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CHAPTER 10 

 

PHASE TRANSFORMATIONS IN METALS 

 

PROBLEM SOLUTIONS 

 

 

The Kinetics of Phase Transformations 

 

 10.1  The two stages involved in the formation of particles of a new phase are nucleation and growth.  The 

nucleation process involves the formation of normally very small particles of the new phase(s) which are stable and 

capable of continued growth.  The growth stage is simply the increase in size of the new phase particles. 
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 10.2  (a)  This problem first asks that we rewrite the expression for the total free energy change for 

nucleation (analogous to Equation 10.1) for the case of a cubic nucleus of edge length a.  The volume of such a 

cubic radius is a3, whereas the total surface area is 6a2 (since there are six faces each of which has an area of a2).  

Thus, the expression for ∆G is as follows: 

 

  ∆G = a3∆Gv + 6a2γ  

 

Differentiation of this expression with respect to a is as 

 

    
d ∆G

da
=

d (a3∆Gv)
da

+
d (6a2γ)

da
 

 

  = 3a2∆Gv + 12a γ  

 

If we set this expression equal to zero as 

 

  3a2∆Gv + 12a γ = 0  

 

and then solve for a (= a*), we have 

 

  
a * = −

4 γ
∆Gv

 

 

Substitution of this expression for a in the above expression for ∆G yields an equation for ∆G* as 

 

    ∆G * = (a*)3∆Gv + 6(a*)2 γ  

 

    
= −

4 γ
∆Gv

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

3
∆Gv + 6 γ −

4 γ
∆Gv

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
 

 

  
=

32 γ3

(∆Gv)2  
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 (b)  ∆Gv for a cube—i.e.,
    
(32) γ3

(∆Gv)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
—is greater that for a sphere—i.e., 

    

16 π
3

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

γ3

(∆Gv)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 = 

    
(16.8) γ3

(∆Gv)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
.  The reason for this is that surface-to-volume ratio of a cube is greater than for a sphere. 
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 10.3  This problem states that ice homogeneously nucleates at –40°C, and that we are to calculate the 

critical radius given the latent heat of fusion (–3.1 x 108 J/m3) and the surface free energy (25 x 10-3 J/m2).  

Solution to this problem requires the utilization of Equation 10.6 as 

 

  
r * = −

2 γTm
∆H f

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

1
Tm − T

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

  
= −

(2)(25 x 10−3 J /m2)(273 K)
−3.1 x 108 J /m3

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
40 K

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

 = 1.10 x 10−9 m = 1.10 nm 
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 10.4  (a)  This portion of the problem asks that we compute r* and ∆G* for the homogeneous nucleation of 

the solidification of Ni.  First of all, Equation 10.6 is used to compute the critical radius.  The melting temperature 
for nickel, found inside the front cover is 1455°C;  also values of ∆Hf (–2.53 x 109 J/m3) and γ (0.255 J/m2) are 

given in the problem statement, and the supercooling value found in Table 10.1 is 319°C (or 319 K).  Thus, from 

Equation 10.6 we have 

 

  
r * = −

2γTm
∆H f

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

1
Tm − T

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

  
= −

(2)(0.255 J /m2)(1455 + 273 K)
−2.53 x 109 J /m3

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
319 K

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

 = 1.09 x 10−9 m = 1.09 nm 

 

 For computation of the activation free energy, Equation 10.7 is employed.  Thus 

 

    

∆G * =
16 π γ3Tm

2

3∆H f
2

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

1
(Tm − T)2  

 

  

=
(16)(π) (0.255 J /m2) 3

(1455 + 273 K)2

(3)(−2.53 x 109 J /m3)2

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

1
(319 K)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

 = 1.27 x 10−18 J  

 

 (b)  In order to compute the number of atoms in a nucleus of critical size (assuming a spherical nucleus of 

radius r*), it is first necessary to determine the number of unit cells, which we then multiply by the number of atoms 

per unit cell.  The number of unit cells found in this critical nucleus is just the ratio of critical nucleus and unit cell 

volumes.  Inasmuch as nickel has the FCC crystal structure, its unit cell volume is just a3 where a is the unit cell 

length (i.e., the lattice parameter);  this value is 0.360 nm, as cited in the problem statement.  Therefore, the number 

of unit cells found in a radius of critical size is just 

 

    
# unit cells /particle =

4
3

πr *3

a3  
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=

4
3

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ (π)(1.09 nm)3

(0.360 nm)3 = 116 unit cells  

 

Inasmuch as 4 atoms are associated with each FCC unit cell, the total number of atoms per critical nucleus is just 

 

  (116 unit cells /critical nucleus)(4 atoms /unit cell) = 464 atoms /critical nucleus 
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 10.5 (a)  For this part of the problem we are asked to calculate the critical radius for the solidification of 

nickel (per Problem 10.4), for 200 K and 300 K degrees of supercooling, and assuming that the there are 106 nuclei 
per meter cubed for homogeneous nucleation.  In order to calculate the critical radii, we replace the Tm – T term in 

Equation 10.6 by the degree of supercooling (denoted as ∆T) cited in the problem. 

 For 200 K supercooling, 

 

  
r200
* = −

2 γTm
∆H f

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

1
∆T

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  

 

  
= −

(2)(0.255 J /m2)(1455 + 273 K)
−2.53 x 10 9 J /m3

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
200 K

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

= 1.74 x 10-9 m = 1.74 nm 

 

 For 300 K supercooling, 

 

    
r300
* = −

(2)(0.255 J /m2)(1455 + 273 K)
−2.53 x 10 9 J /m3

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
300 K

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

= 1.16 x 10-9 m = 1.16 nm 

 

 In order to compute the number of stable nuclei  that exist at 200 K and 300 K degrees of supercooling, it 
is necessary to use Equation 10.8. However, we must first determine the value of K1 in Equation 10.8, which in turn 

requires that we calculate ∆G* at the homogeneous nucleation temperature using Equation 10.7;  this was done in 
Problem 10.4, and yielded a value of ∆G* = 1.27 x 10-18 J.  Now for the computation of K1, using the value of n* 

for at the homogenous nucleation temperature (106 nuclei/m3): 

 

  

K1 =
n *

exp −
∆G *
kT

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

 

 

  

=
106 nuclei /m3

exp −
1.27 x 10−18 J

(1.38 × 10−23 J /atom− K)(1455 K − 319 K)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

 

 

= 1.52 x 1041 nuclei/m3
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Now for 200 K supercooling, it is first necessary to recalculate the value ∆G* of using Equation 10.7, where, again, 
the Tm – T term is replaced by the number of degrees of supercooling, denoted as ∆T, which in this case is 200 K.  

Thus 

 

  

∆G200
* =

16 π γ3Tm
2

3∆H f
2

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

1
(∆T)2  

 

  
=

(16)(π)(0.255 J /m2)3 (1455 + 273 K)2

(3)(−2.53 x 109 J /m3)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
(200 K)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

= 3.24 x 10-18 J 

 

And, from Equation 10.8, the value of n* is 

 

  
n200

* = K1 exp −
∆G200

*

kT

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  

 

  
= (1.52 x 1041 nuclei /m3)exp −

3.24 x10−18 J
(1.38 x 10−23 J /atom− K) (1455 K − 200 K)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

= 8.60 x 10-41 stable nuclei 

 

 Now, for 300 K supercooling the value of ∆G* is equal to 

 

    
∆G300

* =
(16)(π) (0.255 J /m2)3 (1455 + 273 K)2

(3)(−2.53 x 109 J /m3)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
(300 K)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

= 1.44 x 10-18 J 

 

from which we compute the number of stable nuclei at 300 K of supercooling as 

 

  
n300

* = K1 exp −
∆G300

*

kT

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  
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n* = (1.52 x 1041 nuclei /m3)exp −

1.44 x10−18 J
(1.38 x 10−23 J /atom− K) (1455 K − 300 K)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 

= 88 stable nuclei 

 

 (b)  Relative to critical radius, r* for 300 K supercooling is slightly smaller that for 200 K (1.16 nm versus 

1.74 nm).  [From Problem 10.4, the value of r* at the homogeneous nucleation temperature (319 K) was 1.09 nm.]  

More significant, however, are the values of n* at these two degrees of supercooling, which are dramatically 

different—8.60 x 10-41 stable nuclei at ∆T = 200 K, versus 88 stable nuclei at ∆T = 300 K! 
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 10.6  This problem calls for us to compute the length of time required for a reaction to go to 90% 

completion.  It first becomes necessary to solve for the parameter k in Equation 10.17.  It is first necessary to 

manipulate this equation such that k is the dependent variable.  We first rearrange Equation 10.17 as 

 

  exp(− kt n) = 1 − y  

 

and then take natural logarithms of both sides: 

 

  − ktn = ln (1 − y)  

 

Now solving for k gives 

 

  
k = −

ln (1 − y)
t n  

 

And, from the problem statement, for y = 0.25 when t = 125 s and given that n = 1.5, the value of k is equal to 
 

    
k = −

ln (1 − 0.25)
(125 s)1.5 = 2.06  x 10-4 

 

We now want to manipulate Equation 10.17 such that t is the dependent variable.  The above equation may be 

written in the form: 

 

  
t n = −

ln (1 − y)
k

 

 

And solving this expression for t leads to 

 

  
t =  −

ln (1 − y)
k

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

1/n
 

 

Now, using this equation and the value of k determined above, the time to 90% transformation completion is equal 

to 
 

 

    
t = −

ln (1 − 0.90)
2.06 x 10−4

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/1.5
= 500 s 
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 10.7  This problem asks that we compute the rate of some reaction given the values of n and k in Equation 
10.17.  Since the reaction rate is defined by Equation 10.18, it is first necessary to determine t0.5, or the time 

necessary for the reaction to reach y = 0.5.  We must first manipulate Equation 10.17 such that t is the dependent 

variable.  We first rearrange Equation 10.17 as 

 

  exp(− kt n) = 1 − y  

 

and then take natural logarithms of both sides: 

 

  − ktn = ln (1 − y)  

 

which my be rearranged so as to read 

 

  
t n = −

ln (1 − y)
k

 

 

Now, solving for t from this expression leads to 

 

  
t =  −

ln (1 − y)
k

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
1/n

 

 
For t0.5 this equation takes the form 

 

  
t0.5 = −

ln (1 − 0.5)
k

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
1/n

 

 

And, incorporation of values for n and k given in the problem statement (2.0 and 5 x 10-4, respectively), then 

 

    
t0.5 = −

ln (1 − 0.5)
5 x 10−4

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/2
= 37.23  s  

 

Now, the rate is computed using Equation 10.18 as 

 

    
rate = 1

t0.5
= 1

37.23 s
= 2.69 x 10-2  s-1 
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 10.8  This problem gives us the value of y (0.30) at some time t (100 min), and also the value of n (5.0) for 

the recrystallization of an alloy at some temperature, and then asks that we determine the rate of recrystallization at 

this same temperature.  It is first necessary to calculate the value of k.  We first rearrange Equation 10.17 as 

 

  exp(− kt n) = 1 − y  

 

and then take natural logarithms of both sides: 

 

  − ktn = ln (1 − y)  

 

Now solving for k gives 

 

  
k = −

ln (1 − y)
t n  

 

which, using the values cited above for y, n, and t yields 

 

 

    
k = −

ln (1 − 0.30)
(100 min)5

= 3.57 ×10-11 

 
At this point we want to compute t0.5, the value of t for y = 0.5, which means that it is necessary to establish a form 

of Equation 10.17 in which t is the dependent variable.  From one of the above equations 

 

 

  
t n = −

ln (1 − y)
k

 

 

And solving this expression for t leads to 

 

  
t =  −

ln (1 − y)
k

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
1/n

 

 
For t0.5, this equation takes the form 

 

  
t0.5 = −

ln (1 − 0.5)
k

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
1/n
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and incorporation of the value of k determined above, as well as the value of n cited in the problem statement (5.0), 
then t0.5 is equal to 

 

    
t0.5 = −

ln (1 − 0.5)
3.57 x 10−11

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/5
= 114.2  min  

 

Therefore, from Equation 10.18, the rate is just 

 

    
rate = 1

t0.5
= 1

114.2 min
= 8.76 x 10-3  (min)-1 
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 10.9  For this problem, we are given, for the austenite-to-pearlite transformation, two values of y and two 

values of the corresponding times, and are asked to determine the time required for 95% of the austenite to 

transform to pearlite. 

 The first thing necessary is to set up two expressions of the form of Equation 10.17, and then to solve 

simultaneously for the values of n and k.   In order to expedite this process, we will rearrange and do some algebraic 

manipulation of Equation 10.17.  First of all, we rearrange as follows: 

 

  
1 − y = exp − kt n( ) 

 

Now taking natural logarithms 

 

  ln (1 − y) = − kt n 

 

Or 

 

  − ln (1 − y) = kt n 

 

which may also be expressed as 

 

  
ln 1

1 − y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = kt n  

 

Now taking natural logarithms again, leads to 

 

    
ln ln 1

1 − y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = ln k + n ln t  

 

which is the form of the equation that we will now use.  Using values cited in the problem statement, the two 

equations are thus 

 

    
ln ln 1

1 − 0.2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= ln k +  n ln(280 s)  

 

    
ln ln 1

1 − 0.6

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= ln k +  n ln(425 s)  
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Solving these two expressions simultaneously for n and k yields n = 3.385 and k = 1.162 x 10-9. 

 Now it becomes necessary to solve for the value of t at which y = 0.95.  One of the above equations—viz 

 

  − ln (1 − y) = kt n 

 

may be rewritten as 

 

  
t n = −

ln (1 − y)
k

 

 

And solving for t leads to 

 

  
t =  −

ln (1 − y)
k

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
1/n

 

 

Now incorporating into this expression values for n and k determined above, the time required for 95% austenite 

transformation is equal to 

    
t = −

ln (1 − 0.95)
1.162 x 10−9

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/3.385 
= 603 s  
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 10.10  For this problem, we are given, for the recrystallization of aluminum, two values of y and two 

values of the corresponding times, and are asked to determine the fraction recrystallized after a total time of 116.8 

min. 

 The first thing necessary is to set up two expressions of the form of Equation 10.17, and then to solve 

simultaneously for the values of n and k.   In order to expedite this process, we will rearrange and do some algebraic 

manipulation of Equation 10.17.  First of all, we rearrange as follows: 

 

  
1 − y = exp − kt n( ) 

 

Now taking natural logarithms 

 

  ln (1 − y) = − kt n 

 

Or 

 

  − ln (1 − y) = kt n 

 

which may also be expressed as 

 

  
ln 1

1 − y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = kt n  

 

Now taking natural logarithms again, leads to 

 

    
ln ln 1

1 − y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = ln k + n ln t  

 

which is the form of the equation that we will now use.   The two equations are thus 

 

    
ln ln 1

1 − 0.30

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= ln k +  n ln(95.2 min) 

 

    
ln ln 1

1 − 0.80

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= ln k +  n ln(126.6 min)  
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Solving these two expressions simultaneously for n and k yields n = 5.286 and k = 1.239 x 10-11. 

 Now it becomes necessary to solve for y when t = 116.8 min.  Application of Equation 10.17 leads to 

 

  
y = 1 −  exp −ktn( ) 

 

  
= 1 −  exp − (1.239 x 10-11)(116.8 min)5.286[ ]= 0.65 
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 10.11  This problem asks us to consider the percent recrystallized versus logarithm of time curves for 

copper shown in Figure 10.11. 

 (a)  The rates at the different temperatures are determined using Equation 10.18, which rates are tabulated 

below: 
 

 Temperature (°C)  Rate (min)-1 

 135  0.105 

 119  4.4 x 10-2 

 113  2.9 x 10-2 

 102  1.25 x 10-2 

 88  4.2 x 10-3 

 43  3.8 x 10-5 

 

 (b)  These data are plotted below. 

 

 
 

The activation energy, Q, is related to the slope of the line drawn through the data points as 

 

  Q = − Slope (R)  

 

where R is the gas constant.  The slope of this line is equal to 
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Slope  =  ∆ ln rate

∆
1
T

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

 =  
ln  rate1  −  ln  rate2

1
T1

 −  1
T2

 

 
Let us take 1/T1 = 0.0025 K-1 and  1/T2 = 0.0031 K-1;  the corresponding ln rate values are ln rate1 = -2.6 and ln 

rate2 = -9.4.  Thus, using these values, the slope is equal to 

 

  
Slope  =  −2.6 − (−9.4)

0.0025 K-1 − 0.0031 K-1  =  −1.133 x 104  K 

 

 

And, finally the activation energy is 
 

    Q = −  (Slope)(R)  =  − (−1.133 x 104  K-1)(8.31 J/mol - K)  

 

= 94,150 J/mol 

 

 (c)  At room temperature (20°C), 1/T = 1/(20 + 273 K) = 3.41 x 10-3 K-1.  Extrapolation of the data in the 

plot to this 1/T value gives 

 

 ln (rate) ≅ −12.8 

 

which leads to 

 

  rate ≅ exp (−12.8) = 2.76 x 10-6  (min)-1 

 

But since 

  
rate = 1

t0.5
 

 

    
t0.5 = 1

rate
= 1

2.76 x 10−6 (min)−1  

 

  = 3.62 x 105 min = 250 days 
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 10.12  In this problem we are asked to determine, from Figure 10.11, the values of the constants n and k 

(Equation 10.17) for the recrystallization of copper at 119°C.  One way to solve this problem is to take two values 

of percent recrystallization (which is just 100y, Equation 10.17) and their corresponding time values, then set up 

two simultaneous equations, from which n and k may be determined.  In order to expedite this process, we will 

rearrange and do some algebraic manipulation of Equation 10.17.  First of all, we rearrange as follows: 

 

  
1 − y = exp − kt n( ) 

 

Now taking natural logarithms 

 

  ln (1 − y) = − kt n 

 

Or 

 

  − ln (1 − y) = kt n 

 

which may also be expressed as 

 

  
ln 1

1 − y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = kt n  

 

Now taking natural logarithms again, leads to 

 

    
ln ln 1

1 − y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = ln k + n ln t  

 

which is the form of the equation that we will now use.  From the 119°C curve of Figure 10.11, let us arbitrarily 
choose two percent recrystallized values, 20% and 80% (i.e., y1 = 0.20 and y2 = 0.80).  Their corresponding time 

values are t1 = 16.1 min and t2 = 30.4 min (realizing that the time axis is scaled logarithmically).  Thus, our two 

simultaneous equations become 

 

    
ln ln 1

1 − 0.2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = ln k + n ln (16.1) 
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ln ln 1

1 − 0.8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = ln k + n ln (30.4) 

 

from which we obtain the values n = 3.11 and k = 3.9 x 10-5. 
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 Metastable Versus Equilibrium States 

 

 10.13  Two limitations of the iron-iron carbide phase diagram are: 

 (1)  The nonequilibrium martensite does not appear on the diagram;  and 

 (2)  The diagram provides no indication as to the time-temperature relationships for the formation of 

pearlite, bainite, and spheroidite, all of which are composed of the equilibrium ferrite and cementite phases. 
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 10.14  (a)  Superheating and supercooling correspond, respectively, to heating or cooling above or below a 

phase transition temperature without the occurrence of the transformation. 

 (b)  These phenomena occur because right at the phase transition temperature, the driving force is not 

sufficient to cause the transformation to occur.  The driving force is enhanced during superheating or supercooling. 
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 Isothermal Transformation Diagrams 

 

 10.15  We are called upon to consider the isothermal transformation of an iron-carbon alloy of eutectoid 

composition. 

 (a)  From Figure 10.22, a horizontal line at 675°C intersects the 50% and reaction completion curves at 

about 80 and 300 seconds, respectively;  these are the times asked for in the problem statement. 

 (b)  The pearlite formed will be coarse pearlite.  From Figure 10.30(a), the hardness of an alloy of 

composition 0.76 wt% C that consists of coarse pearlite is about 205 HB (93 HRB). 
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 10.16  The microstructures of pearlite, bainite, and spheroidite all consist of α-ferrite and cementite phases.  

For pearlite, the two phases exist as layers which alternate with one another.  Bainite consists of very fine and 

parallel needle-shaped particles of cementite that are surrounded an α-ferrite matrix.  For spheroidite, the matrix is 

ferrite, and the cementite phase is in the shape of sphere-shaped particles. 

 Bainite is harder and stronger than pearlite, which, in turn, is harder and stronger than spheroidite. 
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 10.17  The driving force for the formation of spheroidite is the net reduction in ferrite-cementite phase 

boundary area. 
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 10.18  This problem asks us to determine the nature of the final microstructure of an iron-carbon alloy of 

eutectoid composition, that has been subjected to various isothermal heat treatments.  Figure 10.22 is used in these 

determinations. 

 (a)  100% bainite 

 (b) 50% medium pearlite and 50% martensite 

 (c) 50% fine pearlite, 25% bainite, and 25% martensite 

 (d) 100% spheroidite 

 (e) 100% tempered martensite 

 (f) 100% coarse pearlite 

 (g) 100% fine pearlite 

 (h) 50% bainite and 50% martensite 
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 10.19  Below is shown the isothermal transformation diagram for a eutectoid iron-carbon alloy, with time-

temperature paths that will yield (a) 100% coarse pearlite;  (b) 50% martensite and 50% austenite;  and (c) 50% 

coarse pearlite, 25% bainite, and 25% martensite. 
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 10.20  We are asked to determine which microconstituents are present in a 1.13 wt% C iron-carbon alloy 

that has been subjected to various isothermal heat treatments.  These microconstituents are as follows: 

 (a)  Martensite 

 (b)  Proeutectoid cementite and martensite 

 (c)  Bainite 

 (d)  Spheroidite 

 (e)  Cementite, medium pearlite, bainite, and martensite 

 (f)  Bainite and martensite 

 (g)  Proeutectoid cementite, pearlite, and martensite 

 (h)  Proeutectoid cementite and fine pearlite 
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 10.21  This problem asks us to determine the approximate percentages of the microconstituents that form 

for five of the heat treatments described in Problem 10.20. 

 (a)  100% martensite 

 (c)  100% bainite 

 (d)  100% spheroidite 

 (f)  60% bainite and 40% martensite 

 (h)  After holding for 7 s at 600°C, the specimen has completely transformed to proeutectoid cementite and 

fine pearlite;  no further reaction will occur at 450°C.  Therefore, we can calculate the mass fractions using the 

appropriate lever rule expressions, Equations 9.22 and 9.23, as follows: 

 

    
WFe3C' =

C1
' − 0.76
5.94

= 1.13 − 0.76
5.94

= 0.062  or  6.2%  

 

    
Wp =

6.70 − C1
'

5.94
= 6.70 − 1.13

5.94
= 0.938  or  93.8% 
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 10.22  Below is shown an isothermal transformation diagram for a 1.13 wt% C iron-carbon alloy, with 

time-temperature paths that will produce (a) 6.2% proeutectoid cementite and 93.8% coarse pearlite;  (b)  50% fine 

pearlite and 50% bainite;  (c)  100% martensite;  and (d) 100% tempered martensite. 
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 Continuous Cooling Transformation Diagrams 

 

 10.23  We are called upon to name the microstructural products that form for specimens of an iron-carbon 

alloy of eutectoid composition that are continuously cooled to room temperature at a variety of rates.  Figure 10.27 

is used in these determinations. 

 (a)  At a rate of 1°C/s, coarse pearlite forms. 

 (b)  At a rate of 20°C/s, fine pearlite forms. 

 (c)  At a rate of 50°C/s, fine pearlite and martensite form. 

 (d)  At a rate of 175ºC/s, martensite forms. 
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 10.24  Below is shown a continuous cooling transformation diagram for a 0.35 wt% C iron-carbon alloy, 

with continuous cooling paths that will produce (a) fine pearlite and proeutectoid ferrite;  (b)  martensite;  (c)  

martensite and proeutectoid ferrite;  (d)  coarse pearlite and proeutectoid ferrite;  and (e)  martensite, fine pearlite, 

and proeutectoid ferrite. 
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 10.25  Two important differences between continuous cooling transformation diagrams for plain carbon 

and alloy steels are: (1) for an alloy steel, a bainite nose will be present, which nose will be absent for plain carbon 

alloys;  and (2) the pearlite-proeutectoid noses for plain carbon steel alloys are positioned at shorter times than for 

the alloy steels. 
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