Orthogonality and Least Squares

1 Definitions and Terms

1.1 Basics of Vectors

Two vectors u and v in R™ can be multiplied with each other, using the dot product, also called
the inner product, which produces a scalar value. It is denoted as u - v, and defined as u-v =
u1v1 + ... + upv,. The length of a vector u, sometimes also called the norm, is denoted by [|u||. It is

defined as |Jul| = yu-u=/uf +...+u2.
A unit vector is a vector whose length is 1. For any nonzero vector u, the vector ﬁ is a unit vector in

the direction of u. This process of creating unit vectors is called normalizing. The distance between
u and v, written as dist(u,v), is the length of the vector v — u. That is, dist(u,v) = ||v —u|.

1.2 Orthogonal Sets

Two vectors u and v in R™ are orthogonal if u-v = 0. If z is orthogonal to every vector in a subspace
W, then z is said to be orthogonal to W. The set of all vectors z that are orthogonal to W is called
the orthogonal complement of W, and is denoted by W+.

A set of vectors {uy, ..., u,} in R" is said to be an orthogonal set if each pair of distinct pair of vectors
is orthogonal, that is, if u; - u; = 0 whenever ¢ # j. An orthogonal basis for a subspace W of R" is a
basis for W of R” is a basis for W that is also an orthogonal set.

1.3 Orthonormal Sets

A set of vectors {ui, ..., up} in R is an orthonormal set if it is an orthogonal set of unit vectors.
If W is the subspace spanned by such a set, then {uj, ..., uy} is an orthonormal basis for W. An
orthogonal matrix is a square invertible matrix U such that U~! = U”. Such a matrix always has
orthonormal columns.

1.4 Decomposing Vectors

If u is any nonzero vector in R", then it is possible to decompose any vector y in R™ into the sum of two
vectors, one being a multiple of u, and one being orthogonal to it. The projection § (being the multiple
of u) is called the orthogonal projection of y onto u, and the component of y orthogonal to u is,
surprisingly, called the component of y orthogonal to u.

Just like it is possible to project vectors on a vector, it is also possible to project vectors on a subspace.
The projection ¥ onto the subspace W is called the orthogonal projection of y onto W. ¥ is sometimes
also called the best approximation to y by elements of W.



1.5 The Gram-Schmidt Process

The Gram-Schmidt Process is an algorithm for producing an orthogonal or orthonormal basis {uy,
..., Up } for any nonzero subspace of R". Let W be the subspace, having basis {X1, ..., Xp}. Let uy =x3
and u; = x; — %5 for 1 < ¢ < n, where %; is the projection of x; on the subspace with basis {uy, ...,
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1.6 Least-Squares Problem

The general least-squares problem is to find an x that makes ||[b — Ax|| as small as possible. If A is
mxn and b is in R™, a least-squares solution of Ax = b is an %X in R” such that ||b— A%| < ||b— Ax||
for all x in R™. When a least-squares solution X is used to produce AX as an approximation of b, the
distance from b to AX is called the least-squares error of this approximation.

1.7 Linear Models

In statistical analysis of scientific and engineering data, there is commonly a different notation used.
Instead of Ax = b, we write X3 = y and refer to X as the design matrix, 3 as the parameter vector,
and y as the observation vector.

Suppose we have a certain amount of measurement data which, when plotted, seem to lie close to a
straight line. Let y = §p + S1z. The difference between the observed value (from the measurements)
and the predicted value (from the line) is called a residual. The least-squares line is the line that
minimizes the sum of the squares of the residuals. This line is also called a line of regression of y on
x. The coefficients Gy and ; are called (linear) regression coefficients.

The previous system is equivalent to solving the least-squares solution of X5 =y if X = [1 x] (where
1 has entries 1, 1, ..., 1, and x has entries z1, ..., ,), 0 has entries 5y and 3; and y has entries yq, .. .,
Yn- A common practice before computing a least-squares line is to compute the average T of the original
x-values, and form a new variable x* = x — . The new x-data are said to be in mean-deviation form.
In this case, the two columns of X will be orthogonal.

The residual vector ¢ is defined as e =y — X3. Soy = X3 + €. Any equation in this form is referred
to as a linear model, in which € should be minimized.

1.8 Inner Product Spaces

An inner product on a vector space V' is a function that, to each pair of vectors u and v in U, associates
a real number (u,v) and satisfies the following axioms, for all u, v, w in V" and all scalars ¢:

1. (u,v) = (v,u)
2. (u+v,v)={(u,w)+ (v,w)
3. {cu,v) = c(u,v)
4. (u,u) >0 and (u,u) =0if, and only if u=0
A vector space with an inner product is called an inner product space.

2 Theorems

1. Consider the vectors u and v as n x 1 matrices. Then, u-v = u’v.
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If u # 0 and v # 0 then u and v are orthogonal if, and only if u-v = 0.

Two vectors u and v are orthogonal if, and only if ||u + v||? = ||ul? + ||v|*.

A vector z is in W+ if, and only if z is orthogonal to every vector in a set that spans .
W+ is a subspace of R™.

If Ais an m x n matrix, then ( RowA)®T = NulA and ( Cold)* = NulAT.

If Ais an m x n matrix, then RowA = ColAT.

If S = {uy, ..., up} is an orthogonal set of nonzero vectors in R"™, then S is linearly independent
and hence is a basis for the subspace spanned by S.

Let {u1, ..., up} be an orthogonal basis for a subspace W of R". For each y in W, the weights in
the linear combination y = ciuy + ... + cpup are given by ¢; = Zl:f = H};L‘lfz
J ) J

An m x n matrix U has orthonormal columns if, and only if UTU = I.
Let U be an m X n matrix with orthonormal columns, and let x and y be in R", then:

(a) [[Ux] =]l

(b) (Ux)-(Uy) =x-y

(¢) (Ux)-(Uy)=0if, and only if x -y = 0.
If U is a square matrix, then U is an orthogonal matrix if, and only if its columns are orthonormal
columns. The rows of an orthogonal matrix are also orthonormal rows.

If y and u are any nonzero vectors in R"™, then the orthogonal projection of y onto uis § = ﬁu =

ﬁu, and the component z of y orthogonal touisz=y —y.
J

Let W be a subspace of R®. Then each y in R™ can be written uniquely in the formy = § + z

where § is in W and z is in WL. In fact, if {uy, ..., up} is any orthogonal basis of W, then
y=Ttwm+...+ j’;lfpup, andz=y—3J.

The Best Approximation Theorem. Let W be a subspace of R™, y any vector in R", and §
the orthogonal projection of y onto W. Then ¥ is the closest point in W to y, in the sense that
Iy =91 < Iy —ull for all u # § in W,

If {uy, ..., up} is an orthonormal basis for a subspace W of R, then § = (y-uq)ui+...+(y-up)up.
fU=[u ... upl,then y =UUTy for all y in R".

The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions of the
normal equations AT Ax = A”b.

The matrix AT A is invertible if, and only if the columns of A are linearly independent. In that case,
the equation Ax = b has only one least-squares solution %, and it is given by % = (AT A)~1ATb.



3 Calculation Rules

3.1 Algebraic Definitions

The dot product of vectors u and v in R" is defined as:

u-v=_|:|-]: [ =uvr+... Uy

The length of a vector is defined as:

Jlul =va-u=/u}+...+u2

3.2 Algebraic Rules
The following rules apply for the dot product:
u-v=v-u

(u+v) - w=u-w+v-w
(cu)-v=c(u-v)=u-(cv)
u-v=u'v

The following rules apply for vector lengths:
[leull = |ef[[ul|

u-v = |lull||v] cos b

Where 6 is the angle between vectors v and u.



