
Orthogonality and Least Squares

1 Definitions and Terms

1.1 Basics of Vectors

Two vectors u and v in Rn can be multiplied with each other, using the dot product, also called
the inner product, which produces a scalar value. It is denoted as u · v, and defined as u · v =
u1v1 + . . . + unvn. The length of a vector u, sometimes also called the norm, is denoted by ‖u‖. It is
defined as ‖u‖ =

√
u · u =

√
u2

1 + . . . + u2
n.

A unit vector is a vector whose length is 1. For any nonzero vector u, the vector u
‖u‖ is a unit vector in

the direction of u. This process of creating unit vectors is called normalizing. The distance between
u and v, written as dist(u,v), is the length of the vector v − u. That is, dist(u,v) = ‖v − u‖.

1.2 Orthogonal Sets

Two vectors u and v in Rn are orthogonal if u · v = 0. If z is orthogonal to every vector in a subspace
W , then z is said to be orthogonal to W . The set of all vectors z that are orthogonal to W is called
the orthogonal complement of W , and is denoted by W⊥.

A set of vectors {u1, . . ., un} in Rn is said to be an orthogonal set if each pair of distinct pair of vectors
is orthogonal, that is, if ui · uj = 0 whenever i 6= j. An orthogonal basis for a subspace W of Rn is a
basis for W of Rn is a basis for W that is also an orthogonal set.

1.3 Orthonormal Sets

A set of vectors {u1, . . ., un} in Rn is an orthonormal set if it is an orthogonal set of unit vectors.
If W is the subspace spanned by such a set, then {u1, . . ., un} is an orthonormal basis for W . An
orthogonal matrix is a square invertible matrix U such that U−1 = UT . Such a matrix always has
orthonormal columns.

1.4 Decomposing Vectors

If u is any nonzero vector in Rn, then it is possible to decompose any vector y in Rn into the sum of two
vectors, one being a multiple of u, and one being orthogonal to it. The projection ŷ (being the multiple
of u) is called the orthogonal projection of y onto u, and the component of y orthogonal to u is,
surprisingly, called the component of y orthogonal to u.

Just like it is possible to project vectors on a vector, it is also possible to project vectors on a subspace.
The projection ŷ onto the subspace W is called the orthogonal projection of y onto W . ŷ is sometimes
also called the best approximation to y by elements of W .
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1.5 The Gram-Schmidt Process

The Gram-Schmidt Process is an algorithm for producing an orthogonal or orthonormal basis {u1,
. . ., up} for any nonzero subspace of Rn. Let W be the subspace, having basis {x1, . . ., xp}. Let u1 = x1

and ui = xi − x̂i for 1 < i ≤ n, where x̂i is the projection of xi on the subspace with basis {u1, . . .,
ui−1}. In formula: u1 = x1 and ui = xi − (xi·v1

v1·v1
v1 + . . . + xi·vi−1

vi−1·vi−1
vi−1).

1.6 Least-Squares Problem

The general least-squares problem is to find an x that makes ‖b−Ax‖ as small as possible. If A is
m×n and b is in Rm, a least-squares solution of Ax = b is an x̂ in Rn such that ‖b−Ax̂‖ ≤ ‖b−Ax‖
for all x in Rn. When a least-squares solution x̂ is used to produce Ax̂ as an approximation of b, the
distance from b to Ax̂ is called the least-squares error of this approximation.

1.7 Linear Models

In statistical analysis of scientific and engineering data, there is commonly a different notation used.
Instead of Ax = b, we write Xβ = y and refer to X as the design matrix, β as the parameter vector,
and y as the observation vector.

Suppose we have a certain amount of measurement data which, when plotted, seem to lie close to a
straight line. Let y = β0 + β1x. The difference between the observed value (from the measurements)
and the predicted value (from the line) is called a residual. The least-squares line is the line that
minimizes the sum of the squares of the residuals. This line is also called a line of regression of y on
x. The coefficients β0 and β1 are called (linear) regression coefficients.

The previous system is equivalent to solving the least-squares solution of Xβ = y if X = [ 1 x ] (where
1 has entries 1, 1, . . ., 1, and x has entries x1, . . ., xn), β has entries β0 and β1 and y has entries y1, . . .,
yn. A common practice before computing a least-squares line is to compute the average x̄ of the original
x-values, and form a new variable x∗ = x− x̄. The new x-data are said to be in mean-deviation form.
In this case, the two columns of X will be orthogonal.

The residual vector ε is defined as ε = y − Xβ. So y = Xβ + ε. Any equation in this form is referred
to as a linear model, in which ε should be minimized.

1.8 Inner Product Spaces

An inner product on a vector space V is a function that, to each pair of vectors u and v in U , associates
a real number 〈u,v〉 and satisfies the following axioms, for all u, v, w in V and all scalars c:

1. 〈u,v〉 = 〈v,u〉
2. 〈u + v,v〉 = 〈u,w〉+ 〈v,w〉
3. 〈cu,v〉 = c〈u,v〉
4. 〈u,u〉 ≥ 0 and 〈u,u〉 = 0 if, and only if u = 0

A vector space with an inner product is called an inner product space.

2 Theorems

1. Consider the vectors u and v as n× 1 matrices. Then, u · v = uT v.
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2. If u 6= 0 and v 6= 0 then u and v are orthogonal if, and only if u · v = 0.

3. Two vectors u and v are orthogonal if, and only if ‖u + v‖2 = ‖u‖2 + ‖v‖2.

4. A vector z is in W⊥ if, and only if z is orthogonal to every vector in a set that spans W .

5. W⊥ is a subspace of Rn.

6. If A is an m× n matrix, then ( RowA)⊥ = NulA and ( ColA)⊥ = NulAT .

7. If A is an m× n matrix, then RowA = ColAT .

8. If S = {u1, . . ., up} is an orthogonal set of nonzero vectors in Rn, then S is linearly independent
and hence is a basis for the subspace spanned by S.

9. Let {u1, . . ., up} be an orthogonal basis for a subspace W of Rn. For each y in W , the weights in
the linear combination y = c1u1 + . . . + cpup are given by cj = y·uj

uj·uj
= y·uj

‖uj‖2 .

10. An m× n matrix U has orthonormal columns if, and only if UT U = I.

11. Let U be an m× n matrix with orthonormal columns, and let x and y be in Rn, then:

(a) ‖Ux‖ = ‖x‖
(b) (Ux) · (Uy) = x · y
(c) (Ux) · (Uy) = 0 if, and only if x · y = 0.

12. If U is a square matrix, then U is an orthogonal matrix if, and only if its columns are orthonormal
columns. The rows of an orthogonal matrix are also orthonormal rows.

13. If y and u are any nonzero vectors in Rn, then the orthogonal projection of y onto u is ŷ = y·uj

uj·uj
u =

y·uj

‖uj‖2 u, and the component z of y orthogonal to u is z = y − ŷ.

14. Let W be a subspace of Rn. Then each y in Rn can be written uniquely in the form y = ŷ + z
where ŷ is in W and z is in W⊥. In fact, if {u1, . . ., up} is any orthogonal basis of W , then
ŷ = y·u1

u1·u1
u1 + . . . + y·up

up·up
up, and z = y − ŷ.

15. The Best Approximation Theorem. Let W be a subspace of Rn, y any vector in Rn, and ŷ
the orthogonal projection of y onto W . Then ŷ is the closest point in W to y, in the sense that
‖y − ŷ‖ < ‖y − u‖ for all u 6= ŷ in W .

16. If {u1, . . ., up} is an orthonormal basis for a subspace W of Rn, then ŷ = (y·u1)u1+. . .+(y·up)up.
If U = [ u1 . . . up ], then ŷ = UUT y for all y in Rn.

17. The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions of the
normal equations AT Ax = AT b.

18. The matrix AT A is invertible if, and only if the columns of A are linearly independent. In that case,
the equation Ax = b has only one least-squares solution x̂, and it is given by x̂ = (AT A)−1AT b.
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3 Calculation Rules

3.1 Algebraic Definitions

The dot product of vectors u and v in Rn is defined as:

u · v =


u1

...
un

 ·


v1

...
vn

 = u1v1 + . . . unvn (1)

The length of a vector is defined as:

‖u‖ =
√

u · u =
√

u2
1 + . . . + u2

n (2)

3.2 Algebraic Rules

The following rules apply for the dot product:

u · v = v · u (3)

(u + v) ·w = u ·w + v ·w (4)

(cu) · v = c(u · v) = u · (cv) (5)

u · v = uT v (6)

The following rules apply for vector lengths:

‖cu‖ = |c|‖u‖ (7)

u · v = ‖u‖‖v‖ cos θ (8)

Where θ is the angle between vectors v and u.
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