Matrix Algebra

1 Definitions and Terms

1.1 Matrix Entries

If A is an $m \times n$ matrix, then the scalar in the *i*th row and the *j*th column is denoted by a_{ij} . The diagonal entries in a matrix are the numbers a_{ij} where $i = j$. They form the main diagonal of A. A diagonal matrix is a square matrix whose nondiagonal entries are 0. An example is I_n . A matrix whose entries are all zero is called a **zero matrix**, and denoted as 0. To matrices are **equal** if they have the same size, and all their corresponding entries are equal.

1.2 Matrix Operations

If A and B are both $m \times n$ matrices, and $A + B = C$ then C is also an $m \times n$ matrix whose entries are the sum of the corresponding entries of A and B. If r is a scalar, then the **scalar multiple** $C = rA$ is the matrix whose entries are r times the corresponding entries of A .

Two matrices can be multiplied, by multiplying one matrix by the columns of the other matrix. If A is an $m \times n$ matrix and B is an $n \times p$ matrix with columns $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_p$, then the product AB is the $m \times p$ matrix $AB = A [$ **b**₁ **b**₂ ... **b**_p $] = [Ab_1 \ Ab_2 \ ... \ Ab_p]$. Note that usually $AB \neq BA$. If $AB = BA$, then we say that A and B commute with one another.

Since it is possible to multiply matrices, it is also possible to take their power. If A is a square matrix, then $A^k = A \dots A$, where there should be k A's. Also A^0 is defined as I_n . Given an $m \times n$ matrix, the **transpose** of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A. So $\text{row}_i(A) = \text{col}_i(A^T)$. The transpose should not be confused by a matrix to the power T.

1.3 Inverses

An $n \times n$ (square) matrix A is said to be invertible if there is an $n \times n$ matrix C such that $CA = I_n = AC$. In this case C is the **inverse** of A, denoted as A^{-1} . A matrix that is not invertible is called a **singular** matrix. For a 2-dimensional matrix, the quantity $a_{11}a_{22} - a_{12}a_{21}$ is called the determinant, noted as $\det A = ad - bc$. An elementary matrix is a matrix that is obtained by performing a single elementary row operation on an identity matrix.

A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is said to be **invertible** if there exists a function $S : \mathbb{R}^n \to \mathbb{R}^n$ such that $S(T(\mathbf{x})) = \mathbf{x}$ and $T(S(\mathbf{x})) = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n . We call S the **inverse** of T and write it as $S = T^{-1}$ or $S(\mathbf{x}) = T^{-1}(\mathbf{x})$. If $T(\mathbf{x}) = A\mathbf{x}$, then A is called the **standard matrix** of the linear transformation T.

1.4 Subspaces

A subspace of \mathbb{R}^n is any set H in \mathbb{R}^n for which three properties apply. The zero vector **0** is in H, for each **u** and **v** in H, the sum $\mathbf{u} + \mathbf{v}$ is in H, and for each **u** in H, the vector cu is in H (for every scalar c). Subspaces are always a point (0-dimensional) on the origin, a line (1-dimensional) through the origin, a plane (2-dimensional) through the origin, or any other multidimensional plane through the origin.

The column space of a matrix A is the set Col A of all linear combinations of the columns of A . The column space of an $m \times n$ matrix is a subspace of \mathbb{R}^m . The **row space** of a matrix A is the set Row A of all linear combinations of the rows of A. The **null space** of a matrix A is the set Nul A of all solutions to the homogeneous equation $A\mathbf{x} = \mathbf{0}$. The null space of an $m \times n$ matrix is a subspace of \mathbb{R}^n . A basis for a subspace H or \mathbb{R}^n is a linearly independent set in H that spans H.

1.5 Dimension and Rank

Suppose the set $\beta = {\bf{b_1}, \ldots, b_p}$ is a basis for a subspace H. For each x in H, the **coordinates of** x relative to the basis β are the weights c_1, \ldots, c_p such that $\mathbf{x} = c_1 \mathbf{b}_1 + \ldots + c_p \mathbf{b}_p$. The vector $[\mathbf{x}]_\beta$ in \mathbb{R}^p with coordinates c_1, \ldots, c_p is called the **coordinate vector of x** (relative to β) or the beta-coordinate vector of x.

The **dimension** of a subspace H , denoted by dim H , is the number of vectors in any basis for H . The zero subspace has no basis, since the zero vector itself forms a linearly dependent set. The rank of a matrix A, denoted by rank A, is the dimension of the column space of A. So per definition rank $A =$ dim Col A.

1.6 Kernel and Range

Let T be a linear transformation. The **kernel** (or **null space**) of T, denoted as ker T, is the set of all **u** such that $T(\mathbf{u}) = \mathbf{0}$. The range of T, denoted as range T, is the set of all vectors **v** for which $T(\mathbf{x}) = \mathbf{v}$ has a solution. If $T(\mathbf{x}) = A\mathbf{x}$, then the kernel of T is the null space of A, and the range of T is the column space of A.

2 Theorems

- 1. The Row-Column Rule. If A is an $m \times n$ matrix, and B is an $n \times p$ matrix, then the entry in the *i*th row and the *j*th column of AB is $(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj}$.
- 2. From the Row-Column Rule can be found that $row_i(AB) = row_i(A) \cdot B$.
- 3. If A has size 2×2 . If $ad bc \neq 0$, then A is invertible, and $A^{-1} = \frac{1}{ad bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.
- 4. If A is an invertible matrix, then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.
- 5. If A is invertible, then A^{-1} is invertible, and $(A^{-1})^{-1} = A$.
- 6. If A and B are $n \times n$ matrices, then so is AB, and the inverse of AB is the product of the inverses of A and B in the reverse order. That is, $(AB)^{-1} = B^{-1}A^{-1}$. This also goes for any number of matrices. That is, if A_1, \ldots, A_p are $n \times n$ matrices, then $(A_1 A_2 \ldots A_p)^{-1} = A_p^{-1} \ldots A_2^{-1} A_1^{-1}$.
- 7. If A is an invertible matrix, then so is A^T , and the inverse of A^T is the transpose of $A⁻¹$. That is, $(A^T)^{-1} = (A^{-1})^T.$
- 8. If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA , where the $m \times m$ elementary matrix E is created by performing the same row operation on I_m .
- 9. Each elementary matrix E is invertible. The inverse of E is the elementary matrix of the same type that transforms E back into I.
- 10. An $n \times n$ matrix A is invertible if, and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n into A^{-1} .
- 11. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation, and let A be the standard matrix for T. That is, $T(x) = Ax$. Then T is invertible if, and only if A is an invertible matrix. In that case, $T^{-1}(\mathbf{x}) = A^{-1}\mathbf{x}.$
- 12. If $\mathbf{u}_1, \ldots, \mathbf{u}_p$ are in the subspace H, then every vector in $\text{Span}\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is in H.
- 13. If A is an $m \times n$ matrix with column space Col A, then Col $A = \text{Span}\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$. Also Col A is the set of all **b** for which $A\mathbf{x} = \mathbf{b}$ has a solution.
- 14. The pivot columns of a matrix A form a basis for the column space of A.
- 15. The dimension of Nul A is equal to the number of free variables in $A\mathbf{x} = \mathbf{0}$.
- 16. The dimension of Col A (which is rank A) is equal to the number of pivot columns in A .
- 17. The Rank Theorem. If a matrix A has n columns, then dim Col $A + \dim$ Nul $A = \text{rank } A +$ dim Nul $A = n$.
- 18. The Basis Theorem. Let H be a p-dimensional subspace of \mathbb{R}^n . Any linearly independent set of exactly p elements in H is automatically a basis for H . Also any set of p elements of H that spans H is automatically a basis for H .
- 19. If the linear transformation $T(\mathbf{x}) = A\mathbf{x}$, then ker $T = \text{Nul } A$ and range $T = \text{Col } A$.
- 20. If \mathbb{R}^n is the domain of T, then dim ker $T + \dim \operatorname{range} T = n$.
- 21. If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B .
- 22. The Invertible Matrix Theorem. The following statements are equivalent for a particular square $n \times n$ matrix A (be careful: these statements are not equivalent for rectangular matrices). That is, if one is true, then all are true, and if one is false, then all are false:
	- (a) A is an invertible matrix.
	- (b) A is row equivalent to the $n \times n$ identity matrix I_n .
	- (c) A has n pivot positions.
	- (d) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
	- (e) The columns of A form a linearly independent set.
	- (f) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
	- (g) The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n . That is, the mapping $\mathbf{x} \mapsto A\mathbf{x}$ is onto \mathbb{R}^n .
	- (h) The columns of A span \mathbb{R}^n .
	- (i) The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
	- (i) There is an $n \times n$ matrix C such that $CA = I = AC$.
	- (k) The transpose A^T is an invertible matrix.
	- (1) The columns of A form a basis of \mathbb{R}^n .
	- (m) Col $A = \mathbb{R}^n$
- (n) dim Col $A = \text{rank } A = n$
- (o) Nul $A = 0$
- (p) dim Nul $A = 0$
- (q) det $A \neq 0$ (The definition for determinants will be given in chapter 3.)
- (r) The number 0 is not an eigenvalue of A (The definition for eigenvalues will be given in chapter 5.)

3 Calculation Rules

3.1 Algebraic Definitions

If A, B and C are $m \times n$ matrices, then the addition and multiplication is defined as:

$$
A + B = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & \dots & b_{1n} \\ \vdots & & \vdots \\ b_{m1} & \dots & b_{mn} \end{bmatrix} = \begin{bmatrix} (a_{11} + b_{11}) & \dots & (a_{1n} + b_{1n}) \\ \vdots & & \vdots \\ (a_{m1} + b_{m1}) & \dots & (a_{mn} + b_{mn}) \end{bmatrix}
$$
(1)

$$
rA = r \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} r a_{11} & \dots & r a_{1n} \\ \vdots & & \vdots \\ r a_{m1} & \dots & r a_{mn} \end{bmatrix}
$$
(2)

It is also possible to multiply matrices. If A is an $m \times n$ matrix and B is an $n \times p$ matrix with columns **, then the product AB is the** $m \times p$ **matrix:**

$$
AB = A[\mathbf{b_1}\ \mathbf{b_2}\ \ldots\ \mathbf{b_p}] = [Ab_1\ Ab_2\ \ldots\ Ab_p]
$$
 (3)

Note that $AB \neq BA$. Also, their power is:

$$
A^k = A \dots A \quad (k \text{ times}) \tag{4}
$$

The transpose of a matrix is defined as:

$$
A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \Rightarrow A^T = \begin{bmatrix} a_{11} & \cdots & a_{m1} \\ \vdots & & \vdots \\ a_{1n} & \cdots & a_{nm} \end{bmatrix}
$$
 (5)

3.2 Algebraic Rules

The following rules apply for matrix addition.

$$
A + B = B + A \tag{6}
$$

$$
(A + B) + C = A + (B + C)
$$
\n(7)

$$
A + 0 = A \tag{8}
$$

$$
r(A+B) = rA + rB \tag{9}
$$

$$
(r+s)A = rA + sA \tag{10}
$$

$$
r(sA) = (rs)A\tag{11}
$$

For matrix multiplication, the following rules apply.

$$
A(BC) = (AB)C \tag{12}
$$

$$
A(B+C) = AB + AC \tag{13}
$$

$$
(B+C)A = BA + CA \tag{14}
$$

$$
r(AB) = (rA)B = A(rB)
$$
\n⁽¹⁵⁾

$$
I_m A = A = A I_n \tag{16}
$$

$$
A^0 = I_n \tag{17}
$$

$$
I\mathbf{u} = \mathbf{u} \tag{18}
$$

The following rules apply for matrix transposes.

$$
(A^T)^T = A \tag{19}
$$

$$
(A+B)^T = A^T + B^T \tag{20}
$$

$$
(rA)^T = r(A^T) \tag{21}
$$

$$
(AB)^T = B^T A^T \tag{22}
$$