =  (2)(2.69 x 10-3 cm)[ ]3 = 1.56 x 10−22 cm3 

 

Thus, from Equation 12.1 

 

  
ρ =

n'Ź( ACa + 2AF)
VC N A

 

 

  
=

(4 formula units/unit cell) 40.08 g/mol +  (2)(19.00 g/mol)[ ]
(1.56 x 10-22  cm3/unit cell)( 6.023 x 1023 formula units/mol)

 

 

= 3.33 g/cm3 

 

The measured density is 3.18 g/cm3. 
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 12.20 We are asked to specify possible crystal structures for an AX type of ceramic material given its 

density (2.10 g/cm3), that the unit cell has cubic symmetry with edge length of 0.57 nm, and the atomic weights of 

the A and X elements (28.5 and 30.0 g/mol, respectively).  Using Equation 12.1 and solving for n' yields 

 

  
n' =

ρVC N A
AC +  AA∑∑

 

 

  
=

(2.10 g/cm3) (5.70 x 10-8  cm)3/unit cell [ ](6.023 x 1023 formula units/mol)
(30.0 +  28.5) g/mol

 

 

= 4.00 formula units/unit cell 

 

Of the three possible crystal structures, only sodium chloride and zinc blende have four formula units per unit cell, 

and therefore, are possibilities. 
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 12.21  This problem asks us to compute the atomic packing factor for Fe3O4 given its density and unit cell 

edge length.  It is first necessary to determine the number of formula units in the unit cell in order to calculate the 

sphere volume.  Solving for n' from Equation 12.1 leads to 

 

  
n' =

ρVC N A
AC +  AA∑∑

 

 

  
=

(5.24 g/cm3) (8.39 x 10-8  cm)3/unit cell [ ](6.023 x 1023 formula units/mol)
(3)(55.85 g/mol) +  (4)(16.00 g/mol)

 

 

=  8.0 formula units/unit cell 
 
Thus, in each unit cell there are 8 Fe2+, 16 Fe3+, and 32 O2- ions.  From Table 12.3, rFe2+ = 0.077 nm, rFe3+ = 

0.069 nm, and rO2- = 0.140 nm.  Thus, the total sphere volume in Equation 3.2 (which we denote as VS), is just 
 

    
VS  =  (8) 4

3
π

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ (7.7 x 10−9cm)3 +  (16) 4

3
π

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ (6.9 x 10−9cm)3 

 

  
+ (32) 4

3
π

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ (1.40 x 10−8 cm)3 

 

= 4.05 x 10-22 cm3 
 
Now, the unit cell volume (VC) is just 

 

    VC = a3 = (8.39 x 10-8  cm)3 = 5.90 x 10−22 cm3 
 

Finally, the atomic packing factor (APF) from Equation 3.2 is just 
 

    
APF =

VS
VC

=
4.05 x 10-22  cm3

5.90 x 10-22  cm3 = 0.686  
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 12.22  This problem asks for us to calculate the atomic packing factor for aluminum oxide given values for 

the a and c lattice parameters, and the density.  It first becomes necessary to determine the value of n' in Equation 
12.1.  This necessitates that we calculate the value of VC, the unit cell volume.  In Problem 3.6 it was shown that the 

area of the hexagonal base (AREA) is related to a as 

 

    
AREA = 6 a

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

3 = 1.5a2 3  

 

  = (1.5)(4.759 x 10-8  cm)2( 3) = 5.88 x 10−15 cm2 

 

The unit cell volume now is just 

 

    VC  =  (AREA)(c) =  (5.88 x 10-15 cm2)(1.2989 x 10-7  cm) 

 

= 7.64 x 10-22 cm3 

 

Now, solving for n' (Equation 12.1) yields 

 

  
n'  =  

ρN AVC
AC +  AA∑∑

 

 

  
=

(3.99 g/cm3)(6.023 x 1023 formula units/mol)(7.64 x 10-22  cm3/unit cell)
(2)(26.98 g/mol) +  (3)(16.00g/mol)

 

 

= 18.0 formula units/unit cell 

 
Or, there are 18 Al2O3 units per unit cell, or 36 Al3+ ions and 54 O2- ions.  From Table 12.3, the radii of these two 

ion types are 0.053 and 0.140 nm, respectively.  Thus, the total sphere volume in Equation 3.2 (which we denote as 
VS), is just 

 

    
VS  =  (36) 4

3
π

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ (5.3 x 10−9cm)3 +  (54) 4

3
π

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ (1.4 x 10−8cm)3 

 

= 6.43 x 10-22 cm3 

 

Finally, the APF is just 
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APF =

VS
VC

=
6.43 x 10 -22 cm3

7.64 x 10 -22  cm3 = 0.842 
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 12.23  We are asked in this problem to compute the atomic packing factor for the diamond cubic crystal 

structure, given that the angle between adjacent bonds is 109.5°.  The first thing that we must do is to determine the 
unit cell volume VC in terms of the atomic radius r.  From Problem 12.15 the following relationship was developed 

 

  a = 4 y sin θ 

 
in which y = 2r and θ = 35.25°.  Furthermore, since the unit cell is cubic, VC = a3;  therefore 

 

    VC = (4y sin θ)3 =  (4)(2r)(sin 35.25°)[ ]3 = 98.43 r3 

 
Now, it is necessary to determine the sphere volume in the unit cell, VS, in terms of r.  For this unit cell (Figure 

12.15) there are 4 interior atoms, 6 face atoms, and 8 corner atoms.  The entirety of the interior atoms, one-half of 

each face atom, and one-eighth of each corner atom belong to the unit cell.  Therefore, there are 8 equivalent atoms 

per unit cell;  hence 

 

    
VS  =  (8) 4

3
π r3⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ =  33.51 r3 

 

Finally, the atomic packing factor is just 

 

    
APF =   

VS
VC

=  33.51 r3

98.43 r3 =  0.340 
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 12.24  We are asked in this problem to compute the atomic packing factor for the CsCl crystal structure.  

This requires that we take the ratio of the sphere volume within the unit cell and the total unit cell volume.  From 

Figure 12.3 there is the equivalence of one Cs and one Cl ion per unit cell;  the ionic radii of these two ions are 
0.170 nm and 0.181 nm, respectively (Table 12.3).  Thus, the sphere volume, VS, is just 

 

    
VS  =  4

3
(π) (0.170 nm)3 +  (0.181 nm)3[ ] =  0.0454  nm3 

 

For CsCl the unit cell edge length, a, in terms of the atomic radii is just 

 

    
a  =  

2r
Cs+  +  2r

Cl-
3

 =  2(0.170 nm) +  2(0.181 nm)
3

 

 

= 0.405 nm 

 
Since VC = a3 

 
VC = (0.405 nm)3 = 0.0664 nm3 

 

And, finally the atomic packing factor is just 

 

    
APF =

VS
VC

=
0.0454 nm3

0.0664 nm3 = 0.684 
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 12.25  This problem asks that we represent specific crystallographic planes for various ceramic crystal 

structures. 

 (a)  A (100) plane for the cesium chloride crystal structure would appear as 

 

 
 

 (b)  A (200) plane for the cesium chloride crystal structure would appear as 

 

 
 

 (c)  A (111) plane for the diamond cubic crystal structure would appear as 
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 (d)  A (110) plane for the fluorite crystal structure would appear as 
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 Silicate Ceramics 
 

 12.26  The silicate materials have relatively low densities because the atomic bonds are primarily covalent 

in nature (Table 12.1), and, therefore, directional.  This limits the packing efficiency of the atoms, and therefore, the 

magnitude of the density. 
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 12.27  This problem asks for us to determine the angle between covalent bonds in the    tetrahedron.  

Below is shown one such tetrahedron situated within a cube. 

SiO4
4−

 

 
 

Now if we extend the base diagonal from one corner to the other, it is the case that 

 

  (2y)2 = a2 + a2 = 2a2  

or 

  
y =  a 2

2
 

 

Furthermore, x = a/2, and 
 

  
tan θ =  x

y
= a /2

a 2 /2
= 1

2
 

 

From which 

 
θ = tan-1 1

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = 35.26°  

 

Now, solving for the angle φ 
 

  φ = 180° − 90° − 35.26° = 54.74°  

 

Finally, the bond angle is just 2φ, or 2φ = (2)(54.74°) = 109.48°. 
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 Imperfections in Ceramics 
 
 12.28  Frenkel defects for anions would not exist in appreciable concentrations because the anion is quite 

large and is highly unlikely to exist as an interstitial. 
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 12.29  We are asked in this problem to calculate the fraction of lattice sites that are Schottky defects for 

CsCl at its melting temperature (645°C), assuming that the energy for defect formation is 1.86 eV.  In order to solve 
this problem it is necessary to use Equation 12.3 and solve for the Ns/N ratio.  Rearrangement of this expression and 

substituting values for the several parameters leads to 

 

  

N s
N

 =  exp − 
Qs
2kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

  
=  exp − 1.86 eV

(2)(8.62 ×10-5 eV/K)(645 +  273 K)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

= 7.87 x 10-6 
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 12.30  This problem asks that we compute the number of Frenkel defects per cubic meter in silver chloride 

at 350°C.  Solution of this problem is possible using Equation 12.2.  However, we must first determine the value of 

N, the number of lattice sites per cubic meter, which is possible using a modified form of Equation 4.2;  thus 

 

  
N =  

N Aρ

AAg +  ACl
 

 

  
=  (6.023 ×  1023 atoms/mol)(5.50 g/cm3)(106  cm3 / m3)

107.87 g/mol +  35.45 g/mol
 

 

= 2.31 x 1028 lattice sites/m3 

 
And, finally the value of Nfr is computed using Equation 12.2 as 

 

  
N fr  =  N exp − 

Q fr
2kT

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

  
=  (2.31 ×  1028  lattice sites/m3) exp - 1.1 eV

(2)(8.62 ×  10-5 eV/K)(350 +  273 K)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

= 8.24 x 1023 defects/m3 
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 12.31  This problem provides for some oxide ceramic, at temperatures of 750°C and 1500°C, values for 

density and the number of Schottky defects per cubic meter.  The (a) portion of the problem asks that we compute 

the energy for defect formation.  To begin, let us combine a modified form of Equation 4.2 and Equation 12.3 as 

 

  
N s =  N exp − 

Qs
2kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

    
=  

N Aρ

AM  +  AO

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  exp − 

Qs
2kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 
Inasmuch as this is a hypothetical oxide material, we don't know the atomic weight of metal M, nor the value of Qs 

in the above equation.  Therefore, let us write equations of the above form for two temperatures, T1 and T2.  These 

are as follows: 

 

 
    
N s1 =  

N Aρ1
AM  +  AO

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  exp − 

Qs
2kT1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  (12.S1a) 

 

 
    
N s2 =  

N Aρ2
AM  +  AO

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  exp − 

Qs
2kT2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  (12.S1b) 

 

Dividing the first of these equations by the second leads to 

 

    

N s1
N s2

=  

N Aρ1
AM  +  AO

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  exp − 

Qs
2kT1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

N Aρ2
AM  +  AO

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  exp − 

Qs
2kT2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

 

 

which, after some algebraic manipulation, reduces to the form 

 

 
    

N s1
N s2

=  
ρ1
ρ2

 exp − 
Qs
2k

1
T1

 −  1
T2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 (12.S2) 

 

Now, taking natural logarithms of both sides of this equation gives 

 

    
ln  

N s1
N s2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =  ln 

ρ1
ρ2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  −  

Qs
2k

1
T1

 −  1
T2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  
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and solving for Qs leads to the expression 

 

    

Qs =  

−2k ln
N s1
N s2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  −  ln

ρ1
ρ2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
T1

 −  1
T2

 

 
Let us take T1 = 750°C and T2 = 1500°C, and we may compute the value of Qs as 

 

    

Qs =  

−(2)(8.62 ×  10-5  eV/K) ln  5.7 ×  109  m-3

5.8 ×  1017  m-3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  −  ln 3.50 g/cm3

3.40 g/cm3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
750 + 273 K

 −  1
1500 + 273 K

 

 

= 7.70 eV 

 
 (b)  It is now possible to solve for Ns at 1000°C using Equation 12.S2 above.  This time let's take T1 = 

1000°C and T2 = 750°C.  Thus, solving for Ns1, substituting values provided in the problem statement and Qs 

determined above yields 

 

    
N s1 =  

N s2 ρ1
ρ2

 exp − 
Qs
2k

1
T1

 −  1
T2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

  
=  (5.7 ×  109  m-3)( 3.45 g/cm3)

3.50 g/cm3  exp − 7.70 eV
(2)(8.62 ×  10-5 eV/K)

1
1000 +  273 K

 −  1
750 +  273 K

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

= 3.0 x 1013 m-3 

 

 (c)  And, finally, we want to determine the identity of metal M.  This is possible by computing the atomic 
weight of M (AM) from Equation 12.S1a.  Rearrangement of this expression leads to 

 

    
  

N Aρ1
AM  +  AO

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  =  N s1exp 

Qs
2kT1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

And, after further algebraic manipulation 
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N Aρ1

N s1exp 
Qs

2kT1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 =  AM  +  AO 

 
And, solving this expression for AM gives 

 

    

 AM =   
N Aρ1

N s1exp 
Qs

2kT1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 −  AO  

 
Now, assuming that T1 = 750°C, the value of AM is 

 

    

 AM =   (6.023 ×  1023 ions/mol)( 3.50 g/cm3)(106  cm3 /m3)

(5.7 ×  109  ions/m3) exp 7.7 eV
(2)(8.62 ×  10-5 eV/K)(750 +  273 K)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ 

⎭ 

⎪ 
⎪ 

 −   16.00 g/mol  

 

= 24.45 g/mol 

 

Upon consultation of the periodic table in Figure 2.6, the divalent metal (i.e., that forms M2+ ions) that has an 

atomic weight closest to 24.45 g/mol is magnesium.  Thus, this metal oxide is MgO. 
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 12.32  Stoichiometric means having exactly the ratio of anions to cations as specified by the chemical 

formula for the compound. 
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 12.33  (a)  For a Cu2+O2- compound in which a small fraction of the copper ions exist as Cu+, for each 

Cu+ formed there is one less positive charge introduced (or one more negative charge).  In order to maintain charge 

neutrality, we must either add an additional positive charge or subtract a negative charge.  This may be 

accomplished be either creating Cu2+ interstitials or O2- vacancies. 

 (b)  There will be two Cu+ ions required for each of these defects. 
 (c)  The chemical formula for this nonstoichiometric material is Cu1+xO or CuO1-x, where x is some small 

fraction. 
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 12.34  (a)  For Ca2+ substituting for Li+ in Li2O, lithium vacancies would be created.  For each Ca2+ 

substituting for Li+, one positive charge is added;  in order to maintain charge neutrality, a single positive charge 

may be removed.  Positive charges are eliminated by creating lithium vacancies, and for every Ca2+ ion added, a 

single lithium vacancy is formed. 
 (b)  For O2- substituting for Cl- in CaCl2, chlorine vacancies would be created.  For each O2- substituting 

for a Cl-, one negative charge is added;  negative charges are eliminated by creating chlorine vacancies.  In order to 

maintain charge neutrality, one O2- ion will lead to the formation of one chlorine vacancy. 
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 Ceramic Phase Diagrams 

 
 12.35  There is only one eutectic for the portion of the ZrO2-CaO system shown in Figure 12.26, which, 

upon cooling, is 

 

  Liquid →  cubic ZrO2 +  CaZrO3 

 

There are two eutectoids, which reactions are as follows: 

 

  tetragonal →  monoclinic ZrO2 +  cubic ZrO2 

 

  cubic →  monoclinic ZrO2 +  CaZr4O9  
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 12.36  (a)  For this portion of the problem we are to determine the type of vacancy defect that is produced 
on the Al2O3-rich side of the spinel phase field (Figure 12.25) and the percentage of these vacancies at the 

maximum nonstoichiometry (82 mol% Al2O3).  On the alumina-rich side of this phase field, there is an excess of 

Al3+ ions, which means that some of the Al3+  ions substitute for Mg2+ ions.  In order to maintain charge neutrality, 

Mg2+ vacancies are formed, and for every Mg2+ vacancy formed, two Al3+ ions substitute for three Mg2+ ions. 
 Now, we will calculate the percentage of Mg2+ vacancies that exist at 82 mol% Al2O3.  Let us arbitrarily 

choose as our basis 50 MgO-Al2O3 units of the stoichiometric material, which consists of 50 Mg2+ ions and 100 

Al3+ ions.  Furthermore, let us designate the number of Mg2+ vacancies as x, which means that 2x Al3+ ions have 

been added and 3x Mg2+ ions have been removed (two of which are filled with Al3+ ions).  Using our 50 MgO-
Al2O3 unit basis, the number of moles of Al2O3 in the nonstoichiometric material is (100 + 2x)/2;  similarly the 

number of moles of MgO is (50 – 3x).  Thus, the expression for the mol% of Al2O3 is just 

 

    

mol% Al2O3 =  

100 + 2x
2

100 + 2x
2

+ (50 − 3x)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

×  100  

 
If we solve for x when the mol% of Al2O3 = 82, then x = 12.1.  Thus, adding 2x or (2)(12.1) = 24.2 Al3+ ions to the 

original material consisting of 100 Al3+ and 50 Mg2+ ions will produce 12.1 Mg2+ vacancies.  Therefore, the 

percentage of vacancies is just 

 

  
% vacancies = 12.1

100 + 50
× 100 = 8.1%  

 

 (b)  Now, we are asked to make the same determinations for the MgO-rich side of the spinel phase field, 
for 39 mol% Al2O3.  In this case, Mg2+ ions are substituting for Al3+ ions.  Since the Mg2+ ion has a lower charge 

than the Al3+ ion, in order to maintain charge neutrality, negative charges must be eliminated, which may be 

accomplished by introducing O2- vacancies.  For every 2 Mg2+ ions that substitute for 2 Al3+ ions, one O2- 

vacancy is formed. 
 Now, we will calculate the percentage of O2- vacancies that exist at 39 mol% Al2O3.  Let us arbitrarily 

choose as our basis 50 MgO-Al2O3 units of the stoichiometric material which consists of 50 Mg2+ ions 100 Al3+ 

ions.  Furthermore, let us designate the number of O2- vacancies as y, which means that 2y Mg2+ ions have been 
added and 2y Al3+ ions have been removed.  Using our 50 MgO-Al2O3 unit basis, the number of moles of Al2O3 in 

the nonstoichiometric material is (100 – 2y)/2;  similarly the number of moles of MgO is (50 + 2y).  Thus, the 
expression for the mol% of Al2O3 is just 
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mol% Al2O3 =  

100 − 2y
2

100 − 2 y
2

+ (50 + 2y)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

× 100 

 
If we solve for y when the mol% of Al2O3 = 39, then y = 7.91.  Thus, 7.91 O2- vacancies are produced in the 

original material that had 200 O2- ions.  Therefore, the percentage of vacancies is just 

 

  
% vacancies = 7.91

200
× 100 = 3.96%  
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 12.37  (a)  The chemical formula for kaolinite clay may also be written as Al2O3–2SiO2-2H2O.  Thus, if 

we remove the chemical water, the formula becomes Al2O3–2SiO2.  The formula weight for Al2O3 is just (2)(26.98 

g/mol) + (3)(16.00 g/mol) = 101.96 g/mol;  and for SiO2 the formula weight is 28.09 g/mol + (2)(16.00 g/mol) = 

60.09 g/mol.  Thus, the composition of this product, in terms of the concentration of Al2O3, CAl2O3
, in weight 

percent is just 

 

    
CAl2O3

= 101.96 g /mol
101.96 g /mol + (2)(60.09 g /mol)

× 100 = 45.9 wt%  

 
 (b)  The liquidus and solidus temperatures for this material as determined from the SiO2–Al2O3 phase 

diagram, Figure 12.27, are 1825°C and 1587°C, respectively. 
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 Brittle Fracture of Ceramics 

 

 12.38  (a)  There may be significant scatter in the fracture strength for some given ceramic material 

because the fracture strength depends on the probability of the existence of a flaw that is capable of initiating a 

crack;  this probability varies from specimen to specimen of the same material. 

 (b)  The fracture strength increases with decreasing specimen size because as specimen size decreases, the 

probably of the existence of a flaw of that is capable of initiating a crack diminishes. 
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 12.39  We are asked for the critical crack tip radius for a glass. From Equation 8.1 
 

  
σm = 2σ0

a
ρt

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/2
 

 
Fracture will occur when σm reaches the fracture strength of the material, which is given as E/10;  thus 

 

  

E
10

= 2σ0
a

ρt

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/2
 

 
Or, solving for ρt
 

  
ρt =

400 aσ0
2

E 2  

 

From Table 12.5, E = 69 GPa, and thus, 
 

    

ρt = (400)(1 x 10−2 mm)(70  MPa)2

(69 x 103 MPa) 2
 

 

= 4.1 x 10-6 mm = 4.1 nm 
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 12.40  This problem asks that we compute the crack tip radius ratio before and after etching.  Let 
 

    ρt  =  original crack tip radius,  and  

  ρt
' = etched crack tip radius 

 

Also, 

   
σ f

' = σ f  

 

   
a ' = a

2
 

 

  σ0
' = 4σ0 

 

 

Solving for 
    

ρt
'

ρt
 from the following 

 

      

σ f = 2σ0
a

ρt

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/2
= σ f

' = 2σ0
' a '

ρt
'

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

1/2

 

 

yields 

 

    

ρt
'

ρt
=

σ0
'

σ0

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

2
a'

a

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =

4σ0
σ0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
a/ 2
a

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = 8 
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 Stress-Strain Behavior 

 

 12.41  (a)  For this portion of the problem we are asked to compute the flexural strength for a spinel 

specimen that is subjected to a three-point bending test.  The flexural strength (Equation 12.7a) is just 
 

  
σ fs =

3Ff L

2bd2  

 

for a rectangular cross-section.  Using the values given in the problem statement, 
 

    
σ fs = (3)(350  N)(25 x 10−3 m)

(2)(9.0 x 10−3 m)(3.8 x 10−3 m)2 = 101 MPa  (15,200  psi)  

 

 (b)  We are now asked to compute the maximum deflection.  From Table 12.5, the elastic modulus (E) for 

spinel is 260 GPa (38 x 106 psi).  Also, the moment of inertia for a rectangular cross section (Figure 12.32) is just 

 

  
I =  bd3

12
 

 

Thus, 
 

  

∆y = FL3

48E bd3

12

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

= FL3

4Ebd3  

 

  
= (310  N)(25 x 10−3 m)3

(4)(260 x 109 N /m2)(9.0 x 10−3 m)(3.8 x 10−3 m)3  

 

= 9.4 x 10-6 m = 9.4 x 10-3 mm  (3.9 x 10-4 in.) 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 12-50 

 12.42  We are asked to calculate the maximum radius of a circular specimen of MgO that is loaded using 

three-point bending.  Solving for R from Equation 12.7b 
 

  
R =

Ff L

σ fsπ

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/3

 

 

which, when substituting the parameters stipulated in the problem statement, yields 

 

    
R = (5560  N)(45 x 10−3 m)

(105 x 106 N /m2)(π)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/3
 

 

= 9.1 x 10-3 m = 9.1 mm  (0.36 in.) 
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 12.43  For this problem, the load is given at which a circular specimen of aluminum oxide fractures when 

subjected to a three-point bending test;  we are then are asked to determine the load at which a specimen of the same 

material having a square cross-section fractures.  It is first necessary to compute the flexural strength of the 
aluminum oxide, Equation 12.7b, and then, using this value, we may calculate the value of Ff in Equation 12.7a.  

From Equation 12.7b 

 

  
σ fs =

Ff L

πR3  

 

  
= (3000  N)(40 x 10−3 m)

(π) (5.0 x 10−3 m)3 = 306 x 106  N/m2 = 306 MPa   (42,970 psi)  

 
Now, solving for Ff from Equation 12.7a, realizing that b = d = 12 mm, yields 

 

  
Ff  =

2σ fsd3

3L
 

 

  
= (2)(306 x 106 N /m2)(15 x 10−3m)3

(3)(40 x 10−3 m)
= 17,200 N   (3870  lbf )  
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 12.44  (a)  This portion of the problem asks that we determine whether or not a cylindrical specimen of 

aluminum oxide having a flexural strength of 300 MPa (43,500 psi) and a radius of 5 mm will fracture when 

subjected to a load of 7500 N in a three-point bending test;  the support point separation is given as 15 mm.  Using 
Equation 12.7b we will calculate the value of σ;  if this value is greater than σfs (300 MPa), then fracture is 

expected to occur.  Employment of Equation 12.7b yields 

 

    
σ = FL

πR3 = (7500  N)(15 x 10−3 m)
(π) (5 x 10−3 m)3 =  286.5 x 106  N/m2 = 286.5  MPa  (40,300 psi)  

 
Since this value is less than the given value of σfs (300 MPa), then fracture is not predicted. 

 (b)  The certainty of this prediction is not 100% because there is always some variability in the flexural 
strength for ceramic materials, and since this value of σ is relatively close to σfs then there is some chance that 

fracture will occur. 
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 Mechanisms of Plastic Deformation 

 

 12.45  Crystalline ceramics are harder yet more brittle than metals because they (ceramics) have fewer slip 

systems, and, therefore, dislocation motion is highly restricted. 
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 Miscellaneous Mechanical Considerations 

 

 12.46  (a)  This portion of the problem requests that we compute the modulus of elasticity for nonporous 
spinel given that E = 240 GPa for a material having 5 vol% porosity.  Thus, we solve Equation 12.9 for E0, using P 

= 0.05, which gives 

 

  
E0 = E

1 − 1.9P + 0.9P2  

 

  
= 240  GPa

1 − (1.9)(0.05) + (0.9)(0.05)2 = 265 GPa   (38.6 x 106  psi)  

 

 (b)  Now we are asked to determine the value of E at P = 15 vol% (i.e., 0.15).  Using Equation 12.9 we get 

 

    E = E0(1 −  1.9P +  0.9P2)  

 

  
= (265 GPa) 1 −  (1.9)(0.15) +  (0.09)(0.15)2[ ]= 195 GPa  (28.4  x 106  psi)  
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 12.47  (a)  This portion of the problem requests that we compute the modulus of elasticity for nonporous 

TiC given that E = 310 GPa (45 x 106 psi) for a material having 5 vol% porosity.  Thus, we solve Equation 12.9 for 
E0, using P = 0.05, which gives 

 

  
E0 = E

1 − 1.9P + 0.9P2  

 

  
= 310  GPa

1 − (1.9)(0.05) + (0.9)(0.05)2 = 342 GPa   (49.6  x  106  psi) 

 

 (b)  Now we are asked to compute the volume percent porosity at which the elastic modulus of TiC is 240 
MPa (35 x 106 psi).  Since from part (a), E0 = 342 GPa, and using Equation 12.9 we get 

 

    

E
E0

= 240 MPa
342  MPa

= 0.702 = 1 − 1.9P + 0.9P2 

 

Or 

 

  0.9P2 − 1.9P + 0.298 = 0 

 

Now, solving for the value of P using the quadratic equation solution yields 

 

    
P =

1.9 ± (−1.9)2 − (4)(0.9)(0.298)
(2)(0.9)

 

 

The positive and negative roots are 

P+ = 1.94 

P- = 0.171 

 

Obviously, only the negative root is physically meaningful, and therefore the value of the porosity to give the 

desired modulus of elasticity is 17.1 vol%. 
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 12.48  (a)  This part of the problem asks us to determine the flexural strength of nonporous MgO assuming 

that the value of n in Equation 12.10 is 3.75.  Taking natural logarithms of both sides of Equation 12.10 yields 

 

  
ln σ fs =  lnσ0 −  nP  

 
In Table 12.5 it is noted that for P = 0.05, σfs = 105 MPa.  For the nonporous material P = 0 and, ln σ0 = ln σfff sss .  

Solving for ln σ0 from the above equation and using these data gives 

 

  
lnσ0 = lnσ fs +  nP  

 

= ln (105 MPa) + (3.75)(0.05) = 4.841 

 
or σ0 = e4.841 = 127 MPa (18,100 psi) 

 (b)  Now we are asked to compute the volume percent porosity to yield a σfs of 74 MPa (10,700 psi).  

Taking the natural logarithm of Equation 12.10 and solving for P leads to 

 

  
P =

ln σ0 − ln σ fs
n

 

 

  
=  ln (127 MPa)  −  ln (74 MPa)

3.75
 

 

= 0.144 or 14.4 vol% 
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 12.49  (a)  Given the flexural strengths at two different volume fraction porosities, we are asked to 

determine the flexural strength for a nonporous material.  If the natural logarithm is taken of both sides of Equation 

12.10, then 
 

  
lnσ fs = lnσ0 −  nP  

 

Using the data provided in the problem statement, two simultaneous equations may be written as 

 

    ln (70 MPa) = ln σ0 − (0.10) n  

 

    ln (60 MPa) = ln σ0 − (0.15) n  

 
Solving for n and σ0 leads to n = 3.08 and σ0 = 95.3 MPa.  For the nonporous material, P = 0, and, from Equation 

12.10, σ0 = σfs.  Thus, σfs for P = 0 is 95.3 MPa. 

 (b)  Now, we are asked for σfs at P = 0.20 for this same material.  Utilizing Equation 12.10 yields 
 

  
σ fs = σ0 exp (− nP)  

 

  = (95.3 MPa) exp − (3.08)(0.20)[ ]  

 

= 51.5 MPa 
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DESIGN PROBLEMS 

 

 Crystal Structures 

 

 12.D1  This problem asks that we determine the concentration (in weight percent) of InAs that must be 

added to GaAs to yield a unit cell edge length of 0.5820 nm.  The densities of GaAs and InAs were given in the 

problem statement as 5.316 and 5.668 g/cm3, respectively.  To begin, it is necessary to employ Equation 12.1, and 
solve for the unit cell volume, VC, for the InAs-GaAs alloy as 

 

  
VC  =  

n' Aave
ρaveN A

 

 
where Aave and ρave are the atomic weight and density, respectively, of the InAs-GaAs alloy.  Inasmuch as both of 

these materials have the zinc blende crystal structure, which has cubic symmetry, VC is just the cube of the unit cell 

length, a.  That is 

 
VC = a3 = (0.5820 nm)3 

 

  =  (5.820  x  10−8  cm)3 = 1.971 x  10−22  cm3 

 
It is now necessary to construct expressions for Aave and ρave in terms of the concentration of indium arsenide, 

CInAs using Equations 4.11a and 4.10a.  For Aave we have 

 

    

Aave =  100
CInAs
AInAs

 +  
(100  −  CInAs)

AGaAs

 

 

    

=  100
CInAs

189.74  g /mol
 +  

(100  −  CInAs)
144.64  g /mol

 

 
whereas for ρave

 

    

ρave =  100
CInAs
ρInAs

 +  
(100  −  CInAs)

ρGaAs

 

 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 



 12-59 

    

=  100
CInAs

5.668  g /cm3  +  
(100  −  CInAs)
5.316  g /cm3

 

 

Within the zinc blende unit cell there are four formula units, and thus, the value of n' in Equation 12.1 is 4;  hence, 

this expression may be written in terms of the concentration of InAs in weight percent as follows: 

 
VC = 1.971 x 10-22 cm3 

 

  
=  

n' Aave
ρaveN A

 

 

    

=  

(4  fu /unit cell) 100
CInAs

189.74  g /mol
 +  

(100  −  CInAs)
144.64  g /mol

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

100
CInAs

5.668  g /cm3  +  
(100  −  CInAs)
5.316  g /cm3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

(6.023 x  1023  fu /mol)

 

 

 
And solving this expression for CInAs leads to CInAs = 46.1 wt%. 
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 Stress-Strain Behavior 

 

 12.D2  This problem asks for us to determine which of the ceramic materials in Table 12.5, when 

fabricated into cylindrical specimens and stressed in three-point loading, will not fracture when a load of 445 N 
(100 lbf) is applied, and also will not experience a center-point deflection of more than 0.021 mm (8.5 x 10-4 in.).  

The first of these criteria is met by those materials that have flexural strengths greater than the stress calculated 

using Equation 12.7b.  According to this expression 
 

  
σ fs = FL

π R3  

 

  
=

(445 N)(50.8 x 10−3 m)
(π) (3.8 x 10−3 m)3 = 131 x 106 N /m2 = 131 MPa (18,900 psi)  

 
Of the materials in Table 12.5, the following have flexural strengths greater than this value: Si3N4, ZrO2, SiC, 

Al2O3, glass-ceramic, mullite, and spinel. 

 For the second criterion we must solve for the magnitude of the modulus of elasticity, E, from the equation 

given in Problem 12.41 where the expression for the cross-sectional moment of inertia appears in Figure 12.32;  that 

is, for a circular cross-section 
    
I = π R4

4
.  Solving for E from these two expressions 

 

  
E = FL3

12 π R4∆y
 

 

  
= (445 N)(50.8 x 10−3 m)3

(12)(π) (3.8 x 10−3 m)4(0.021 x 10−3 m)
 

 

= 353 x 109 N/m2  = 353 GPa  (49.3 x 106 psi) 
 

Of those materials that satisfy the first criterion, only Al2O3 has a modulus of elasticity greater than this value 

(Table 12.5), and, therefore, is a possible candidate. 
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