Symmetric Matrices and Quadratic Forms

1 Definitions and Terms

1.1 Diagonalization of Symmetric Matrices

A symmetric matrix is a square matrix such that $A^T = A$. A matrix A is said to be **orthogonally diagonalizable** if there are an orthogonal matrix P (so $P^{-1} = P^{T}$) and a diagonal matrix D such that $A = P D P^{T} = P D P^{-1}$. An orthogonally diagonalizable matrix A with orthonormal eigenvectors $\mathbf{u}_1 \dots \mathbf{u}_n$ can be written as $A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \ldots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T$. This representation of A is called a **spectral** decomposition of A. Furthermore, each matrix $u_ju_j^T$ is a projection matrix.

1.2 Quadratic Forms

A quadratic form on \mathbb{R}^n is a function Q defined on \mathbb{R}^n whose value at a vector x in \mathbb{R}^n can be computed by an expression of the form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, where A is an $n \times n$ symmetric matrix. The matrix A is called the matrix of the quadratic form.

If x represents a variable vector in \mathbb{R}^n , then a **change of variable** is an equation of the form $x = Py$, where P is an invertible matrix and y is a new variable vector in \mathbb{R}^n . Now $\mathbf{x}^T A \mathbf{x} = \mathbf{y}^T (P^T A P) \mathbf{y}$. If P diagonalizes A, then $P^{T}AP = P^{-1}AP = D$, in which D is a diagonal matrix. The columns op P are called the **principal axes** of the quadratic form $x^T A x$.

A quadratic form Q is per definition:

- positive definite if $Q(x) > 0$ for all $x \neq 0$.
- negative definite if $Q(x) < 0$ for all $x \neq 0$.
- positive semidefinite if $Q(x) \geq 0$ for all $x \neq 0$.
- negative semidefinite if $Q(x) \leq 0$ for all $x \neq 0$.
- indefinite if $Q(x)$ assumes both positive and negative values.

The classification of a quadratic form is often carried over to the matrix of the form. Thus a positive definite matrix A is a symmetric matrix for which the quadratic form $x^T A x$ is positive definite.

1.3 Geometric View of Principal Axes

When $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, where A is an invertible 2×2 symmetric matrix, and c is a constant, then the set of all **x** such that $\mathbf{x}^T A \mathbf{x} = c$ corresponds to an ellipse (or circle) or a hyperbola. An ellipse is described by the following equation in standard form: $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$ $(a > b > 0)$, where a is the semi-mayor axes and b is the semi-minor axes. A hyperbola is described by the following equation in standard form: $\frac{x_1^2}{a^2} - \frac{x_2^2}{b^2} = 1$ $(a > b > 0)$, where the asymptotes are given by the equations $x_2 = \pm \frac{b}{a}x_1$.

2 Theorems

- 1. If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.
- 2. An $n \times n$ matrix A is orthogonally diagonalizable if, and only if A is a symmetric matrix.
- 3. The Spectral Theorem for Symmetric Matrices: An $n \times n$ symmetric matrix A has the following properties:
	- (a) A has n real eigenvalues, counting multiplicities.
	- (b) The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
	- (c) The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.
	- (d) A is orthogonally diagonalizable.
- 4. The Principal Axes Theorem: Let A be an $n \times n$ symmetric matrix. Then there is an orthogonal change of variable $\mathbf{x} = P\mathbf{y}$, that transforms the quadratic form $\mathbf{x}^T A \mathbf{x}$ into a quadratic form $\mathbf{y}^T D \mathbf{y}$ with no cross-product term.
- 5. Quadratic Forms and Eigenvalues: Let A be an $n \times n$ symmetric matrix. Then a quadratic form $\mathbf{x}^T A \mathbf{x}$ is:
	- (a) positive definite if, and only if the eigenvalues of A are all positive.
	- (b) negative definite if, and only if the eigenvalues of A are all negative.
	- (c) positive semidefinite if, and only if one eigenvalue of A is 0, and the others are positive.
	- (d) negative semidefinite if, and only if one eigenvalue of A is 0, and the others are negative.
	- (e) indefinite if, and only if A has both positive and negative eigenvalues.