Symmetric Matrices
and Quadratic
Forms

7.1 SOLUTIONS

Notes: Students can profit by reviewing Section 5.3 (focusing on the Diagonalization Theorem) before
working on this section. Theorems 1 and 2 and the calculations in Examples 2 and 3 are important for the
sections that follow. Note that symmetric matrix means real symmetric matrix, because all matrices in the text
have real entries, as mentioned at the beginning of this chapter. The exercises in this section have been
constructed so that mastery of the Gram-Schmidt process is not needed.

Theorem 2 is easily proved for the 2 X 2 case:

b
It A:[a d}, then le(a+di\/(a—d)2 +4b2).
C

2

If b = 0 there is nothing to prove. Otherwise, there are two distinct eigenvalues, so 4 must be diagonalizable.

: . |d=A
In each case, an eigenvector for A is b |

5
1. Since 4= ; = A", the matrix is symmetric.
. __3 ] T .. .
2. Since A= 5 3 # A", the matrix is not symmetric.
. 2 2 T o .
3. Since A= 4 4 # A", the matrix is not symmetric.
i &8 3
4. Since A=|8 0 -2|=A4", the matrix is symmetric.
3 2 0
-6 2 0
5. Since A=| 0 -6 2|# A", the matrix is not symmetric.
0 0 -6

6. Since 4 is not a square matrix 4# A’ and the matrix is not symmetric.
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10.

11.

. Let P:[
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6 8
. Let P= { g 6} and compute that

r 6 8|6 8 1 0
P P= = =1,
8 —6|.8 -6 0 1
: . . . 4 ooy |6 8
Since P is a square matrix, P is orthogonal and P~ =P = g .

U2 =12
U2 142

orp ll/ﬁ 1/&}[1/\/5 —1/&]:[1 0}:12

}, and compute that

VNGV RV R VNG 1

Since P is a square matrix, P is orthogonal and P~' = P’ = {

1/42 1/&}

-5 2
. Let Pz[ 5 5}, and compute that

. [-5 2-5 27 [29 o
pP'p= = +1,
2 5|2 5/ [0 20

Thus P is not orthogonal.

-1 2 2
Let P=| 2 -1 2|, and compute that

9
P'p=l 2 -1 2| 2 -1 2|=|0
0

Thus P is not orthogonal.

2/3 2/3 1/3
Let P= 0 1/ \/g -2/ \/g , and compute that

J5/3  —4/45 —2/4/45

2/3 0 J5/3| 2/3 2/3 1/3
PTP=|2/3 1/\5 -4/J45 0 U5 =245 |=
173 =2/5 —2/45||5/3 -4/\45 -2/45

S O =

BYNCERYNA

S = O



13.

14.
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2/3 0 5/3
Since P is a square matrix, P is orthogonal and P~' = P =|2/3 15 —4/4/45 |.

173 =2/35 -2/45

S5 =5 -
-5 5 =5
Let P= , and compute that
S5 5 5
-5 5 5 -
5 =5 5 =5 5 5 -5 - 1 0 0 O
r 5 5 5 5()-5 5 =5 01 0 O
P'P= = =1,
-5 =5 5 5 5 5 5 0 0 1 O
-5 5 5 =5)|-5 5 5 - 0 0 0 1
S =5 5 =5
. . . . 0o S5 5 05
Since P is a square matrix, P is orthogonal and P~ =P" = s s s 5|
-5 5 5 =5

3 1
Let A= [ | 3}. Then the characteristic polynomial of 4 is (3—1)* —1=A* —6A+8=(A—4)(A—2), so
1
the eigenvalues of 4 are 4 and 2. For A = 4, one computes that a basis for the eigenspace is L}, which

2 -1
can be normalized to get u, :[ } For A = 2, one computes that a basis for the eigenspace is { J,

1/42
_ . ~1/42
which can be normalized to get u, = . Let
1/42
/N2 —1/42 4 0
P=[u u,]= V2 fandDz{ }
V2 12 0 2

Then P orthogonally diagonalizes 4, and 4= PDP™".
1 5 . . . 2 2
Let A= s 1l Then the characteristic polynomial of 4 is (1-A)° —=25=A" —2A—-24=(A—-6)(A +4),

1
so the eigenvalues of 4 are 6 and —4. For A = 6, one computes that a basis for the eigenspace is [J,

1/42]
N . For A =—4, one computes that a basis for the eigenspace is
1/42

—1/42
U2

which can be normalized to get u, = {

-1
{ J, which can be normalized to get u, =
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15.

16.

17.
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Let

~ N2 -2 [6 o
P=[u, uz]—|:1/\/§ 1/\/E}andD—L) _4}

Then P orthogonally diagonalizes 4, and 4= PDP™".

16
Let A= { J. Then the characteristic polynomial of 4 is (16 —A)(1-A)—16=A* —17A=(A—=17)A,

-4
so the eigenvalues of 4 are 17 and 0. For A = 17, one computes that a basis for the eigenspace is { J,

—4/\17 . .
. For A = 0, one computes that a basis for the eigenspace
/317

/17
. Let
4/ 17

-4/\17  1/\17 {17 o}
and D =
/17 4/17 0 0

which can be normalized to get u, = {

1
is L} , which can be normalized to get u, :[

P=[u, “2]:{

Then P orthogonally diagonalizes 4, and 4= PDP™".

-7 24 .. . . 2
Let A= a7 Then the characteristic polynomial of 4 is (=7 —A)(7—A)—576 =L~ —625=
(A—=25)(A +25), so the eigenvalues of A are 25 and —25. For A = 25, one computes that a basis for the

3 3/5
eigenspace is L}, which can be normalized to get u, = {4/5}. For A =-25, one computes that a basis

[—4 —4/5
for the eigenspace is 3}, which can be normalized to get u, =[ 3/5}. Let

[3/5 -4/5 250
Pz[u1 u2]= and D =
|4/5  3/5 0 -25

Then P orthogonally diagonalizes 4, and 4= PDP™".

1 1 3
Let A=|1 3 1/|. The eigenvalues of 4 are 5, 2, and 2. For A = 5, one computes that a basis for the
31 1
1 1//3

eigenspace is | 1 |, which can be normalized to get u, =| 1/ V3 |. ForA= 2, one computes that a basis for

1 /43



18.

19.

1

the eigenspace is | —2 |, which can be normalized to get u, =| -2/ J6

1

-1
basis for the eigenspace is
1

[“1 u, “3]=

0 |, which can be normalized to get u, =

YN
1/\3
1/4/3
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1//6 |
. For A =-2, one computes that a

1/6

142
0

12

. Let

/6 —1/42 5

0 0
—2/6 0landD=|0 2 0
1//6 W2 0 0 -2

Then P orthogonally diagonalizes 4, and 4= PDP™".

-2 =36 0
Let A=|-36 —23 0|. The eigenvalues of 4 are 25, 3, and —50. For A = 25, one computes that a basis
0 0 3
-4 —4/5
for the eigenspace is | 3 |, which can be normalized to get u, =| 3/5|. For A =3, one computes that a
0 0
[0] 0
basis for the eigenspace is | 0 |, which is of length 1, so u, =[ 0 |. For A =-50, one computes that a
| 1] 1
[3] 3/5
basis for the eigenspace is | 4 |, which can be normalized to get u; ={ 4/5|. Let
10] 0
[-4/5 0 3/5 250 0
P=[w, uw, w|=| 3/5 0 4/5|andD=| 0 3 0
. 0 1 0 0 0 -50

Then P orthogonally diagonalizes 4, and 4= PDP™".

3 2 4
Let A=|-2 6 2|. The eigenvalues of 4 are 7 and —2. For A = 7, one computes that a basis for the
4 2 3
-1]1
eigenspace is { 2 |,| 0| ;. This basis may be converted via orthogonal projection to an orthogonal
01
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“11T4 ~1//5
basis for the eigenspace: 2|,/ 2| ¢. These vectors can be normalized to get u, =| 2/ NG ,
(U 0
4/-/45 )
u, =|2/ 45 |. For A = —2, one computes that a basis for the eigenspace is | —1|, which can be
5/45 2
-2/3
normalized to get uy =| —1/3 |. Let
2/3
—1/J5 4/J45 -2/3 70 0
P=[u, w, uy]=| 2/5 2/4/45 -1/3|andD=|0 7 0
0 5//45  2/3 0 0 -2

Then P orthogonally diagonalizes 4, and 4= PDP™".

7 -4 4
Let A=|-4 5 0. The eigenvalues of 4 are 13, 7, and 1. For A = 13, one computes that a basis for
4 0 9
2 2/3
the eigenspace is | —1 |, which can be normalized to get u, =| —1/3 |. For A =7, one computes that a
2 2/3
-1 -1/3
basis for the eigenspace is | 2 |, which can be normalized to get u, =| 2/3|. For A = 1, one computes
2 2/3
2 2/3
that a basis for the eigenspace is | 2 |, which can be normalized to get u; =| 2/3|. Let
-1 -1/3
2/3 -1/3  2/3 13 0 0
P=[u w, w]=[-1/3 2/3 2/3|andD=| 0 7 0
2/3  2/3 -1/3 0 0 1

Then P orthogonally diagonalizes 4, and 4= PDP™".
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4 1 3 1
1 4 1 3 ) :
21. Let 4= 31 4 1 The eigenvalues of 4 are 9, 5, and 1. For A =9, one computes that a basis for
1 3 1 4
1 1/2]
. |1 . : 1/2 ,
the eigenspace is Ll which can be normalized to get u, = a2l For A =5, one computes that a basis
1 1/2]
-1 [-1/2
. . 1 . . 1/2
for the eigenspace is Ll which can be normalized to get u, = Ual For A = 1, one computes that a
1 | 1/2
-1|] 0
. . . 0]-1 : .. . .
basis for the eigenspace is ool This basis is an orthogonal basis for the eigenspace, and these
0 1
~1/2 0
, 0 ~1/2
vectors can be normalized to get u, = , Uy = . Let
1/42 0
0 /2
12 -1/2 -1\2 0] 9 0 0 0
/2 1/2 0 -1/42 050 0
P=[u u, wu; ul= and D =
12 -2 142 0 00 10
12 12 0 142 0 0 01

Then P orthogonally diagonalizes A, and 4= PDP™".
0

22. Let A= . The eigenvalues of 4 are 2 and 0. For A = 2, one computes that a basis for the

S O O N
S =

eigenspace is . This basis is an orthogonal basis for the eigenspace, and these vectors

-

b

—_
S O O~ o N O o

0
0
1
0

.
1
0
1_
=
1
0
1_
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1 0 0
. 0 /2 0 _
can be normalized to get u, = ol u, = ol and u; = { . For A =0, one computes that a basis for
0 1/2 0
0 0
. RS . ~1/42
the eigenspace is ol which can be normalized to get u, = ol Let
1 1/42
1 0 0 0 20 0 0
0 142 0 -1/42 02 0 0
P=[u w, wu; ul= and D =
0 0 1 0 0 2 0
0 12 0 142 0 0 00
Then P orthogonally diagonalizes 4, and 4= PDP™".
31 1
23. Let A=|1 3 1]. Since each row of 4 sums to 5,
1 1 3
1 31 1)1 5 1
Allj=|1 3 1||1|=|5|=5|1
1 1 1 3|1 5 1
1 1//3
and 5 is an eigenvalue of 4. The eigenvector | 1 | may be normalized to get u, =| 1/ V3 |. One may also
1 1/43
compute that
-1 31 1]-1 -2 -1
Al 1|=[1 3 1| 1|=| 2|=2] 1
0 1 1 3] 0 0 0

so | 1 | isan eigenvector of 4 with associated eigenvalue A = 2. For A =2, one computes that a basis for

0
—1||-1
the eigenspace is 1 |, =1| ;. This basis is an orthogonal basis for the eigenspace, and these vectors
0 2

~1/\2 ~1/6
can be normalized to get u, = 1//2 | and u; = -1//6 |.

0 2//6
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Let

/3 -1/42 -1/46

5 0 0
P=[u, w, u]=[1/3 12 -1/J6landD=|0 2 0
143 0 2/6 0 0 2
Then P orthogonally diagonalizes 4, and 4= PDP™".
5 4 2
24. et A=|—4 5 2. One may compute that
-2 2 2
2] [-20 -2
Al 2|=| 20|=10| 2
|1 10 1
o
so v, =| 2| isan eigenvector of 4 with associated eigenvalue A, =10. Likewise one may compute that

1

so | 1] is an eigenvector of 4 with associated eigenvalue A, =1. For A, =1, one computes that a basis

0
1]]1
for the eigenspaceis < | 1|,/ 0| ;. This basis may be converted via orthogonal projection to an
0]1]2
[1]] 1
orthogonal basis for the eigenspace: {v,,v;}=4 | 1|, =1| {. The eigenvectors v,, v,, and v, may be
10]| 4
-2/3 12 1/4/18
normalized to get the vectors u, =| 2/3 |, u, = 1/4/2 |, and u; = 1//18 |. Let
1/3 0 4/18
—2/3 12 118 10

P=[u, w, u]=| 2/3 1/¥2 -1/18andD=| 0
/3 0 4/418 0

S = O
—_ O O

Then P orthogonally diagonalizes 4, and 4= PDP™".
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25.

26.

27.

28.

29.

30.

31.

32.

33.
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a. True. See Theorem 2 and the paragraph preceding the theorem.
b. True. This is a particular case of the statement in Theorem 1, where u and v are nonzero.
c¢. False. There are n real eigenvalues (Theorem 3), but they need not be distinct (Example 3).

d. False. See the paragraph following formula (2), in which each u is a unit vector.

a. True. See Theorem 2.
b. True. See the displayed equation in the paragraph before Theorem 2.

c¢. False. An orthogonal matrix can be symmetric (and hence orthogonally diagonalizable), but not every
orthogonal matrix is symmetric. See the matrix P in Example 2.

d. True. See Theorem 3(b).

Since 4 is symmetric, (B" AB)" =B" A" B"" = B" 4B, and B" AB is symmetric. Applying this result with
A =1Igives B' B is symmetric. Finally, (BB")" =B""B" = BB", so BB is symmetric.

Let 4 be an n X n symmetric matrix. Then

(A%)-y=(4x)"y=x"4"y =x"Ay =x-(4y)
since 4" = 4.
Since 4 is orthogonally diagonalizable, 4= PDP™", where P is orthogonal and D is diagonal. Since 4 is
invertible, A" =(PDP")"' = PD™'P™". Notice that D' is a diagonal matrix, so A™" is orthogonally
diagonalizable.
If A and B are orthogonally diagonalizable, then 4 and B are symmetric by Theorem 2. If AB = BA,

then (AB)" =(BA)" = A" B" = AB. So AB is symmetric and hence is orthogonally diagonalizable by
Theorem 2.

The Diagonalization Theorem of Section 5.3 says that the columns of P are linearly independent
eigenvectors corresponding to the eigenvalues of 4 listed on the diagonal of D. So P has exactly k&
columns of eigenvectors corresponding to A. These k£ columns form a basis for the eigenspace.

If A=PRP™', then P"' AP =R. Since P is orthogonal, R = P" AP . Hence R" =(P" AP)" =P" A" P =
P" AP = R, which shows that R is symmetric. Since R is also upper triangular, its entries above the

diagonal must be zeros to match the zeros below the diagonal. Thus R is a diagonal matrix.

It is previously been found that 4 is orthogonally diagonalized by P, where
—1/\2 -1/46 143 8 0 0
P=[u, w, u]=| /N2 -1/J6 1/\3|andD=|0 6 0
0 2/J6 1/43 0 0 3
Thus the spectral decomposition of 4 is
A=ruu,” +huu,’ + k3u3u3r =8uu,’ +6u,u, +3u3u3T
/2 -1/2 0 1/6 1/6 -2/6 1/3 1/3 1/3

=8| -1/2 1/2 0(+6] 1/6 1/6 -2/6(+3|1/3 1/3 1/3
0 0 0 -2/6 =2/6 4/6 /3 1/3 1/3
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34. It is previously been found that 4 is orthogonally diagonalized by P, where

/42 -1/\18  —2/3 70 0
P=[u, u, u]=| 0 4/J18 -1/3|andD=|0 7 0
N2 u\is 273 0 0 -2

Thus the spectral decomposition of 4 is

T r r r T T
A= uu,; +iuu, +iuu; =7wu,; +7u,u, —2uu,

/2 0 1/2 1/18 —4/18 -1/18 4/9 2/9 -4/9
=7, 0 O 0|+7|-4/18 16/18 4/18|-2| 2/9 1/9 -2/9
/2 0 1/2 -1/18  4/18  1/18 -4/9 -2/9 4/9

35. a. Givenx inR”, bx = (uu’ )x =u(u’x) = (u” x)u, because u’x is a scalar. So Bx = (x - u)u. Since u is a
unit vector, Bx is the orthogonal projection of x onto u.
b. Since B" =(uu’)” =u’"u” =uu’ =B, Bis a symmetric matrix. Also,
B? =(uu”)(uu” ) =u( u)u” =uu” =B because u'u=1.

¢. Since u'u=1, Bu=(uu’ )u=u(u’u)=u(l)=u, so u is an eigenvector of B with corresponding
eigenvalue 1.

36. Givenany y in R”, let y=By andz=y — ¥ . Suppose that B" =B and B> =B. Then B'B=BB=B.
a. Since z-y=(y—§) (By)=y (By)-¥-(By)=y By—(By)' By=y By-y B'By=0,zis
orthogonal to y.
b. Any vector in W = Col B has the form Bu for some u. Noting that B is symmetric, Exercise 28 gives
(y-y)-Buw=[B(y-y)]-u=[By-BBy]-u=0
since B*=B. Soy—¥ isin W™, and the decomposition y =y + (y —¥ ) expresses y as the sum of a

vector in W and a vector in W . By the Orthogonal Decomposition Theorem in Section 6.3, this
decomposition is unique, and so y must be proj,y.

5 2 9 -6
2 5 -6 9 _
37. [M] Let A= o 6 s 5| The eigenvalues of 4 are 18, 10, 4, and —12. For A = 18, one
-6 9 2 5
-1 -1/2
. . . 1 . . 1/2
computes that a basis for the eigenspace is Ll which can be normalized to get u, = a2l For
1 1/2
1 1/2
. . |1 . . 1/2
A = 10, one computes that a basis for the eigenspace is e which can be normalized to get u, = 2l
1 1/2
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1
For A = 4, one computes that a basis for the eigenspace is 1 , which can be normalized to get
-1
1/2 1
1/2 . . |1 .
u,; = 12l For A =—12, one computes that a basis for the eigenspace is 0l which can be
-1/2 1
1/2 -1/2 172 1/2  1/2
-1/2 /2 172 1/2 -1/2

normalized to get u, = .Let P=[w;, wuw, wu; u, and

o2 12 -12 -1/2

-1/2
1/2 /2 1/2 -1/2  1/2
18 0 0 0
D= 0 18 2 g.ThenPorthogonally diagonalizes 4, and A= PDP™".
0 0 -12

38 —-18 —-06 -.04
-18 59 -04 .12 .
[M] Let A= . The eigenvalues of 4 are .25, .30, .55, and .75. For A = .25,
-06 -.04 47 -12

-04 12 =12 41

4 .8
. : |2 . . 4
one computes that a basis for the eigenspace is 5| which can be normalized to get u, = 4l For
1 2
-1
. : . |2 . :
A = .30, one computes that a basis for the eigenspace is 5| which can be normalized to get
4
-2 2
-4 . . |- . :
u, = 4l For A = .55, one computes that a basis for the eigenspace is 4l which can be normalized
.8 2
4 -2
- . : |4 .
to get uy = gl For A = .75, one computes that a basis for the eigenspace is Ll which can be

4 2
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-4 8 -2 4 -4
, 8 4 -4 -2 8
normalized to get u, = S Let P=[u;, w, wu; w,l= 4 4 s o and
4 2 8 4 4
.25 0 0 0
0 .30 0 0 . . -1
D= . Then P orthogonally diagonalizes 4, and A= PDP™ .
0 0 .55 0
0 0 0 .75
31 58 .08 44
58 -56 44 -58 _
[M] Let 4= . The eigenvalues of 4 are .75, 0, and —1.25. For A = .75, one
08 44 19 -08
44 -58 -08 .31
1] [3
: : . 0112 . : .
computes that a basis for the eigenspace is oll2l This basis may be converted via orthogonal
11]10
17137 1/42
. ) 0|4 ) 0
projection to the orthogonal basis oll 211 These vectors can be normalized to get u, = ol
1] |-3] 142
[ 37450 | )
4//50 . . | -1 .
u, = . For A =0, one computes that a basis for the eigenspace is , which can be
4/4/50 4
|-3/4/50 | 2
-4 -2
: -2 : : |4
normalized to get u; = gl For A =—1.25, one computes that a basis for the eigenspace is L
4 2
-4
. . .8
which can be normalized to get u, = 5|
4
/N2 3/450 -4 -4 75 0 0 0
0 4/J50 -2 8 50 0
Let P=[u;, w, wu; ul= V50 and D= . Then P
0 4/450 8 -2 0 0
M2 3/4/50 4 4 0 -125

orthogonally diagonalizes 4, and 4= PDP™".
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(10 2 2 -6 9]
2 10 2 -6 9

40. [M] Let 4= 2 2 10 -6 9 |. The eigenvalues of 4 are 8, 32, 28, and 17. For A = 8, one
-6 —6 -6 26 9

9 9 9 9 -19]

1]]-1
-1 0
computes that a basis for the eigenspace is 0 |,| 1 | ;. This basis may be converted via orthogonal
01(]0
L O Jd L 0 _
R
-1 1
projection to the orthogonal basis 0 |,| =2 | ;. These vectors can be normalized to get
0 0
L O J L O _
[ 142] - 1/ ] [ 1]
—1/\2 1//6 1
u = 0 uy=|_p/./6| For A = 32, one computes that a basis for the eigenspace is | 1|, which
0 0 =3
| 0] 0] L 0]
[ 12
1/412
can be normalized to get u; =| 1/,/12 |. For A =-28, one computes that a basis for the eigenspace is
-3/312
L O_
oy [ 1/320]
1 1/+/20
1|, which can be normalized to get u, =| 1/+/20 |. For A =17, one computes that a basis for the
! 1/+20
4] | —4/~/20 |
1 A
1 1/+/5
eigenspace is | 1 |, which can be normalized to get us =|1/4/5 |.
! 1/
L 1745 ]
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IRV VN VN VIR VNGO YNCE
S RV VNI VN [P VAT VN
Let P=[u;, w, wu; u, ug]= 0 -2/6 /12 1/4/20 1/+/5 | and
0 0 -3/412 1320 1/45
0 0 0 —4/v20 1/45]
(8 0 0 0 O]
0 8 0 0 0
D=0 0 32 0 0. Then P orthogonally diagonalizes 4, and 4= PDP™".
0 0 0 28 0
10 0 0 0 17]
7.2 SOLUTIONS

Notes: This section can provide a good conclusion to the course, because the mathematics here is widely
used in applications. For instance, Exercises 23 and 24 can be used to develop the second derivative test for
functions of two variables. However, if time permits, some interesting applications still lie ahead. Theorem 4
is used to prove Theorem 6 in Section 7.3, which in turn is used to develop the singular value decomposition.

1. a XTsz[xl xz]{

5
1/3

1/3
1

X

I:

} = 5xl2 +(2/3)x,x, + X5
2

6
b. When x= Ll x’ Ax =5(6)* +(2/3)(6)(1) + (1)* =185.
1
¢. When x = M x’ Ax =5(1)* +(2/3)(DH(3) + (3)* = 16.
3 0] x
2. a xTAx=[xl xn x5l]3 2 1|x =4x] +2x; + x5 +6x,X, +2x,x;
1 X,
[ 2
b. When x=| —1|, x’ Ax=4(2)* +2(=1)* +(5)* +6(2)(=1) + 2(-1)(5) = 21.
|5
/3
¢. When x=|1//3 |, x"Ax=4(1/\3)* +2(1/+/3)> + (1/\3)? +6(1//3)(1//3) + 2(1/3)(1/~3) =5.
1/3
. . 10 =3
3. a. The matrix of the quadratic form is 5|
5 3/2
b.

The matrix of the quadratic form is {

i

3/2
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. . . 20 15/2
a. The matrix of the quadratic form is .
115/2 -10
_ _ _ 0 1/2
b. The matrix of the quadratic form is .
11/2 0
8 -3 2
a. The matrix of the quadratic formis | -3 7 —1|.
| 2 -1 -3
0o 2 3
b. The matrix of the quadratic formis |2 0 —4|.
13 4 0
5 5/2 =3/2
a. The matrix of the quadratic formis | 5/2 -1 0|
| —3/2 0 7
0 2 0
b. The matrix of the quadratic formis [-2 0 2.
0 2 1

1 5
. The matrix of the quadratic form is 4= [5 J. The eigenvalues of 4 are 6 and —4. An eigenvector for

1 1/42
A=61is [ }, which may be normalized to u, = V2
I 12

—-1/\2

/2

-1
}. An eigenvector for A = —4 is { 1} which may

U2 —1/42
and
U2 U2

6 0
D= {0 4}. The desired change of variable is x = Py, and the new quadratic form is

be normalized to u, z{ } Then A= PDP™', where P= [u, w,] z{

x' Ax=(Py)" A(Py)=y' P APy =y Dy =6y —4y;

9 -4 4
. The matrix of the quadratic formis 4=| —4 7  0]. The eigenvalues of 4 are 3, 9, and 15. An

4 0 11

-2 -2/3

eigenvector for L =3 is | -2 |, which may be normalized to u, =| —2/3|. An eigenvector for L =9 is
1 1/3
-1 -1/3 2
2 |, which may be normalized to u, =| 2/3|. An eigenvector for A = 15is | —1|, which may be

2 2/3 2
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2/3 -2/3 -1/3  2/3
normalized to u; =| —1/3 |. Then 4=PDP”', where P=[u;, w, wu;]=|-2/3 2/3 -1/3|and
2/3 /3 2/3  2/3
30 0
D=|0 9 0]. The desired change of variable is x = Py, and the new quadratic form is
0 0 15

x' Ax=(Py)" A(Py)=y' P" APy =y" Dy =3y} +9y7 +15y;

6}' The eigenvalues of 4 are 7 and 2, so the quadratic

—1/@]
2/45 |

]. Then A= PDP™", where

-1
form is positive definite. An eigenvector for A = 7 is [ 2}, which may be normalized to u, ={

. 2] . 2/45
An eigenvector for A =2 is Ll which may be normalized to u, = 5
1/~/5

. ]_{—1/\6 2/43
S YNNG

new quadratic form is

x" Ax=(Py)" A(Py)=y"P" APy =y Dy =7y} +2y;

7 0
P= [ul ] and D= L) 2}. The desired change of variable is x = Py, and the

9 4
3}. The eigenvalues of 4 are 11 and 1, so the quadratic

2/:5
15|

]. Then A= PDP™", where

The matrix of the quadratic form is 4 = {

form is positive definite. An eigenvector for A =11 is { J, which may be normalized to u, = {

1/5

1
An eigenvector for A =1 is { } , which may be normalized to u, =
2 2/+5

—“1/5  2/45 0

new quadratic form is

x' Ax=(Py)" A(Py)=y" PT APy =y Dy =11y? + )2

2/35 A5 11 0 , .
P=[u, w,]= and D= Ll The desired change of variable is x = Py, and the

2 5
The matrix of the quadratic form is 4= L 2}. The eigenvalues of 4 are 7 and —3, so the quadratic

/2
1/\/5}' An

}. Then A= PDP",

1
form is indefinite. An eigenvector for A =7 is [ }, which may be normalized to u, = {

—1/\2

-1
eigenvector for A = -3 is { }, which may be normalized to u, =
1 1/2
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where P=[u,

. ]{1/\5 ~1/32
Tz U2

and the new quadratic form is

x Ax=(Py) A(Py)=y" P" APy =y Dy =7y -3y,

7 0
] and D= [O 3}. The desired change of variable is x = Py,

-5 2
The matrix of the quadratic formis A4 = { 5 2}. The eigenvalues of 4 are —1 and —6, so the quadratic

1/6}
25|

}. Then A= PDP™",

1
form is negative definite. An eigenvector for A =—1 is L} , which may be normalized to u, = {

/45

-2
An eigenvector for A =—6 is { }, which may be normalized to u, =
1 1/+/5

/N5 =2/45 -1 0
where P=[u;, u,] :|: V5 \/7} and D :{ } . The desired change of variable is x = Py,

2/5 145 0 -6

and the new quadratic form is

x' Ax=(Py)" A(Py)=y"P" APy=y' Dy =-y; -6y;

The matrix of the quadratic form is 4 :[ 9}. The eigenvalues of 4 are 10 and 0, so the quadratic

1
}, which may be normalized to

3/410
1/4/10

10 0
] and D ={ 0 0}. The desired change of

form is positive semidefinite. An eigenvector for A = 10 is {

1/410
u =
" 3/410

A=PDP™", where P= [u,

3
}. An eigenvector for A =0 is L}, which may be normalized to u, ={

| 1/410  3/4/10
u, =
27 234010 1/410

variable is x = Py, and the new quadratic form is

x" Ax=(Py)" A(Py)=y' P" APy =y' Dy =10y;

}. Then

g8 3
The matrix of the quadratic formis A= [3 0}. The eigenvalues of 4 are 9 and —1, so the quadratic

3/410
. An
1/~:/10

}. Then A= PDP™", where

3
form is indefinite. An eigenvector for A =9 is [J, which may be normalized to u, ={

~1/+/10
3/410

9 0
] and D= {0 J. The desired change of variable is x = Py, and the

-1
eigenvector for A =—1 is { 3} , which may be normalized to u, = {

o | 3/310  —1/410
:u u =
P 340

new quadratic form is

x" Ax=(Py) A(Py)=y"P" APy =y Dy =9y - y;
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-2 2 2 2
. . . 2 -6 0 O )
[M] The matrix of the quadratic formis A4 = 5 0 9 5| The eigenvalues of 4 are 0, —6, -8,
2 0 3 9

and —12, so the quadratic form is negative semidefinite. The corresponding eigenvectors may be
computed:

3 0 -1 0

1 -2 1 0
A=0: |[,A=—-6 ,A=-8: JA=—12

1 1 -1

1 1 1 1

These eigenvectors may be normalized to form the columns of P, and 4= PDP™", where
3/312 0 -1/2 0 o 0 0 0

112 2/4/6 172 0 0 -6 0 0

Wiz s vz e ™o 0 s o

VAVI I VNI Vo B VING) 0 0 0 -12

The desired change of variable is x = Py, and the new quadratic form is

x" Ax=(Py)" A(Py)=y'P" APy =y' Dy =—6y; —8y; —12y;

4 3/2 0 =2
. . ) 3/2 4 2 0 _
[M] The matrix of the quadratic formis A4 = 0 ) 4 30l The eigenvalues of 4 are 13/2
-2 0 3/2 4

and 3/2, so the quadratic form is positive definite. The corresponding eigenvectors may be computed:

—47[3 417 3
0|5 0|[-5
A=13/2: , A=3/2: :
3|4 -3
510 511 o

Each set of eigenvectors above is already an orthogonal set, so they may be normalized to form the
columns of P, and A= PDP™", where

3//50 —-4/450  3/450  4/4/50 13/2 0 0 0
. 5/~/50 0 -5//50 0l ol 012 0 0
4/50  3/450 47450 =3/4/50 0 0 3/2 0

0 5/450 0 5/450 o 0 0 372

The desired change of variable is x = Py, and the new quadratic form is

13 13 3 3
X' dx=(Py)" A(Py)=y' PTAPy =y Dy =31 + 3+ v+ v
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1 9/2 0 -6
. ) , 9/2 1 6 0 .
17. [M] The matrix of the quadratic form is 4= 0 6 1 g9/al The eigenvalues of 4 are 17/2
-6 0 9/2 1

and —13/2, so the quadratic form is indefinite. The corresponding eigenvectors may be computed:

—47[3 41[ 3
0|5 0||-5

A=17/2: J o boa=—13/2: ,
3[4 3| 4
5010 511 o

Each set of eigenvectors above is already an orthogonal set, so they may be normalized to form the
columns of P, and A= PDP™", where

3//50 —-4/450  3/450  4/4/50 17/2 0 0 0
. 5/:/50 0 -5//50 0| ol 0 1772 0 0
4/\50  3/450 47450 =3/4/50 0 0 -13/2 0

0 5/+/50 0 5/J50 0 0 0 -13/2

The desired change of variable is x = Py, and the new quadratic form is

X dx=(Py) A(Py)=y"P' 4Py =y' Dy =12 1712 B2 Dy

2 2 2 27
11 -6 -6 -6
. . ) -6 -1 0 0 )
18. [M] The matrix of the quadratic form is 4= . The eigenvalues of 4 are 17, 1, —1,

-6 0 0 -1
-6 0 -1 0

and —7, so the quadratic form is indefinite. The corresponding eigenvectors may be computed:

-3 0 0 1
1 0 -2
rA=17 ,A=1: ,A=-1 S A==T7
1 -1 1
1 1 1 1

These eigenvectors may be normalized to form the columns of P, and 4= PDP™", where

-3/412 0 0 1/2 7 0 0 0
e 1/-12 0 2/J6 1/2 o 1 0 0
N2 —1/32 146 172 0 -1 0
/12 12 16 172 00 0 -7

The desired change of variable is x = Py, and the new quadratic form is

x' Ax=(Py)" A(Py)=y"P" APy =y " Dy=17y{ + y; - y; =7y}

19. Since 8 is larger than 5, the x; term should be as large as possible. Since x7 +x; =1, the largest value

that x, cantakeis I, and x, =0 when x, =1. Thus the largest value the quadratic form can take when
x'x =1 is 5(0) + 8(1) = 8.
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Since 5 is larger in absolute value than -3, the xl2 term should be as large as possible. Since xl2 + x22 =1,

the largest value that x, can take is 1, and x, =0 when x, =1. Thus the largest value the quadratic form

can take when x’x =1 is 5(1) — 3(0) = 5.

a. True. See the definition before Example 1, even though a nonsymmetric matrix could be used to
compute values of a quadratic form.

b. True. See the paragraph following Example 3.

¢. True. The columns of P in Theorem 4 are eigenvectors of 4. See the Diagonalization Theorem in
Section 5.3.

d. False. O(x) = 0 when x = 0.
e. True. See Theorem 5(a).
f. True. See the Numerical Note after Example 6.

a. True. See the paragraph before Example 1.

b. False. The matrix P must be orthogonal and make P” 4P diagonal. See the paragraph before
Example 4.

c. False. There are also “degenerate” cases: a single point, two intersecting lines, or no points at all. See
the subsection “A Geometric View of Principal Axes.”

d. False. See the definition before Theorem 5.

e. True. See Theorem 5(b). If x” Ax has only negative values for x # 0, then x” Ax is negative definite.

The characteristic polynomial of 4 may be written in two ways:

det(4—T) = de{a ,

b 2 2
=22 —(a+d)\+ad—b
d—M

and

A=A —2y)= 22 = (A + AR+ A1,
The coefficients in these polynomials may be equated to obtain A, +X, =a+d and A A, =
ad —b* =det 4.

If det 4 > 0, then by Exercise 23, A,A, >0, so that A, and A, have the same sign; also,

ad =det A+b*>0.

a. If det 4 > 0 and a > 0, then d > 0 also, since ad > 0. By Exercise 23, A, +A, =a+d >0. Since A, and
A, have the same sign, they are both positive. So Q is positive definite by Theorem 5.

b. If det 4 > 0 and a <0, then d < 0 also, since ad > 0. By Exercise 23, A, +A, =a+d <0. Since A, and
A, have the same sign, they are both negative. So Q is negative definite by Theorem 5.

c. If det 4 <0, then by Exercise 23, A,A, <0. Thus A, and A, have opposite signs. So Q is indefinite by
Theorem 5.

Exercise 27 in Section 7.1 showed that B” B is symmetric. Also x” B” Bx = (Bx)” Bx=|| Bx||>0, so the

quadratic form is positive semidefinite, and the matrix B’ B is positive semidefinite. Suppose that B is
square and invertible. Then if x’ B” Bx=0, || Bx || = 0 and Bx = 0. Since B is invertible, x = 0. Thus if

x#0, X’ B"Bx >0 and B’ B is positive definite.
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Let A=PDP", where P" = P™'. The eigenvalues of 4 are all positive: denote them A,,...,A,. Let C be

the diagonal matrix with \/7»_1 . .,\/E on its diagonal. Then D=C?* =C"C.If B=PCP", then B is

positive definite because its eigenvalues are the positive numbers on the diagonal of C. Also
B"B=(PCP")" (PCP")=(P""C"P")(PCP")=PC"CP" = PDP" = 4

since P'P=1.

Since the eigenvalues of 4 and B are all positive, the quadratic forms x” 4x and x” Bx are positive
definite by Theorem 5. Let x # 0. Then x” Ax>0 and x’ Bx>0,s0 x’ (4+ B)x=x" Ax+x’ Bx >0, and
the quadratic form x” (4+ B)x is positive definite. Note that 4 + B is also a symmetric matrix. Thus by
Theorem 5 all the eigenvalues of 4 + B must be positive.

The eigenvalues of A are all positive by Theorem 5. Since the eigenvalues of 4™ are the reciprocals of
the eigenvalues of 4 (see Exercise 25 in Section 5.1), the eigenvalues of A~ are all positive. Note that
A" is also a symmetric matrix. By Theorem 5, the quadratic form x” 4™'x is positive definite.

SOLUTIONS

Notes: Theorem 6 is the main result needed in the next two sections. Theorem 7 is mentioned in Example 2
of Section 7.4. Theorem 8§ is needed at the very end of Section 7.5. The economic principles in Example 6
may be familiar to students who have had a course in macroeconomics.

1.

5 2 0
The matrix of the quadratic form on the leftis 4={2 6 -2 |. The equality of the quadratic forms
o -2 7

implies that the eigenvalues of 4 are 9, 6, and 3. An eigenvector may be calculated for each eigenvalue
and normalized:

1/3 2/3 -2/3
A=9: 2/3|,A=6:| 1/3|,A=3:| 2/3
-2/3 1/3 1/3

/3 2/3 =2/3
The desired change of variable is x = Py, where P=| 2/3 1/3  2/3]|.
-2/3 2/3  1/3

3 1 1

. The matrix of the quadratic form on the leftis 4=|1 2 2 |. The equality of the quadratic forms

1 2 2

implies that the eigenvalues of 4 are 5, 2, and 0. An eigenvector may be calculated for each eigenvalue
and normalized:

/3 -2//6 0
A=5:11/3 [ a=2:] 16|, A=0:-1/2

/3 1//6 /2
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143 -2/46 0
The desired change of variable is x = Py, where P=|1/ V3 /6 —1/42 .

U 16 12

3. (a) By Theorem 6, the maximum value of x’ Ax subject to the constraint x’ x =1 is the greatest
eigenvalue A, of 4. By Exercise 1, A, =9.

(b) By Theorem 6, the maximum value of x” Ax subject to the constraint x’ x =1 occurs at a unit
1/3

eigenvector u corresponding to the greatest eigenvalue A, of 4. By Exercise 1, u==%| 2/3]|.
-2/3

(c) By Theorem 7, the maximum value of x’ 4x subject to the constraints x’x =1 and x’u=0 is the
second greatest eigenvalue A, of 4. By Exercise 1, A, =6.

4. (a) By Theorem 6, the maximum value of x” Ax subject to the constraint x’x =1 is the greatest
eigenvalue A, of 4. By Exercise 2, A, =5.

(b) By Theorem 6, the maximum value of x’ 4x subject to the constraint x’ x =1 occurs at a unit
1/43
eigenvector u corresponding to the greatest eigenvalue A, of A. By Exercise 2, u==| 1/ V3.

/3

(c) By Theorem 7, the maximum value of x’ Ax subject to the constraints x’x =1 and x"u=0 is the
second greatest eigenvalue A, of 4. By Exercise 2, A, =2.

5 =2
5. The matrix of the quadratic form is 4 :{ ) 5}. The eigenvalues of 4 are A, =7 and A, =3.

(a) By Theorem 6, the maximum value of x’ 4x subject to the constraint x”x =1 is the greatest
eigenvalue A, of 4, which is 7.

(b) By Theorem 6, the maximum value of x’ Ax subject to the constraint x’ x =1 occurs at a unit
eigenvector u corresponding to the greatest eigenvalue A, of 4. One may compute that {_ } is an
~1/\2
N2 ]

(c) By Theorem 7, the maximum value of x’ 4x subject to the constraints x’x =1 and x’u=0 is the
second greatest eigenvalue A, of 4, which is 3.

eigenvector corresponding to A, =7, so u= i{

7 3/2

6. The matrix of the quadratic formis 4=
3/2 3

}. The eigenvalues of 4 are A, =15/2 and A, =5/2.

(a) By Theorem 6, the maximum value of x” 4x subject to the constraint x’ x =1 is the greatest
eigenvalue A, of 4, which is 15/2.
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(b) By Theorem 6, the maximum value of x” Ax subject to the constraint x’ x =1 occurs at a unit
3
eigenvector u corresponding to the greatest eigenvalue A, of 4. One may compute that L} is an

3/\/5}
1/410 |

(c) By Theorem 7, the maximum value of x’ Ax subject to the constraints x’x=1 and x’u=0 is the
second greatest eigenvalue A, of 4, which is 5/2.

eigenvector corresponding to A, =7, so u= i[

. The eigenvalues of the matrix of the quadratic form are A, =2, A, =—1, and A; =—4. By Theorem 6,

the maximum value of x’ Ax subject to the constraint x’ x =1 occurs at a unit eigenvector u

1/2
corresponding to the greatest eigenvalue A, of 4. One may compute that 1| is an eigenvector
1
1/3
corresponding to A, =2, so u==%|2/3|.
2/3

. The eigenvalues of the matrix of the quadratic form are A, =9, and A, =-3. By Theorem 6, the

maximum value of x” Ax subject to the constraint x’ x =1 occurs at a unit eigenvector u corresponding

-1 -2
to the greatest eigenvalue A, of 4. One may compute that | 0| and | 1| are linearly independent
1 0
-1
eigenvectors corresponding to A, =2, so u can be any unit vector which is a linear combination of | 0
1
-2
and | 1/|. Alternatively, u can be any unit vector which is orthogonal to the eigenspace corresponding to
0
1
the eigenvalue A, =-3. Since multiples of | 2 | are eigenvectors corresponding to A, =—3, u can be any
1
1
unit vector orthogonal to | 2 |.
1

. This is equivalent to finding the maximum value of x” 4x subject to the constraint x’x =1. By Theorem

6, this value is the greatest eigenvalue A, of the matrix of the quadratic form. The matrix of the quadratic

_ 7 -1 . ;
formis A= L3l and the eigenvalues of 4 are A, =5+ V5, A, =5- /5. Thus the desired

constrained maximum value is A, =5+ NG
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10. This is equivalent to finding the maximum value of x’ Ax subject to the constraint x’ x =1. By Theorem
6, this value is the greatest eigenvalue A, of the matrix of the quadratic form. The matrix of the quadratic

-1
formis 4 :{ 5} and the eigenvalues of 4 are A, =1+ W17, A, =1- J17. Thus the desired

constrained maximum value is A, =1++/17.

11. Since x is an eigenvector of 4 corresponding to the eigenvalue 3, 4x = 3x, and x’ Ax=x" (3x) =

3(x"x) =3||x||* =3 since X is a unit vector.

12. Let x be a unit eigenvector for the eigenvalue A. Then x’ Ax =x" (Ax) =A(x"x)=A since x'x=1.So A
must satisfy m <A <M.

13. If m = M, then let £ = (1 — 0)m + OM = m and x =u,. Theorem 6 shows that u| Au, = m. Now suppose
that m < M, and let ¢ be between m and M. Then 0 <¢t—-m <M —mand 0 < (t—m)/(M—m) < 1. Let
o= (t—m)/(M—m),and let x=+1-0ou, + x/&ul. The vectors v/1-ou, and \/&ul are orthogonal

because they are eigenvectors for different eigenvectors (or one of them is 0). By the Pythagorean
Theorem

x| x| = Vi-au, P+ Vo [P=[1-allju, [* +|e||w P=0-a)+a=1
since u, and u, are unit vectors and 0 < o < 1. Also, since u, and u, are orthogonal,
X" Ax=(1-au, +Jou) AN1-au, +au)
=(W1-au, +Jau) (m1-au, + MJou)
=|1—0(|munun+\0(|Mu1 u =(l-aym+aM =t
Thus the quadratic form x” 4x assumes every value between m and M for a suitable unit vector x.

0 1/2 3/2 15

. . . 1/2 0 15 3/2 _
14. [M] The matrix of the quadratic formis 4= . The eigenvalues of 4 are
3/2 15 0 1/2
15 3/2 1/2 0
A =17, A, =13, A, =-14, and A, =-16.
(a) By Theorem 6, the maximum value of x’ Ax subject to the constraint x”x =1 is the greatest
eigenvalue A, of 4, which is 17.

(b) By Theorem 6, the maximum value of x” Ax subject to the constraint x’ x =1 occurs at a unit

eigenvector u corresponding to the greatest eigenvalue A, of 4. One may compute that is an

—_ e

1/2
1/2
1/2
1/2

eigenvector corresponding to A, =17, so u==*

(c) By Theorem 7, the maximum value of x” Ax subject to the constraints X’ x=1 and x"u=0 is the
second greatest eigenvalue A, of 4, which is 13.
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0 3/2 5/2 17/2
3/2 0 7/2 5/2 )
. The eigenvalues of 4 are
5/2 7/2 0 3/2

7/2 5/2 3/2 0
d =15/2, Ay =—1/2, Ay==5/2, and A, =—9/2.

15. [M] The matrix of the quadratic form is 4=

(a) By Theorem 6, the maximum value of x’ 4x subject to the constraint x’ x =1 is the greatest
eigenvalue A, of 4, which is 15/2.

(b) By Theorem 6, the maximum value of x” Ax subject to the constraint x’ x =1 occurs at a unit

1
. : . Ly,
eigenvector u corresponding to the greatest eigenvalue A, of 4. One may compute that { is an
1
1/2
. . 1/2
eigenvector corresponding to A, =15/2, so u==* sl
1/2

(c) By Theorem 7, the maximum value of x’ Ax subject to the constraints x’x =1 and x"u=0 is the
second greatest eigenvalue A, of 4, which is —1/2.

4 -3 -5 -5
. . . -3 0 -3 3 .
16. [M] The matrix of the quadratic form is 4= 3 0 . The eigenvalues of 4 are A, =9,
-5 -3 -1 0

A =3, A, =1, and A, =—9.

(a) By Theorem 6, the maximum value of x’ Ax subject to the constraint x’ x =1 is the greatest
eigenvalue A, of 4, which is 9.
(b) By Theorem 6, the maximum value of x” Ax subject to the constraint x’ x =1 occurs at a unit
-2

eigenvector u corresponding to the greatest eigenvalue A; of 4. One may compute that is an

2/6

0
eigenvector corresponding to A, =9, so u==% .
g p g 1 1/J6

1//6

(c) By Theorem 7, the maximum value of x’ Ax subject to the constraints x’x =1 and x"u=0 is the
second greatest eigenvalue A, of 4, which is 3.
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0
17. [M] The matrix of the quadratic formis 4= 5| The eigenvalues of 4 are A, =—4,

2 0 3 -13
A, =—10, Ay =—12, and A, =—16.

(a) By Theorem 6, the maximum value of x’ Ax subject to the constraint x’x =1 is the greatest
eigenvalue A, of 4, which is 4.

(b) By Theorem 6, the maximum value of x” Ax subject to the constraint x’ x =1 occurs at a unit
-3

eigenvector u corresponding to the greatest eigenvalue A, of 4. One may compute that is an

-3/412
1/\12
/312 |
1/\12

(c) By Theorem 7, the maximum value of x” Ax subject to the constraints x’x =1 and x’u=0 is the
second greatest eigenvalue A, of 4, which is —10.

eigenvector corresponding to A, =—4, so u==*

7.4 SOLUTIONS

Notes: The section presents a modern topic of great importance in applications, particularly in computer
calculations. An understanding of the singular value decomposition is essential for advanced work in science
and engineering that requires matrix computations. Moreover, the singular value decomposition explains
much about the structure of matrix transformations. The SVD does for an arbitrary matrix almost what an
orthogonal decomposition does for a symmetric matrix.

1 0 1 0
1. Let A= {0 3}. Then A" A= [0 9}, and the eigenvalues of 4’ 4 are seen to be (in decreasing
order) A, =9 and A, =1. Thus the singular values of 4 are o, = J9=3 and o, = Ji=1.

-5 0 25 0
2. Let A= 0 0}. Then A" 4 =[ 0 O}’ and the eigenvalues of 4’ 4 are seen to be (in decreasing
order) A, =25 and A, =0. Thus the singular values of 4 are o, = V25 =5 and o, = Jo=o.
Je 1 6
3. Let A= Ve . Then A" 4=
0 6 J6

A? =130 +36=(L—9)(A—4), and the eigenvalues of A" 4 are (in decreasing order) A, =9 and A, = 4.
Thus the singular values of 4 are 0, = J9=3 and o, = Ja=2.

6
}, and the characteristic polynomial of 4" 4 is
7
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3 2 3 243
4. Let 4 ={\/7 } Then A" Az{ \/_}, and the characteristic polynomial of A" 4 is

0 3 237
A* =101 +9 = (L —9)(L—1), and the eigenvalues of A" 4 are (in decreasing order) A =9 and A, =1.
Thus the singular values of 4 are 0, = J9=3 and o, = Vi=1.

-3 0 9 0
5. Let 4 ={ 0 O}' Then A" A= [0 O}’ and the eigenvalues of 4’ 4 are seen to be (in decreasing

order) A, =9 and A, =0. Associated unit eigenvectors may be computed:
1 0
A=9: |,A=0:
0 1
. : 1 0 .
Thus one choice for Vis V = [0 1}. The singular values of 4 are o, = J9=3 and o, = VO =0. Thus
e 3.0
the matrix X is X = 0 ol Next compute
1 -1
u =—AdAv, = { }
o, 0
Because Av, = 0, the only column found for U so far is u;. Find the other column of U is found by

0
extending {u,} to an orthonormal basis for R>. An easy choice is u, = L}

-1 0
Let U = . Thus
0 1

I H

-2 0 4 0
6. Let A4 :[ 0 J. Then A" A= {0 J, and the eigenvalues of A" 4 are seen to be (in decreasing

order) A, =4 and A, =1. Associated unit eigenvectors may be computed:

1 0
A=4: ,A=1:

0 1
. : 10 .

Thus one choice for Vis V' = o 1l The singular values of 4 are o, = J4=2 and o, = JI=1. Thus

N 2 0
the matrix X is X = o 1l Next compute

1 -1 1 0
u =—4»Av, = Uy =—Av, =
o, 0 o, -1

Since {u,,u,} is a basis for R?, let U :{ 0

o fl 2

0
J. Thus
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2 -1 8 2
7. Let A:[z 2}. Then 4" 4 :L 5}, and the characteristic polynomial of 4" 4 is

A* =130 +36=(A—9)(A—4), and the eigenvalues of A" 4 are (in decreasing order) A =9 and A, =4.
Associated unit eigenvectors may be computed:

I Il B B YAVE
x_g.{l/ﬁ],x_zt.[ M}
2135 —1/:5
/5 2/45

o 3 0
o, = 4 =2. Thus the matrix £ is == 0 2l Next compute

1/N5 —2//5
HIZLAV1:|: \/7:|,u2:LAV2:|: f]

Thus one choice for V'is V :[ } The singular values of 4 are 0, = J9=3 and

o 2/+/5 g /45
/N5 =2/45
Since {u,,u,} is a basis for R?, let U = Vs V5 . Thus
2/5 145
/N5 =2/45 (|3 0 2/45 1/4/5
A=ULV" = V5 V5 { } Vs I3
JINCI VAVER LU | S VAVE R YING]

2 3 4 6
8. Let 4 :{O 2}. Then A" 4 :{6 13}, and the characteristic polynomial of A" 4 is

A* =170 +16 = (A—16)(L —1), and the eigenvalues of A" 4 are (in decreasing order) A, =16 and A, =1.
Associated unit eigenvectors may be computed:

I B VA B BTN
s a2

15 =2/45
2/5  1/45

. 4 0
o, = V1 =1. Thus the matrix T is == o 1l Next compute

2/5 —1/~5
HIZLAVIZ{ \/_j|,u2:LAV2:{ \/_]

Thus one choice for V'is V :[ } The singular values of 4 are 0, = V16 =4 and

o 1/~/5 0, 2//5
2/5  —=1/45
Since {u,,u,} is a basis for R let U = \/_ \/_ . Thus
U5 2/45
L YNCRRS YN [4 0} N5 2045
A=U2XV" =
U5 24050 1| —=2/45 1/45
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7 1

r 74 32 . . T, .

9. Let A={0 0| Then 4" A= 32 26/ and the characteristic polynomial of 4" 4 is
55

A% —100A +900 = (L —90)(A —10), and the eigenvalues of 4’ 4 are (in decreasing order) A, =90 and

A, =10. Associated unit eigenvectors may be computed:

I - NCl B S VAV
x_90.[1/\/§],x_10.{ 2/\/§]

2/\5  =1/+5
Thus one choice for Vis V = V5 V5 . The singular values of 4 are o, = V90 =310 and
VNSNS
310 0
o, = J10. Thus the matrix X is £= 0 /10| Next compute
0 0
| 1/42 ~1/42
u =—4»Av, = Ol,u,=—4v, = 0

O, 0.
1 1/42 2 1/42

Since {u,,u,} is not a basis for R’, we need a unit vector u, that is orthogonal to both u, and u,. The

vector u, must satisfy the set of equations u/ x=0 and u}x =0. These are equivalent to the linear

equations
0 0
x+0x,+x; = 0
,sox=|1|,andu;=|1
- +0x,+x; = 0
0 0
V2 142 0
Therefore let U = 0 0 1|.Thus
VNGRS VNG
NS VN N U
, 25 15
A=UzV"=| 0 0o 1| o +io 5 s
—1/5  2/~5
/N2 vz o) 00
4 2
r 20 -10 . . T
10. Let A=|2 —1|. Then 4" 4= 10 5| and the characteristic polynomial of 4" 4 is
0 0

A* =25k = M(A—25), and the eigenvalues of 4" 4 are (in decreasing order) A, =25 and A, =0.
Associated unit eigenvectors may be computed:

U YNl B B VNG
o 48] 14
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2/5  1/4/5
Thus one choice for Vis V = f \/7 . The singular values of 4 are o, = \/E =5 and
—1/\5 245
5 0
o, = JJ0=0. Thus the matrix Zis £=| 0 0 |. Next compute
0 0
2//5
u, =LAV1 = 1//5

Because Av, = 0, the only column found for U so far is u,. Find the other columns of U found by
extending {u;} to an orthonormal basis for R’. In this case, we need two orthogonal unit vectors u, and

u; that are orthogonal to u;. Each vector must satisfy the equation uf x =0, which is equivalent to the
equation 2x; + x, = 0. An orthonormal basis for the solution set of this equation is

1/-/5 0
u, = -2/5 ,u; =| 0.
0 1
215 150
Therefore, let U =| 1/ J5 =2/45 0| Thus
0 0 1

2/5 15 ofs o

A=UsvT=|1/\5 =2/J5 ol|lo o

{2/\/5 —1/@}

0 o ilo ol1/A5 245
-] 81 —27
11. Let A=| 6 —2|. Then 4" A:[ 57 9}, and the characteristic polynomial of A" 4 is
6 -2

A% —90% = M(A —90), and the eigenvalues of A" 4 are (in decreasing order) A, =90 and A, =0.
Associated unit eigenvectors may be computed:

3/410 1/4/10
A=90: ,A=0: .
-1/~410 3/~/10
3/410  1/4/10
-1/410  3/410

Thus one choice for Vis V =[ } The singular values of 4 are o, = 90 =310 and

ANIT
o, = V0 =0. Thus the matrix £ is == 0 0]. Nextcompute
0 0

. -1/3
u =—A4Av,=| 2/3
% 2/3
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Because Av, = 0, the only column found for U so far is u;. The other columns of U can be found by
extending {u;} to an orthonormal basis for R’. In this case, we need two orthogonal unit vectors u, and

u; that are orthogonal to u;. Each vector must satisfy the equation uf x =0, which is equivalent to the
equation —x, + 2x, + 2x; =0. An orthonormal basis for the solution set of this equation is

2/3 2/3
u, =-1/3,uy;=| 2/3|.
2/3 -1/3

-1/3  2/3 2/3
Therefore, let U =| 2/3 -1/3  2/3|. Thus
2/3  2/3 -1/3

“1/3 23 2/3][310 0

. 3410 —1/410

A=UTV = 2/3 —1/3 23] o o
2/3 2/3 -1/3 0 o|Ll/V10 3/N10

1 1
2 0
Let A=| 0 1| Then A"A= {0 3}, and the eigenvalues of 4" 4 are seen to be (in decreasing order)

-1 1

A, =3 and A, =2. Associated unit eigenvectors may be computed:

o

. : 0 1 .
Thus one choice for Vis V = [ { 0}. The singular values of 4 are o, = V3 and o, = 2. Thus the

NE

0
matrix Tis £=| 0 /2 |. Next compute
0 0

/43 12
1 1
u =—Av, = 1/:/3 Uy =—A»4v, = 0
0 03
143 ~1\2
Since {u,,u,} is not a basis for R, we need a unit vector u, that is orthogonal to both u, and u,. The

vector u, must satisfy the set of equations u] x =0 and u}x = 0. These are equivalent to the linear

equations
1 1/-/6
X +x,+x = 0
bhm s ,s0x=| -2 |,andu, = —2/\/6
x+0x,-x;, = 0

1 1/46
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U3 N2 146
Therefore let U =1/ \/5 0o -2/ \/g . Thus

U3 -2 146

N3 142 1ue][VB o
0 1
A=USV" =|1/3 0 —2/\6| 0 2 o
N3 -142 16| 00
3 2
3 2 2 T T 4T T 17 8 : T T
13. Let A= 5 3 . Then 4" =|2 3|, A7 A =44 = g 17/ and the eigenvalues of 4" 4
2 2

are seen to be (in decreasing order) A, =25 and A, =9. Associated unit eigenvectors may be computed:

x:zs:[“*ﬂ,x:w{_l/ﬁ]

1/42 1/42
V2 -1/42
Thus one choice for Vis V' = . The singular values of A" are o, = V25 =5 and
VNGB VAV
50
o, =9 =3. Thus the matrix Tis £=| 0 3. Next compute
0 0
1/\2 ~1/418
u =LATV1 =[1/42 U, =LATV2 =| 118
o] 1o
: 0 ? —4/18

Since {u,,u,} is not a basis for R’, we need a unit vector u; that is orthogonal to both u, and u,. The

vector u, must satisfy the set of equations u] x =0 and u}x = 0. These are equivalent to the linear

equations
-2 -2/3
X +x, +0x; =
,sox=| 2|,andu;=| 2/3
=X +x, —4x; = ) 13

1/\2 -1/18 =2/3
Therefore let U=[1/~2  1//18  2/3|. Thus
0 -4/ 18 1/3

A2 —118 =2/3(5 ¢ 5 1B
AT=UusvT={1/N2 118 273 |0 3{ 5 f}
/N2 142

0 —4/\18 1/3 ||0 0
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14.

15.

16.

17.

18.

19.

20.
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An SVD for 4 is computed by taking transposes:

N2 =125 0 0 W22 0
A:L/ﬁ 1/\/5}[0 3 0} SUNIS UNIS /IS

-2/3 2/3 1/3

2/5 —1//5
15 245

associated with the greatest eigenvalue A, of A" A, so the first column of ¥ is a unit vector at which

From Exercise 7, A=UXV" with V/ =|: } Since the first column of V is unit eigenvector

|| AX || is maximized.

a. Since 4 has 2 nonzero singular values, rank 4 = 2.

40| -.78 .58
b. By Example 6, {u,,u,}= 371, =33 | ; is abasis for Col 4 and {v;} =4 | =.58 | ; is a basis
-84 ||-.52 .58

for Nul 4.

a. Since 4 has 2 nonzero singular values, rank 4 = 2.

.65 || -34
-86||—-.11
) ) .08 42 .
b. By Example 6, {u,,u,}= 311, .68 is a basis for Col 4 and {v;,v,} = 16" 84 is
A1) -.73
-73||-.08

a basis for Nul 4.

Let A=UXV" =UZV™". Since 4 is square and invertible, rank 4 = n, and all of the entries on the
diagonal of X must be nonzero. So A =(UZV ) '=yz v =rz'U".

First note that the determinant of an orthogonal matrix is +1, because 1=det/ =detU’'U =
(detU")(detU) = (detU)*. Suppose that 4 is square and 4=UXV". Then X is square, and
det A= (detU)(detZ)(detV" ) =+detZ=+0,...0,.

Since U and V are orthogonal matrices,
A"a=wzvH'uzy =vz'vTuzyt =v et = ETyp !

If 0,,...,0, are the diagonal entries in X, then >'% is a diagonal matrix with diagonal entries 0'12,. o :

r

and possibly some zeros. Thus ¥ diagonalizes 4" 4 and the columns of V are eigenvectors of A’ A4 by
the Diagonalization Theorem in Section 5.3. Likewise

A" =uzvTwzyh =uzy'vuT =uEEHU =uEsHu!
so U diagonalizes 44" and the columns of U must be eigenvectors of 44" . Moreover, the

are the nonzero eigenvalues of 4" 4. Hence o,....,0

I

Diagonalization Theorem states that 0'12,. o)

I

are the nonzero singular values of 4.

If 4 is positive definite, then 4= PDP" , where P is an orthogonal matrix and D is a diagonal matrix.
The diagonal entries of D are positive because they are the eigenvalues of a positive definite matrix.

Since P is an orthogonal matrix, PP’ =1 and the square matrix P’ is invertible. Moreover,



21.

22.

23.

24.

25.

26.

7.4 + Solutions 413

(PIY'=@P"y'=P=(P")", so P" is an orthogonal matrix. Thus the factorization 4= PDP" has the
properties that make it a singular value decomposition.

Let A=UXV". The matrix PU is orthogonal, because P and U are both orthogonal. (See Exercise 29 in
Section 6.2). So the equation PA=(PU)ZV" has the form required for a singular value decomposition.

By Exercise 19, the diagonal entries in X are the singular values of PA.

The right singular vector v, is an eigenvector for the largest eigenvector A, of A" 4. By Theorem 7 in
Section 7.3, the second largest eigenvalue A, is the maximum of x” (A" A)x over all unit vectors

orthogonal to v, . Since x” (A" A)x =|| Ax|]*, the square root of A,, which is the second largest singular

value of 4, is the maximum of || Ax || over all unit vectors orthogonal to v;.

From the proof of Theorem 10, UL =[ou;, ... ou, 0 ... 0]. The column-row expansion of the
product (UX)V'" shows that
vlT
A=W =Uz)|  |=ouy, +..+ouv,’
T
\

where r is the rank of 4.

0 fori#j

.

1 fori=

ror r*

From Exercise 23, 4" =o,v,u! +...+0,.v,u’. Then since ul-Tuj :{

T T T T T
A", =(ovuy +...+ovuu, =0 vuu, =0,V (uu)=0,v,

7

Consider the SVD for the standard matrix 4 of 7, say A=UZV"' .Let B={v,,...,v,} and
C={uy,...,u,} be bases for R" and R™ constructed respectively from the columns of " and U. Since the

columns of ¥ are orthogonal, Vv ; =e€;, where e; is the jth column of the n X n identity matrix. To find
the matrix of 7T relative to B and C, compute

T(v;)=Av,=UZV'v,=UZe,=Uce; = oUe, = o,
so [T(v;)]c = g;e; . Formula (4) in the discussion at the beginning of Section 5.4 shows that the

“diagonal” matrix X is the matrix of T relative to B and C.

-18 13 -4 4 528 =392 224 -176
2 19 -4 12 r -392 1092 -176 536 .
[M] Let 4= . Then 4" A= , and the eigenvalues
-14 11 -12 8 224 -176 192 -128
-2 21 4 8 -176 536 -128 288

of A" 4 are found to be (in decreasing order) A, =1600, A, =400, A, =100, and A, =0. Associated
unit eigenvectors may be computed:

—4 8 4 ~2
R I DA A B
N P, S I 1 L I L

4 2 4 8
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-4 8 4 -2
) _ 8 4 -2 - )
Thus one choice for Vis V = 4 g . The singular values of 4 are 0, =40, o, =20,
4 2 4 8
40 0 0 O
. 0 20 0
05 =10, and 0, =0. Thus the matrix X is = . Next compute
0 0 10 O
0 0 0 O
S -5
1 S 1 S
u, =—Av, = Uy =—Av, = ,
o S o, -5
S S
-5
1 S
uy; =—Avy; =
o, 5
-5

Because Av, = 0, only three columns of U have been found so far. The last column of U can be found
by extending {u;, u,, us} to an orthonormal basis for R*. The vector u, must satisfy the set of equations

u x=0, u}x=0, and u}x =0.These are equivalent to the linear equations

-1 -5
X +x,+x,+x,=0 ' i
-X +Xx,—x;+x,=0,s0x= ) ,andu, = '5 .
X +x, +x;,—x,=0 '
1 2 3 4 1 5
(5 -5 -5 -5]
.5 .5 S5 =5
Therefore, let U = . Thus
S5 =5 .5 .5
5 5 -5 5]
(5 -5 -5 -5][40 0O 0][-4 8 -2 4
r |3 5 5 =5 0 20 of .8 4 4 2
A=UZV" =
S5 =5 5 500 0 10 0 4 -2 -8 4
1.5 5 =5 510 0 0 0f-2 -4 4 8

41 -32 -38 14 -8

6 8 4 5 4
-32 118 -3 -92 74

2 7 -5 -6 4 r

27. [M] Let 4= 0 L8 2 2 . Then 4"4=|-38 -3 121 10 -52 |, and the
14 -92 10 81 -72

-1 =2 4 4 -8
| -8 74 =52 -72 100 |
eigenvalues of A’ A are found to be (in decreasing order) A =270.87, A, =147.85, h; =23.73,

A, =18.55, and A5 =0. Associated unit eigenvectors may be computed:
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[—.10] [—39] [-74] [ 411 [-36]
61 29 -27 -.50 —48

Aol =21 A, | 84|, A 1| =07 LA, :| 45],A5:|—.19
-.52 -.14 38 -23 -2

| .55 |19 | 49 | 58] |[-29]

[—10 -39 -74 41 -36]
61 29 -27 -50 -48
Thus one choice for Vis V'=| -21 .84 -.07 .45 —.19|. The nonzero singular values of 4 are
-52 -14 38 -23 -72
| 55 —=19 49 58 -29]
0, =16.46, 0, =12.16, 0, =4.87, and 0, =4.31. Thus the matrix X is

16.46 0 0 0 o
0 12.16 0 0
= . Next compute
0 0 487 0 0
0 0 0 431 0
-.57 —.65
1 .63 1 -.24
ulz—Avlz ,u2:_AV2= N
o, .07 o, —.63
-.51 34
—.42 27
1 —.68 1 -.29
u, =—Av, = u,=—Av, =
03 53 o, -.56
-.29 =73

=57 -65 -42 27

. . . 4 63 =24 -68 -29
Since {u,,u,,u;,u,} is a basis for R, let U = . Thus

07 -63 .53 -56

-51 34 -29 -73

A=UzpT
-10 61 -21 -52 .55
-57 -65 —-42 27][16.46 0 0 0 0
-39 29 84 —14 -19
63 -24 —68 -29 0 12.16 0 0 0
= -74 =27 -07 38 49
07 -63 .53 -56 0 0 4.87 0 0
41 =50 45 -23 .58
-51 34 -29 -73 0 0 0 431 0
-36 -48 —-19 -72 -29
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4 0 -7
-6 1 11

28. [M] Let 4=
-5 10
-1 2 3

Symmetric Matrices and Quadratic Forms

. Then AT A=
9

-1

-27
=33
279
335

52
—88
335
492

, and the eigenvalues of

A" A are found to be (in decreasing order) A, =749.9785, A, =146.2009, A, =6.8206, and

A, =1.3371x107°. The singular values of 4 are thus &, =27.3857, 0, =12.0914, o, =2.61163, and
0, =.00115635. The condition number o,/0, =23,683.

5 3 1 7
6 4 2 8
29. [M] Let A={7 5 3 10
9 6 4 -9
8 5 2 11

9
-8
9|. Then A" A=
-5

4

[255

168
90
160
47

168
111
60
104
30

90
60
34
39

8

160
104

39
415
178

47 |
30
8 |, and the eigenvalues
178
267

of A" 4 are found to be (in decreasing order) A, = 672.589, A, =280.745, A, =127.503, A, =1.163,

and A; =1.428x107". The singular values of 4 are thus o, =25.9343, 0, =16.7554, o, =11.2917,
0, =1.07853, and o5 =.000377928. The condition number o,/05 =68,622.

7.5 SOLUTIONS

Notes: The application presented here has turned out to be of interest to a wide variety of students, including
engineers. I cover this in Course Syllabus 3 described above, but I only have time to mention the idea briefly
to my other classes.

19 22 6 3
12 6 9 15

2 20

1. The matrix of observations is X :{ 3 5} and the sample mean is

72 12
M= l{ } z{ } The mean-deviation form B is obtained by subtracting M from each column of X, so

6|60 10
7 10 -6 -9 -10 . ..
B= . The sample covariance matrix is
2 -4 -1 5 3 -5
430 -135 86 27
S :LB r :l =
6-1 5[-135 80 =27 16

. . 1 5 2 6 7 3 _ 1] 24 4
2. The matrix of observations is X = and the sample mean is M =— = |
3 11 6 8 15 11 6|54 9

The mean-deviation form B is obtained by subtracting M from each column of X, so
-3 1 =2 2 3
B=
-6 2

-1
. The sample covariance matrix is
-3 -1 6 2
28 40 56 8
S = b BB" = 1 =
6-1 5140 90 g8 18
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3. The principal components of the data are the unit eigenvectors of the sample covariance matrix S. One
86 27

computes that (in descending order) the eigenvalues of § :{ 16

} are A, =95.2041 and

—2.93348
A, =6.79593. One further computes that corresponding eigenvectors are v, ={ ) } and

.340892
v, z{ | } These vectors may be normalized to find the principal components, which are
946515 322659
= for A, =95.2041 and u, = for A, =6.79593.
—.322659 946515

4. The principal components of the data are the unit eigenvectors of the sample covariance matrix S. One
5.6

computes that (in descending order) the eigenvalues of S :{ i

8
18} are A, =21.9213 and

490158
A, =1.67874. One further computes that corresponding eigenvectors are v, ={ } and

1
—2.04016 . . .
v, = | . These vectors may be normalized to find the principal components, which are

—-.897934

44013

[ 44013
'71.897934

} for A, =21.9213 and u, :[ } for A, =1.67874.

164.12 3273  81.04
5. [M] The largest eigenvalue of S =| 32.73 539.44 249.13 | is A, =677.497, and the first principal
81.04 249.13 189.11
129554
component of the data is the unit eigenvector corresponding to A, which is u, =| .874423 |. The fraction
467547

of the total variance that is contained in this component is A, /tr(S)=677.497/(164.12 +539.44 +
189.11) =.758956, so 75.8956% of the variance of the data is contained in the first principal component.

29.64 18.38  5.00
6. [M] The largest eigenvalue of S =| 18.38 20.82 14.06 | is A, =51.6957, and the first principal
5.00 14.06 29.21
615525
component of the data is the unit eigenvector corresponding to A,, which is u, =|.599424 |. Thus one
511683
choice for the new variable is y, =.615525x, +.599424x, +.511683x;. The fraction of the total variance
that is contained in this component is A, /tr(S)=51.6957/(29.64 +20.82 +29.21) =.648872, so
64.8872% of the variance of the data is explained by y,.
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946515
—-.322659
variable is y; =.946515x, —.322659x,. The fraction of the total variance that is contained in this
component is A, /tr(S)=95.2041/(86 +16) =.933374, so 93.3374% of the variance of the data is
explained by y,.

7. Since the unit eigenvector corresponding to A, =95.2041 is u, ={ }, one choice for the new

44013
.897934
variable is y, =.44013x, +.897934x,. The fraction of the total variance that is contained in this
component is A, /tr(S)=21.9213/(5.6+18) =.928869, so 92.8869% of the variance of the data is
explained by y;,.

8. Since the unit eigenvector corresponding to A, =21.9213 is u, :{ }, one choice for the new

5 20
9. The largest eigenvalue of S=|2 6 2| is A, =9, and the first principal component of the data is the
0 2 7

1/3

unit eigenvector corresponding to A,, whichis u, =| 2/3 |. Thus one choice for y is
2/3

y=(1/3)x,+(2/3)x, +(2/3)x,, and the variance of y is A, =9.

5 4 2
10. [M] The largest eigenvalue of S={4 11 4| is A, =15, and the first principal component of the data
2 4 5

1//6

is the unit eigenvector corresponding to A;, which is u, =| 2/ J6 |. Thus one choice for yis

1136
y=(1/6)x, +(2/36)x, +(1/+/6)x;, and the variance of y is A, =15.
11. a. If wis the vector in RV with a 1 in each position, then [X; ... X,]w=X, +...+ X, =0 since the
X, are in mean-deviation form. Then
Y, o Y Iw=[PX, L PIX w=PT[X L X Jw=PT0=0
Thus Y, +...+Y, =0, and the Y, are in mean-deviation form.

b. By part a., the covariance matrix Sy of Y,,..., Y, is

1
SYzﬁ[Yl oYY Y]
1
:ﬁPT[Xl Xy JPTX e XD
:JDT(ﬁ[X1 LX) XN]TJP:PTSP

since the X, are in mean-deviation form.
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12. By Exercise 11, the change of variables X = PY changes the covariance matrix S of X into the covariance
matrix P’ SP of Y. The total variance of the data as described by Y is tr(P’ SP). However, since P’ SP

is similar to S, they have the same trace (by Exercise 25 in Section 5.4). Thus the total variance of the
data is unchanged by the change of variables X = PY.

13. Let M be the sample mean for the data, and let X, =X, —M. Let B= [5(1 XN] be the matrix of
observations in mean-deviation form. By the row-column expansion of BB, the sample covariance
matrix is

S=—'_pp"
N-1
1 XIT
= m[ ! Xy]
o
XN
—Liﬁ X! —Li(x -M)(X, -M)”
N-1& X N-1& k k

Chapter 7 SUPPLEMENTARY EXERCISES

1. a. True. This is just part of Theorem 2 in Section 7.1. The proof appears just before the statement of
the theorem.

0 -1
b. False. A counterexample is 4 = [ i 0}.
¢. True. This is proved in the first part of the proof of Theorem 6 in Section 7.3. It is also a
consequence of Theorem 7 in Section 6.2.

d. False. The principal axes of x” Ax are the columns of any orthogonal matrix P that diagonalizes 4.
Note: When A has an eigenvalue whose eigenspace has dimension greater than 1, the principal axes
are not uniquely determined.

-1
e. False. A counterexample is P = { } The columns here are orthogonal but not orthonormal.

f. False. See Example 6 in Section 7.2.

2 0 1
g. False. A counterexample is 4= 0 3} and x= [0} Then x” Ax=2>0, but x’ 4x is an

indefinite quadratic form.

h. True. This is basically the Principal Axes Theorem from Section 7.2. Any quadratic form can be
written as x’ Ax for some symmetric matrix A.

i. False. See Example 3 in Section 7.3.

j. False. The maximum value must be computed over the set of unit vectors. Without a restriction on
the norm of x, the values of x” Ax can be made as large as desired.
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k. False. Any orthogonal change of variable x = Py changes a positive definite quadratic form into
another positive definite quadratic form. Proof: By Theorem 5 of Section 7.2., the classification of a

quadratic form is determined by the eigenvalues of the matrix of the form. Given a form x’ 4x, the

matrix of the new quadratic form is P~' AP, which is similar to 4 and thus has the same eigenvalues
as 4.
1. False. The term “definite eigenvalue” is undefined and therefore meaningless.

m. True. If x = Py, then x’ Ax=(Py)" A(Py)=y' P" APy =y' P' 4Py .

1
n. False. A counterexample is U = L } The columns of U must be orthonormal to make UU” x

the orthogonal projection of x onto Col U.

0. True. This follows from the discussion in Example 2 of Section 7.4., which refers to a proof given
in Example 1.

p. True. Theorem 10 in Section 7.4 writes the decomposition in the form UXV”, where U and V are

orthogonal matrices. In this case, V" is also an orthogonal matrix. Proof: Since V is orthogonal, ¥
is invertible and V' =V7. Then (V") ' =" =(¥")", and since V is square and invertible, V"

is an orthogonal matrix.

2 0
q. False. A counterexample is 4= {O J. The singular values of 4 are 2 and 1, but the singular

values of A A are 4 and 1.

2. a. Each term in the expansion of 4 is symmetric by Exercise 35 in Section 7.1. The fact that
(B+C) =B" + C" implies that any sum of symmetric matrices is symmetric, so A4 is symmetric.

b. Since u/u, =1 and u?u1 =0 forj#1,

Au; = (uu) u +.+u,u D =Au uu)+. L+ A, (ulu) =\,
Since u; #0, X, is an eigenvalue of 4. A similar argument shows that A ; is an eigenvalue of 4 for
j=2,...,n.
3. Ifrank 4 = r, then dimNul 4 = n — r by the Rank Theorem. So 0 is an eigenvalue of 4 with multiplicity
n —r, and of the n terms in the spectral decomposition of 4 exactly n — r are zero. The remaining » terms

(which correspond to nonzero eigenvalues) are all rank 1 matrices, as mentioned in the discussion of the
spectral decomposition.

4. a. By Theorem 3 in Section 6.1, (Col 4)" =Nul 4" =Nul 4 since 4" = 4.
b. Lety be in R". By the Orthogonal Decomposition Theorem in Section 6.3,y = ¥ + z, where ¥ is in
Col 4 and z is in (Col 4)*. By part a., z is in Nul 4.

5. If Av = Av for some nonzero A, then v=A"Av = A(L"'v), which shows that v is a linear combination of

the columns of 4.

6. Because 4 is symmetric, there is an orthonormal eigenvector basis {u,,...,u,} for R". Let » = rank 4.
If =0, then A = O and the decomposition of Exercise 4(b) isy =0 +y for each y in R"; if » = n then the
decomposition is y =y + 0 for each y in R".
Assume that 0 <7 < n. Then dimNul 4 = n — r by the Rank Theorem, and so 0 is an eigenvalue of 4 with
multiplicity n — . Hence there are » nonzero eigenvalues, counted according to their multiplicities.
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Renumber the eigenvector basis if necessary so that u,,...,u, are the eigenvectors corresponding to the

nonzero eigenvalues. By Exercise 5, u,,...,u, are in Col 4. Also, u .,u,, are in Nul 4 because these

rloce

vectors are eigenvectors corresponding to the eigenvalue 0. For y in R”, there are scalars ¢,,...,c, such
that

y=qu +...+cu, +c, U, +...+cu,
5‘7 z

This provides the decomposition in Exercise 4(b).

. If 4=R"R and R is invertible, then 4 is positive definite by Exercise 25 in Section 7.2.

Conversely, suppose that 4 is positive definite. Then by Exercise 26 in Section 7.2, A= B’ B for some
positive definite matrix B. Since the eigenvalues of B are positive, 0 is not an eigenvalue of B and B is
invertible. Thus the columns of B are linearly independent. By Theorem 12 in Section 6.4, B = QR for
some n X n matrix Q with orthonormal columns and some upper triangular matrix R with positive entries

on its diagonal. Since Q is a square matrix, Q' Q =1, and
A=B"B=(0OR)' (OR)=R"O"OR=R"R

and R has the required properties.

. Suppose that A4 is positive definite, and consider a Cholesky factorization of 4A=R"R with R upper

triangular and having positive entries on its diagonal. Let D be the diagonal matrix whose diagonal
entries are the entries on the diagonal of R. Since right-multiplication by a diagonal matrix scales the

columns of the matrix on its left, the matrix L=R"D™" is lower triangular with 1’s on its diagonal.
If U=DR,then A=R"D'DR=LU.

If 4 is an m X n matrix and x is in R”, then x” A" Ax = (4x)" (4x) =|| Ax||* 0. Thus A4’ 4 is positive

semidefinite. By Exercise 22 in Section 6.5, rank A" 4 = rank A.

If rank G = r, then dimNul G = n — r by the Rank Theorem. Hence 0 is an eigenvalue of G with

multiplicity n — r, and the spectral decomposition of G is
G=\uul +...+1.uu’

rer 7

Also A,,...,A, are positive because G is positive semidefinite. Thus

G= (\/flul)(\/Xilulr)+...+(\/7»7,.ur)(\/xurr)
By the column-row expansion of a matrix product, G = BB" where B is the n x  matrix
B=[\/7Tlu1 \/Zuy]. Finally, G=A4"A4 for A=B".

Let A=UXV" be a singular value decomposition of 4. Since U is orthogonal, U'U =1 and
A=UXU'UV" =PQ where P=UXU" =UXU " and Q=UV". Since X is symmetric, P is
symmetric, and P has nonnegative eigenvalues because it is similar to X, which is diagonal with

nonnegative diagonal entries. Thus P is positive semidefinite. The matrix Q is orthogonal since it is the
product of orthogonal matrices.

a. Because the columns of V, are orthonormal,

A4'y =(U, DV )V, D™U] )y =(U,DD"'U] )y =U,U/y
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Since U,Uy is the orthogonal projection of y onto Col U, by Theorem 10 in Section 6.3, and
since ColU, =Col 4 by (5) in Example 6 of Section 7.4, 44"y is the orthogonal projection of
y onto Col 4.

b. Because the columns of U, are orthonormal,

A Ax=,D"'UNHU, DV )x=.D"'DV )x=VVx
Since V,V,Tx is the orthogonal projection of x onto Col V, by Theorem 10 in Section 6.3, and since
Col ¥V, =Row 4 by (8) in Example 6 of Section 7.4, A" Ax is the orthogonal projection of x onto
Row 4.

c. Using the reduced singular value decomposition, the definition of 4", and the associativity of matrix
multiplication gives:

A4 A=U,.DVHV.D"'UN YU, DV Y= WU, DD™'U! YU, DV)
=UDD'DV! =U.DV! = 4
AT A4 =, DU U, DV )V, DU ) = (v,D7' DV, )V, D™'U))
=V.D"'DD'U/ =v.D'U" = 4"

13. a. Ifb = 4x, then x" = 4'b = 4" Ax. By Exercise 12(a), x* is the orthogonal projection of x onto
Row 4.

b. From part (a) and Exercise 12(c), Ax" = A(A"Ax)=(AA" A)x = Ax =b.

c. Let Au=b. Since x" is the orthogonal projection of x onto Row 4, the Pythagorean Theorem shows
that [|u =]/ x"|* +|lu—x"|* 2| x" ||*, with equality only if u=x".

14. The least-squares solutions of Ax = b are precisely the solutions of Ax = b, where b is the orthogonal
projection of b onto Col 4. From Exercise 13, the minimum length solution of Ax = b is 4b, so A'b
is the minimum length least-squares solution of Ax =b. However, b=AA'Db by Exercise 12(a) and

hence A'b=A"44"b=A"b by Exercise 12(c). Thus 4"b is the minimum length least-squares solution
of Ax =b.

15. [M] The reduced SVD of 4 is A=U,DV,", where

966641 253758 —.034804
9.84443 0 0
185205 —.786338 —.589382
U, = ,D= 0 2.62466 0],
125107 —.398296  .570709
0 0 1.09467

125107 —-398296  .570709

[-.313388  .009549  .633795]
—313388  .009549  .633795
andV, =| —.633380  .023005 —.313529
633380 —.023005  .313529
035148 1999379 .002322 |

So the pseudoinverse 4" =¥7,.D™'U! may be calculated, as well as the solution X = 4"b for the system
Ax=b:
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[—05 -35 325  .325] 7
-05 -35 325 325
A" =[-05 15 -175 -.175|,
05 —-15 175 175
10 =30 -150 -.150]

>
Il
|

Row reducing the augmented matrix for the system 4’z =% shows that this system has a solution, so %

0]]-1
0 1
isin Col A" =Row 4. A basis for Nul 4 is {a,,a,}=1 | 1|,/ 0|, and an arbitrary element of Nul 4 is
1 0
_0_ L 0_

u=ca, +da,. One computes that || X||=+/131/50, while || X+u||= \/(131/50)+202 +2d*. Thus if

u#0,|X|| <[ X + u ||, which confirms that X is the minimum length solution to Ax = b.

[M] The reduced SVD of 4 is A=U,DV,, where

~337977 936307  .095396
12.9536 0 0
591763 290230 —.752053
U = D= 0 1.44553 0|,
~231428 —.062526 —.206232
0 0 337763

—.694283 —.187578 —.618696

[—.690099 .721920  .050939 |
0 0 0

andV, =| 341800 .387156 —.856320
637916 573534  .513928

| 0 0 0]
So the pseudoinverse 4* =¥7,.D"'U! may be calculated, as well as the solution X= 4"b for the
system Ax = b:
(5 0 -05 -15] [23]
0 O 0 0 0
AT=l0 2 5 1.5],x=|5.0
S -1 =35 -1.05 -9
10 0 0 0] | 0]
Row reducing the augmented matrix for the system A’z =% shows that this system has a solution, so %
o7 o7
1110
isin Col A =Row A. A basis for Nul 4 is {a;,a,}=4101|,| 0| t, and an arbitrary element of Nul 4 is
0110
0|1

u=ca, +da,. One computes that || X||=+/311/10, while ||X+u||=+/(311/10)+¢* + d*. Thus ifu =0,
1 2 p

|| X|| <|| X+ u ||, which confirms that X is the minimum length solution to Ax = b.



