
Vector Spaces and Subspaces

1 Definitions and Terms

1.1 Vector Spaces

A vector space is a nonempty set V of objects, called vectors, on which are defined two operations,
called addition and multiplication by scalars, subject to the ten axioms listed in paragraph 3. As was
already mentioned in the chapter Matrix Algebra, a subspace of a vector space V is a subset H of V
that has three properties:

1. The zero vector of V is in H.
2. H is closed under vector addition. That is, for each u and v in H, the sum u + v is in H.
3. H is closed under multiplication by scalars. That is, for each u in H and each scalar c, the vector

cu is in H.
If v1, . . . ,vp are in a vector space V , then Span{v1, . . . ,vp} is called the subspace spanned by
v1, . . . ,vp. Given any subspace H of V , a spanning set for H is a set v1, . . . ,vp in H such that
H = Span{v1, . . . ,vp}.

1.2 Bases

Let H be a subspace of a vector space V . An indexed set of vectors β = {b1, . . . ,bp} in V is a basis
for H if β is a linearly independent set, and the subspace spanned by β coincides with H, that is,
H = Span{b1, . . . ,bp}. The set {e1, . . . , en} is a standard basis for Rn. The set {1, t, . . . , tn} is a
standard basis for Pn.

1.3 Coordinate Systems

Suppose β = {b1, . . . ,bn} is a basis for V and x is in V . The coordinates of x relative to the basis
β (or the β-coordinates of x) are the weights c1, . . . , cn such that x = c1b1 + . . . + cnbn. If c1, . . . , cn

are the β-coordinates of x, then the vector [x]β in Rn (consisting of c1, . . . , cn) is the coordinate vector
of x (relative to β), or the β-coordinate vector of x. The mapping x 7→ [x]β is the coordinate
mapping (determined by β).

If Pβ = [b1 . . . bn ], then the vector equation x = c1b1 + . . . + cnbn is equivalent to x = Pβ [x]β . We
call Pβ the change-of-coordinates matrix from β to the standard basis Rn. Since Pβ is invertible
(invertible matrix theorem), also [x]β = P−1

β x.

1.4 Vector Space Dimensions

If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V ,
written as dim V , is the number of vectors in a basis for V . The dimension of the zero vector space {0}
is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite-dimensional.
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2 Theorems

1. If v1, . . . ,vp are in a vector space V , then Span{v1, . . . ,vp} is a subspace of V .

2. Let S = {e1, . . . , en} be a set in V , and let H = Span{e1, . . . , en}. If one of the vectors in S, say,
vk, is a linear combination of the remaining vectors in S, then the set formed from S by removing
vk still spans H.

3. Let S = {e1, . . . , en} be a set in V , and let H = Span{e1, . . . , en}. If H 6= {0}, some subset of S
is a basis for H.

4. Let β = {b1, . . . ,bn} be a basis for a vector space V . Ten for each x in V , there exists a unique
set of scalars c1, . . . , cn such that x = c1b1 + . . . + cnbn.

5. Let β = {b1, . . . ,bn} be a basis for a vector space V , and let Pβ = [b1 . . . bn ]. Then the
coordinate mapping x 7→ [x]β is a one-to-one linear transformation from V onto Rn.

6. If a vector space V has a basis β = {b1, . . . ,bn}, then any set in V containing more than n vectors
must be linearly dependent.

7. If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

8. Let H be a subspace of a finite-dimensional vector space V . Any linearly independent set in H can
be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and dim H ≤ dim V .

9. The Basis Theorem: Let V be a p-dimensional vector space, p ≥ 1. Any linearly independent
set of exactly p elements in V is automatically a basis for V . Any set of exactly p elements that
spans V is automatically a basis for V .

3 Vector Space Axioms

The following axioms must hold for all the vectors u, v and w in the vector space V and all scalars c
and d.

1. The sum of u and v, denoted by u + v, is in V .

2. u + v = v + u.

3. (u + v) + w = u + (v + w).

4. There is a zero vector 0 in V such that u + 0 = u.

5. For each u in V , there is a vector −u in V such that u + (−u) = 0.

6. The scalar multiple of u by c, denoted by cu, is in V .

7. c(u + v) = cu + cv.

8. (c + d)u = cu + du.

9. c(du) = (cd)u.

10. 1u = u.
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