Orthogonality and Least Squares

1 Definitions and Terms

1.1 Basics of Vectors

Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n can be multiplied with each other, using the **dot product**, also called the **inner product**, which produces a scalar value. It is denoted as $\mathbf{u} \cdot \mathbf{v}$, and defined as $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + \ldots + u_n v_n$. The **length** of a vector \mathbf{u} , sometimes also called the **norm**, is denoted by $\|\mathbf{u}\|$. It is defined as $\|\mathbf{u}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{u_1^2 + \ldots + u_n^2}$.

A unit vector is a vector whose length is 1. For any nonzero vector \mathbf{u} , the vector $\frac{\mathbf{u}}{\|\mathbf{u}\|}$ is a unit vector in the direction of \mathbf{u} . This process of creating unit vectors is called **normalizing**. The **distance between** \mathbf{u} and \mathbf{v} , written as dist (\mathbf{u}, \mathbf{v}) , is the length of the vector $\mathbf{v} - \mathbf{u}$. That is, dist $(\mathbf{u}, \mathbf{v}) = \|\mathbf{v} - \mathbf{u}\|$.

1.2 Orthogonal Sets

Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are **orthogonal** if $\mathbf{u} \cdot \mathbf{v} = 0$. If \mathbf{z} is orthogonal to every vector in a subspace W, then \mathbf{z} is said to be **orthogonal to** W. The set of all vectors \mathbf{z} that are orthogonal to W is called the **orthogonal complement** of W, and is denoted by W^{\perp} .

A set of vectors $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ in \mathbb{R}^n is said to be an **orthogonal set** if each pair of distinct pair of vectors is orthogonal, that is, if $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$. An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W of \mathbb{R}^n is a basis for W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

1.3 Orthonormal Sets

A set of vectors $\{\mathbf{u_1}, \ldots, \mathbf{u_n}\}$ in \mathbb{R}^n is an **orthonormal set** if it is an orthogonal set of unit vectors. If W is the subspace spanned by such a set, then $\{\mathbf{u_1}, \ldots, \mathbf{u_n}\}$ is an **orthonormal basis** for W. An **orthogonal matrix** is a square invertible matrix U such that $U^{-1} = U^T$. Such a matrix always has orthonormal columns.

1.4 Decomposing Vectors

If **u** is any nonzero vector in \mathbb{R}^n , then it is possible to decompose any vector **y** in \mathbb{R}^n into the sum of two vectors, one being a multiple of **u**, and one being orthogonal to it. The projection $\hat{\mathbf{y}}$ (being the multiple of **u**) is called the **orthogonal projection of y onto u**, and the component of **y** orthogonal to **u** is, surprisingly, called the **component of y orthogonal to u**.

Just like it is possible to project vectors on a vector, it is also possible to project vectors on a subspace. The projection $\hat{\mathbf{y}}$ onto the subspace W is called the **orthogonal projection of y onto** W. $\hat{\mathbf{y}}$ is sometimes also called **the best approximation to y by elements of** W.

1.5 The Gram-Schmidt Process

The **Gram-Schmidt Process** is an algorithm for producing an orthogonal or orthonormal basis { \mathbf{u}_1 , ..., \mathbf{u}_p } for any nonzero subspace of \mathbb{R}^n . Let W be the subspace, having basis { $\mathbf{x}_1, \ldots, \mathbf{x}_p$ }. Let $\mathbf{u}_1 = \mathbf{x}_1$ and $\mathbf{u}_i = \mathbf{x}_i - \hat{\mathbf{x}}_i$ for $1 < i \leq n$, where $\hat{\mathbf{x}}_i$ is the projection of \mathbf{x}_i on the subspace with basis { $\mathbf{u}_1, \ldots, \mathbf{u}_{i-1}$ }. In formula: $\mathbf{u}_1 = \mathbf{x}_1$ and $\mathbf{u}_i = \mathbf{x}_i - (\frac{x_i \cdot v_1}{v_1 \cdot v_1}v_1 + \ldots + \frac{x_i \cdot v_{i-1}}{v_{i-1} \cdot v_{i-1}}v_{i-1})$.

1.6 Least-Squares Problem

The general least-squares problem is to find an \mathbf{x} that makes $\|\mathbf{b} - A\mathbf{x}\|$ as small as possible. If A is $m \times n$ and \mathbf{b} is in \mathbb{R}^m , a least-squares solution of $A\mathbf{x} = \mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^n such that $\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$ for all \mathbf{x} in \mathbb{R}^n . When a least-squares solution $\hat{\mathbf{x}}$ is used to produce $A\hat{\mathbf{x}}$ as an approximation of \mathbf{b} , the distance from \mathbf{b} to $A\hat{\mathbf{x}}$ is called the least-squares error of this approximation.

1.7 Linear Models

In statistical analysis of scientific and engineering data, there is commonly a different notation used. Instead of $A\mathbf{x} = \mathbf{b}$, we write $X\beta = \mathbf{y}$ and refer to X as the **design matrix**, β as the **parameter vector**, and \mathbf{y} as the **observation vector**.

Suppose we have a certain amount of measurement data which, when plotted, seem to lie close to a straight line. Let $y = \beta_0 + \beta_1 x$. The difference between the observed value (from the measurements) and the predicted value (from the line) is called a **residual**. The **least-squares line** is the line that minimizes the sum of the squares of the residuals. This line is also called a **line of regression of** y **on** x. The coefficients β_0 and β_1 are called (linear) **regression coefficients**.

The previous system is equivalent to solving the least-squares solution of $X\beta = \mathbf{y}$ if $X = \begin{bmatrix} \mathbf{1} & \mathbf{x} \end{bmatrix}$ (where **1** has entries 1, 1, ..., 1, and **x** has entries x_1, \ldots, x_n), β has entries β_0 and β_1 and **y** has entries y_1, \ldots, y_n . A common practice before computing a least-squares line is to compute the average \bar{x} of the original x-values, and form a new variable $x^* = x - \bar{x}$. The new x-data are said to be in **mean-deviation form**. In this case, the two columns of X will be orthogonal.

The residual vector ϵ is defined as $\epsilon = \mathbf{y} - X\beta$. So $\mathbf{y} = X\beta + \epsilon$. Any equation in this form is referred to as a linear model, in which ϵ should be minimized.

1.8 Inner Product Spaces

An inner product on a vector space V is a function that, to each pair of vectors \mathbf{u} and \mathbf{v} in U, associates a real number $\langle \mathbf{u}, \mathbf{v} \rangle$ and satisfies the following axioms, for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and all scalars c:

1.
$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$

2.
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$$

3.
$$\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$$

4. $\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$ and $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ if, and only if $\mathbf{u} = \mathbf{0}$

A vector space with an inner product is called an **inner product space**.

2 Theorems

1. Consider the vectors \mathbf{u} and \mathbf{v} as $n \times 1$ matrices. Then, $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$.

- 2. If $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$ then \mathbf{u} and \mathbf{v} are orthogonal if, and only if $\mathbf{u} \cdot \mathbf{v} = 0$.
- 3. Two vectors \mathbf{u} and \mathbf{v} are orthogonal if, and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.
- 4. A vector \mathbf{z} is in W^{\perp} if, and only if \mathbf{z} is orthogonal to every vector in a set that spans W.
- 5. W^{\perp} is a subspace of \mathbb{R}^n .
- 6. If A is an $m \times n$ matrix, then $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$ and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^T$.
- 7. If A is an $m \times n$ matrix, then $\operatorname{Row} A = \operatorname{Col} A^T$.
- 8. If $S = {\mathbf{u_1}, ..., \mathbf{u_p}}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.
- 9. Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each \mathbf{y} in W, the weights in the linear combination $\mathbf{y} = c_1 \mathbf{u}_1 + \ldots + c_p \mathbf{u}_p$ are given by $c_j = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j} = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\|\mathbf{u}_i\|^2}$.
- 10. An $m \times n$ matrix U has orthonormal columns if, and only if $U^T U = I$.
- 11. Let U be an $m \times n$ matrix with orthonormal columns, and let x and y be in \mathbb{R}^n , then:
 - (a) $||U\mathbf{x}|| = ||\mathbf{x}||$
 - (b) $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$
 - (c) $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$ if, and only if $\mathbf{x} \cdot \mathbf{y} = 0$.
- 12. If U is a square matrix, then U is an orthogonal matrix if, and only if its columns are orthonormal columns. The rows of an orthogonal matrix are also orthonormal rows.
- 13. If **y** and **u** are any nonzero vectors in \mathbb{R}^n , then the orthogonal projection of **y** onto **u** is $\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j} \mathbf{u} = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\|\mathbf{u}_i\|^2} \mathbf{u}$, and the component **z** of **y** orthogonal to **u** is $\mathbf{z} = \mathbf{y} \hat{\mathbf{y}}$.
- 14. Let W be a subspace of \mathbb{R}^n . Then each \mathbf{y} in \mathbb{R}^n can be written uniquely in the form $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u_1}, \ldots, \mathbf{u_p}\}$ is any orthogonal basis of W, then $\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u_1}}{\mathbf{u_1} \cdot \mathbf{u_1}} \mathbf{u_1} + \ldots + \frac{\mathbf{y} \cdot \mathbf{u_p}}{\mathbf{u_p} \cdot \mathbf{u_p}} \mathbf{u_p}$, and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.
- 15. The Best Approximation Theorem. Let W be a subspace of \mathbb{R}^n , \mathbf{y} any vector in \mathbb{R}^n , and $\hat{\mathbf{y}}$ the orthogonal projection of \mathbf{y} onto W. Then $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y} , in the sense that $\|\mathbf{y} \hat{\mathbf{y}}\| < \|\mathbf{y} \mathbf{u}\|$ for all $\mathbf{u} \neq \hat{\mathbf{y}}$ in W.
- 16. If $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then $\hat{\mathbf{y}} = (\mathbf{y} \cdot \mathbf{u}_1)\mathbf{u}_1 + \ldots + (\mathbf{y} \cdot \mathbf{u}_p)\mathbf{u}_p$. If $U = [\mathbf{u}_1 \ \ldots \ \mathbf{u}_p]$, then $\hat{\mathbf{y}} = UU^T \mathbf{y}$ for all \mathbf{y} in \mathbb{R}^n .
- 17. The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ coincides with the nonempty set of solutions of the normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$.
- 18. The matrix $A^T A$ is invertible if, and only if the columns of A are linearly independent. In that case, the equation $A\mathbf{x} = \mathbf{b}$ has only one least-squares solution $\hat{\mathbf{x}}$, and it is given by $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$.

3 Calculation Rules

3.1 Algebraic Definitions

The dot product of vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n is defined as:

$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + \dots u_n v_n \tag{1}$$

The length of a vector is defined as:

$$\|\mathbf{u}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{u_1^2 + \ldots + u_n^2}$$
⁽²⁾

3.2 Algebraic Rules

The following rules apply for the dot product:

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u} \tag{3}$$

$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w} \tag{4}$$

$$(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v}) \tag{5}$$

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} \tag{6}$$

The following rules apply for vector lengths:

$$\|c\mathbf{u}\| = |c|\|\mathbf{u}\| \tag{7}$$

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta \tag{8}$$

Where θ is the angle between vectors **v** and **u**.