Matrix Algebra

1 Definitions and Terms

1.1 Matrix Entries

If A is an m x n matrix, then the scalar in the ith row and the jth column is denoted by a;;. The
diagonal entries in a matrix are the numbers a;; where i = j. They form the main diagonal of A.
A diagonal matrix is a square matrix whose nondiagonal entries are 0. An example is [,,. A matrix
whose entries are all zero is called a zero matrix, and denoted as 0. To matrices are equal if they have
the same size, and all their corresponding entries are equal.

1.2 Matrix Operations

If A and B are both m x n matrices, and A + B = C then C is also an m x n matrix whose entries are
the sum of the corresponding entries of A and B. If r is a scalar, then the scalar multiple C = rA is
the matrix whose entries are r times the corresponding entries of A.

Two matrices can be multiplied, by multiplying one matrix by the columns of the other matrix. If A is
an m x n matrix and B is an n x p matrix with columns by, b, ..., by, then the product AB is the m x p
matrix AB=A[by bz ... bp]=[Aby Abs ... Abp|. Note that usually AB # BA. If AB = BA,
then we say that A and B commute with one another.

Since it is possible to multiply matrices, it is also possible to take their power. If A is a square matrix,
then A¥ = A... A, where there should be k A’s. Also A is defined as I,,. Given an m x n matrix, the
transpose of A is the n x m matrix, denoted by AT, whose columns are formed from the corresponding
rows of A. So row;(A) = col;(AT). The transpose should not be confused by a matrix to the power 7.

1.3 Inverses

An n xn (square) matrix A is said to be invertible if there is an n x n matrix C such that CA = I,, = AC.
In this case C is the inverse of A, denoted as A~1. A matrix that is not invertible is called a singular
matrix. For a 2-dimensional matrix, the quantity ajiass — aj2a21 is called the determinant, noted as
det A = ad — bc. An elementary matrix is a matrix that is obtained by performing a single elementary
row operation on an identity matrix.

A linear transformation 7' : R" — R" is said to be invertible if there exists a function S : R® — R"™ such
that S(T'(x)) = x and T(S(x)) = x for all x in R™. We call S the inverse of T" and write it as S = T~!
or S(x) = T~1(x). If T(x) = Ax, then A is called the standard matrix of the linear transformation 7.

1.4 Subspaces

A subspace of R" is any set H in R™ for which three properties apply. The zero vector 0 is in H, for
each u and v in H, the sum u+v is in H, and for each u in H, the vector cu is in H (for every scalar c).
Subspaces are always a point (0-dimensional) on the origin, a line (1-dimensional) through the origin, a
plane (2-dimensional) through the origin, or any other multidimensional plane through the origin.



The column space of a matrix A is the set Col A of all linear combinations of the columns of A. The
column space of an m x n matrix is a subspace of R"™. The row space of a matrix A is the set Row A of
all linear combinations of the rows of A. The null space of a matrix A is the set Nul A of all solutions
to the homogeneous equation Ax = 0. The null space of an m x n matrix is a subspace of R™. A basis
for a subspace H or R” is a linearly independent set in H that spans H.

1.5 Dimension and Rank

Suppose the set 3 = {b1,...,bp} is a basis for a subspace H. For each x in H, the coordinates of
x relative to the basis § are the weights ci, ..., ¢, such that x = ¢;b1 + ... + ¢;bp. The vector
[x]g in R? with coordinates ci, ..., ¢, is called the coordinate vector of x (relative to 3) or the
beta-coordinate vector of x.

The dimension of a subspace H, denoted by dim H, is the number of vectors in any basis for H. The
zero subspace has no basis, since the zero vector itself forms a linearly dependent set. The rank of a
matrix A, denoted by rank A, is the dimension of the column space of A. So per definition rank A =
dim Col A.

1.6 Kernel and Range

Let T be a linear transformation. The kernel (or null space) of T, denoted as ker T, is the set of all u
such that T'(u) = 0. The range of T, denoted as range T, is the set of all vectors v for which T'(x) = v
has a solution. If T'(x) = Ax, then the kernel of T is the null space of A, and the range of T is the column
space of A.

2 Theorems

1. The Row-Column Rule. If A is an m x n matrix, and B is an n X p matrix, then the entry in
the ith row and the jth column of AB is (AB)W = a,;lblj + aigbgj + ...+ a,;nbnj.

2. From the Row-Column Rule can be found that row;(AB) = row;(A) - B.
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3. If A has size 2 x 2. If ad — bc # 0, then A is invertible, and A~! = adibc [ ] .
—c a
4. If A is an invertible matrix, then for each b in R", the equation Ax = b has the unique solution
x=A"1b.

5. If A is invertible, then A~! is invertible, and (A=)~ = A.

6. If A and B are n X n matrices, then so is AB, and the inverse of AB is the product of the inverses
of A and B in the reverse order. That is, (AB)~! = B~*A~!. This also goes for any number of
matrices. That is, if Ay, ..., A, are n x n matrices, then (4;4;... A,)" ' = A1 ... AFtATL

7. If A is an invertible matrix, then so is AT, and the inverse of AT is the transpose of A~!. That is,
(AT)fl — (Afl)T'

8. If an elementary row operation is performed on an m X n matrix A, the resulting matrix can be
written as FA, where the m X m elementary matrix F is created by performing the same row
operation on I,,.
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Each elementary matrix F is invertible. The inverse of E is the elementary matrix of the same type
that transforms E back into I.

An n x n matrix A is invertible if, and only if A is row equivalent to I,, and in this case, any
sequence of elementary row operations that reduces A to I,, also transforms I,, into A~

Let T : R® — R™ be a linear transformation, and let A be the standard matrix for 7. That

is, T(x) = Ax. Then T is invertible if, and only if A is an invertible matrix. In that case,
T-1(x) = A x.
If uy, ..., up are in the subspace H, then every vector in Span{uy,...,up} isin H.

If A is an m x n matrix with column space Col A, then Col A = Span{as,...,a,}. Also Col A is
the set of all b for which Ax = b has a solution.

The pivot columns of a matrix A form a basis for the column space of A.
The dimension of Nul A is equal to the number of free variables in Ax = 0.
The dimension of Col A (which is rank A) is equal to the number of pivot columns in A.

The Rank Theorem. If a matrix A has n columns, then dim Col A + dim Nul A = rank A +
dim Nul A = n.

The Basis Theorem. Let H be a p-dimensional subspace of R™. Any linearly independent set of
exactly p elements in H is automatically a basis for H. Also any set of p elements of H that spans
H is automatically a basis for H.

If the linear transformation T'(x) = Ax, then ker T' = Nul A and range T' = Col A.
If R™ is the domain of T', then dim ker T" + dim range T' = n.

If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon
form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

The Invertible Matrix Theorem. The following statements are equivalent for a particular
square n x n matrix A (be careful: these statements are not equivalent for rectangular matrices).
That is, if one is true, then all are true, and if one is false, then all are false:

(a) A is an invertible matrix.
(b) A is row equivalent to the n x n identity matrix I,,.

(¢) A has n pivot positions.
()
(e)
(f
(

The equation Ax = 0 has only the trivial solution.
The columns of A form a linearly independent set.

) The linear transformation x — Ax is one-to-one.
) The equation Ax = b has at least one solution for each b in R™. That is, the mapping x — Ax
is onto R".

o

The columns of A span R™.

The linear transformation x — Ax maps R" onto R".
There is an n x n matrix C' such that CA =1 = AC.
The transpose A7 is an invertible matrix.

The columns of A form a basis of R".

Col A =TR"



(n) dim Col A =rank A=n

(o) NulA=0

(p) dim Nul A =0

(q) det A # 0 (The definition for determinants will be given in chapter 3.)
)

(r) The number 0 is not an eigenvalue of A (The definition for eigenvalues will be given in chapter
5.)

3 Calculation Rules

3.1 Algebraic Definitions

If A, B and C are m X n matrices, then the addition and multiplication is defined as:

a1 ... Qi b1 ... bin (a11 +b11) .. (ain +b1n)
A+B=| : N L= : : (1)
Am1 . Qmn ] b1 -+ bmm (m1+bm1) . (@mn + bmn)
(a1 ... ain ra;; ... Taip
rA=r| = : (2)
(Gm1 - Qmn Tam1 .. TQmp

It is also possible to multiply matrices. If A is an m X n matrix and B is an n X p matrix with columns
by, ba, ..., by, then the product AB is the m X p matrix:

AB=A[by by ... by]=[Aby Aby ... Aby] (3)
Note that AB # BA. Also, their power is:
AP =A.. A (k times) (4)
The transpose of a matrix is defined as:

a1 e a1n ail e Am1
A= | : = AT =] ¢ : (5)

Aml -+ Qmn A1n --- QApm

3.2 Algebraic Rules

The following rules apply for matrix addition.

A+B=B+A (6)
(A+B)+C=A+(B+C) (7)
A+0=A (8)
r(A+B)=rA+rB (9)



(r+s)A=rA+sA
r(sA) = (rs)A
For matrix multiplication, the following rules apply.
A(BC) = (AB)C
A(B+C)=AB+ AC
(B+C)A=BA+CA
r(AB) = (rA)B = A(rB)
IL,A=A=AI,
A’ =1,
Iu=nu
The following rules apply for matrix transposes.
(AT)T = A
(A+B)T = A" + BT
(rA)" =r(AT)
(AB)T = BT AT



