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1.1 SOLUTIONS  

Notes: The key exercises are 7 (or 11 or 12), 19–22, and 25. For brevity, the symbols R1, R2,…, stand for 
row 1 (or equation 1), row 2 (or equation 2), and so on. Additional notes are at the end of the section. 

 1. 1 2

1 2

5 7
2 7 5

x x
x x

+ =
− − = −

  
1 5 7
2 7 5

 
 − − − 

 

  Replace R2 by R2 + (2)R1 and obtain: 1 2

2

5 7
3 9

x x
x

+ =
=

 
1 5 7
0 3 9
 
 
 

 

  Scale R2 by 1/3: 1 2

2

5 7
3

x x
x

+ =
=

 
1 5 7
0 1 3
 
 
 

 

  Replace R1 by R1 + (–5)R2:  1

2

8
3

x
x

= −
=

 
1 0 8
0 1 3

− 
 
 

 

  The solution is (x1, x2) = (–8, 3), or simply (–8, 3). 

 2. 1 2

1 2

2 4 4
5 7 11

x x
x x

+ = −
+ =

  
2 4 4
5 7 11

− 
 
 

 

  Scale R1 by 1/2 and obtain:  1 2

1 2

2 2
5 7 11

x x
x x

+ = −
+ =

 
1 2 2
5 7 11

− 
 
 

 

  Replace R2 by R2 + (–5)R1: 1 2

2

2 2
3 21

x x
x

+ = −
− =

 
1 2 2
0 3 21

− 
 − 

 

  Scale R2 by –1/3:  1 2

2

2 2
7

x x
x

+ = −
= −

 
1 2 2
0 1 7

− 
 − 

 

  Replace R1 by R1 + (–2)R2: 1

2

12
7

x
x

=
= −

 
1 0 12
0 1 7
 
 − 

 

  The solution is (x1, x2) = (12, –7), or simply (12, –7). 
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 3. The point of intersection satisfies the system of two linear equations: 

   1 2

1 2

5 7
2 2

x x
x x

+ =
− = −

  
1 5 7
1 2 2
 
 − − 

 

  Replace R2 by R2 + (–1)R1 and obtain: 1 2

2

5 7
7 9

x x
x

+ =
− = −

 
1 5 7
0 7 9
 
 − − 

 

  Scale R2 by –1/7: 1 2

2

5 7
9/7

x x
x

+ =
=

 
1 5 7
0 1 9/7
 
 
 

 

  Replace R1 by R1 + (–5)R2: 1

2

4/7
9/7

x
x

=
=

 
1 0 4/7
0 1 9/7
 
 
 

 

  The point of intersection is (x1, x2) = (4/7, 9/7). 

 4. The point of intersection satisfies the system of two linear equations: 

   1 2

1 2

5 1
3 7 5

x x
x x

− =
− =

  
1 5 1
3 7 5

− 
 − 

 

  Replace R2 by R2 + (–3)R1 and obtain:   1 2

2

5 1
8 2

x x
x

− =
=

 
1 5 1
0 8 2

− 
 
 

 

  Scale R2 by 1/8:  1 2

2

5 1
1/4

x x
x

− =
=

 
1 5 1
0 1 1/4

− 
 
 

 

  Replace R1 by R1 + (5)R2: 1

2

9/4
1/4

x
x

=
=

 
1 0 9/4
0 1 1/4
 
 
 

 

  The point of intersection is (x1, x2) = (9/4, 1/4). 

 5. The system is already in “triangular” form. The fourth equation is x4 = –5, and the other equations do not 
contain the variable x4. The next two steps should be to use the variable x3 in the third equation to 
eliminate that variable from the first two equations. In matrix notation, that means to replace R2 by its 
sum with 3 times R3, and then replace R1 by its sum with –5 times R3. 

 6. One more step will put the system in triangular form. Replace R4 by its sum with –3 times R3, which 

produces 

1 6 4 0 1
0 2 7 0 4
0 0 1 2 3
0 0 0 5 15

− − 
 − 
 −
 − 

. After that, the next step is to scale the fourth row by –1/5. 

 7. Ordinarily, the next step would be to interchange R3 and R4, to put a 1 in the third row and third column. 
But in this case, the third row of the augmented matrix corresponds to the equation 0 x1 + 0 x2 + 0 x3 = 1, 
or simply, 0 = 1. A system containing this condition has no solution. Further row operations are 
unnecessary once an equation such as 0 = 1 is evident. 

  The solution set is empty. 
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 8. The standard row operations are: 

   
1 4 9 0 1 4 9 0 1 4 0 0 1 0 0 0
0 1 7 0 ~ 0 1 7 0 ~ 0 1 0 0 ~ 0 1 0 0
0 0 2 0 0 0 1 0 0 0 1 0 0 0 1 0

− − −       
       
       
              

 

  The solution set contains one solution: (0, 0, 0). 

 9. The system has already been reduced to triangular form. Begin by scaling the fourth row by 1/2 and then 
replacing R3 by R3 + (3)R4: 

   

1 1 0 0 4 1 1 0 0 4 1 1 0 0 4
0 1 3 0 7 0 1 3 0 7 0 1 3 0 7

~ ~
0 0 1 3 1 0 0 1 3 1 0 0 1 0 5
0 0 0 2 4 0 0 0 1 2 0 0 0 1 2

− − − − − −     
     − − − − −     
     − − − −
     
     

 

  Next, replace R2 by R2 + (3)R3. Finally, replace R1 by R1 + R2: 

   

1 1 0 0 4 1 0 0 0 4
0 1 0 0 8 0 1 0 0 8

~ ~
0 0 1 0 5 0 0 1 0 5
0 0 0 1 2 0 0 0 1 2

− −   
   
   
   
   
   

 

  The solution set contains one solution: (4, 8, 5, 2). 

 10. The system has already been reduced to triangular form. Use the 1 in the fourth row to change the  
–4 and 3 above it to zeros. That is, replace R2 by R2 + (4)R4 and replace R1 by R1 + (–3)R4. For the 
final step, replace R1 by R1 + (2)R2. 

   

1 2 0 3 2 1 2 0 0 7 1 0 0 0 3
0 1 0 4 7 0 1 0 0 5 0 1 0 0 5

~ ~
0 0 1 0 6 0 0 1 0 6 0 0 1 0 6
0 0 0 1 3 0 0 0 1 3 0 0 0 1 3

− − − −     
     − − −     
     
     − − −     

 

  The solution set contains one solution: (–3, –5, 6, –3). 

11. First, swap R1 and R2. Then replace R3 by R3 + (–3)R1. Finally, replace R3 by R3 + (2)R2. 

   
0 1 4 5 1 3 5 2 1 3 5 2 1 3 5 2
1 3 5 2 ~ 0 1 4 5 ~ 0 1 4 5 ~ 0 1 4 5
3 7 7 6 3 7 7 6 0 2 8 12 0 0 0 2

− − − −       
       − − − −       
       − −       

 

  The system is inconsistent, because the last row would require that 0 = 2 if there were a solution.  
The solution set is empty. 

 12. Replace R2 by R2 + (–3)R1 and replace R3 by R3 + (4)R1. Finally, replace R3 by R3 + (3)R2. 

   
1 3 4 4 1 3 4 4 1 3 4 4
3 7 7 8 ~ 0 2 5 4 ~ 0 2 5 4
4 6 1 7 0 6 15 9 0 0 0 3

− − − − − −     
     − − − −     
     − − − −     

 

  The system is inconsistent, because the last row would require that 0 = 3 if there were a solution.  
The solution set is empty. 
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 13. 
1 0 3 8 1 0 3 8 1 0 3 8 1 0 3 8
2 2 9 7 ~ 0 2 15 9 ~ 0 1 5 2 ~ 0 1 5 2
0 1 5 2 0 1 5 2 0 2 15 9 0 0 5 5

− − − −       
       − − −       
       − − − −       

 

  
1 0 3 8 1 0 0 5

~ 0 1 5 2 ~ 0 1 0 3
0 0 1 1 0 0 1 1

−   
   −   
   − −   

. The solution is (5, 3, –1). 

 14. 
1 3 0 5 1 3 0 5 1 3 0 5 1 3 0 5
1 1 5 2 ~ 0 2 5 7 ~ 0 1 1 0 ~ 0 1 1 0
0 1 1 0 0 1 1 0 0 2 5 7 0 0 7 7

− − − −       
       − −       
       −       

 

  
1 3 0 5 1 3 0 5 1 0 0 2

~ 0 1 1 0 ~ 0 1 0 1 ~ 0 1 0 1 .
0 0 1 1 0 0 1 1 0 0 1 1

− −     
     − −     
          

 The solution is (2, –1, 1). 

15. First, replace R4 by R4 + (–3)R1, then replace R3 by R3 + (2)R2, and finally replace R4 by R4 + (3)R3.  

   

1 0 3 0 2 1 0 3 0 2
0 1 0 3 3 0 1 0 3 3

~
0 2 3 2 1 0 2 3 2 1
3 0 0 7 5 0 0 9 7 11

   
   − −   
   − −
   − − −   

 

   

1 0 3 0 2 1 0 3 0 2
0 1 0 3 3 0 1 0 3 3

~ ~
0 0 3 4 7 0 0 3 4 7
0 0 9 7 11 0 0 0 5 10

   
   − −   
   − −
   − − −   

 

  The resulting triangular system indicates that a solution exists. In fact, using the argument from Example 2, 
one can see that the solution is unique. 

16. First replace R4 by R4 + (2)R1 and replace R4 by R4 + (–3/2)R2. (One could also scale R2 before 
adding to R4, but the arithmetic is rather easy keeping R2 unchanged.) Finally, replace R4 by R4 + R3. 

   

1 0 0 2 3 1 0 0 2 3
0 2 2 0 0 0 2 2 0 0

~
0 0 1 3 1 0 0 1 3 1
2 3 2 1 5 0 3 2 3 1

− − − −   
   
   
   
   − − −   

 

   

1 0 0 2 3 1 0 0 2 3
0 2 2 0 0 0 2 2 0 0

~ ~
0 0 1 3 1 0 0 1 3 1
0 0 1 3 1 0 0 0 0 0

− − − −   
   
   
   
   − − −   

 

  The system is now in triangular form and has a solution. The next section discusses how to continue with 
this type of system. 
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17. Row reduce the augmented matrix corresponding to the given system of three equations: 

   
1 4 1 1 4 1 1 4 1
2 1 3 ~ 0 7 5 ~ 0 7 5
1 3 4 0 7 5 0 0 0

− − −     
     − − − −     
     − − −     

 

  The system is consistent, and using the argument from Example 2, there is only one solution. So the three 
lines have only one point in common. 

18. Row reduce the augmented matrix corresponding to the given system of three equations: 

   
1 2 1 4 1 2 1 4 1 2 1 4
0 1 1 1 ~ 0 1 1 1 ~ 0 1 1 1
1 3 0 0 0 1 1 4 0 0 0 5

     
     − − −     
     − − −     

 

  The third equation, 0 = –5, shows that the system is inconsistent, so the three planes have no point in 
common. 

19. 
1 4 1 4

~
3 6 8 0 6 3 4

h h
h

   
   − −   

 Write c for 6 – 3h. If c = 0, that is, if h = 2, then the system has no 

solution, because 0 cannot equal –4. Otherwise, when h ≠ 2, the system has a solution. 

20. 
1 3 1 3

~ .
2 4 6 0 4 2 0

h h
h

− −   
   − +   

 Write c for 4 + 2h. Then the second equation cx2 = 0 has a solution 

for every value of c. So the system is consistent for all h. 

21. 
1 3 2 1 3 2

~ .
4 8 0 12 0h h

− −   
   − +   

 Write c for h + 12. Then the second equation cx2 = 0 has a solution 

for every value of c. So the system is consistent for all h. 

22. 
2 3 2 3

~ .
6 9 5 0 0 5 3

h h
h

− −   
   − +   

 The system is consistent if and only if 5 + 3h = 0, that is, if and only 

if h = –5/3. 

23. a. True. See the remarks following the box titled Elementary Row Operations. 
b. False. A 5 × 6 matrix has five rows. 
c. False. The description given applied to a single solution. The solution set consists of all possible 

solutions. Only in special cases does the solution set consist of exactly one solution. Mark a statement 
True only if the statement is always true. 

d. True. See the box before Example 2. 

24. a. True. See the box preceding the subsection titled Existence and Uniqueness Questions. 
b. False. The definition of row equivalent requires that there exist a sequence of row operations that 

transforms one matrix into the other. 
c. False. By definition, an inconsistent system has no solution. 
d. True. This definition of equivalent systems is in the second paragraph after equation (2). 



6 CHAPTER 1 • Linear Equations in Linear Algebra 

25. 
1 4 7 1 4 7 1 4 7
0 3 5 ~ 0 3 5 ~ 0 3 5
2 5 9 0 3 5 2 0 0 0 2

g g g
h h h
k k g k g h

− − −     
     − − −     
     − − − + + +     

 

  Let b denote the number k + 2g + h. Then the third equation represented by the augmented matrix above 
is 0 = b. This equation is possible if and only if b is zero. So the original system has a solution if and only 
if k + 2g + h = 0.  

26. A basic principle of this section is that row operations do not affect the solution set of a linear system. 
Begin with a simple augmented matrix for which the solution is obviously (–2, 1, 0), and then perform 
any elementary row operations to produce other augmented matrices. Here are three examples. The fact 
that they are all row equivalent proves that they all have the solution set (–2, 1, 0). 

   
1 0 0 2 1 0 0 2 1 0 0 2
0 1 0 1 ~ 2 1 0 3 ~ 2 1 0 3
0 0 1 0 0 0 1 0 2 0 1 4

− − −     
     − −     
     −     

 

27. Study the augmented matrix for the given system, replacing R2 by R2 + (–c)R1:  

   
1 3 1 3

~
0 3

f f
c d g d c g cf
   
   − −   

 

  This shows that shows d – 3c must be nonzero, since f and g are arbitrary. Otherwise, for some choices  
of f and g the second row would correspond to an equation of the form 0 = b, where b is nonzero.  
Thus d ≠ 3c. 

28. Row reduce the augmented matrix for the given system. Scale the first row by 1/a, which is possible 
since a is nonzero. Then replace R2 by R2 + (–c)R1. 

   
1 / / 1 / /

~ ~
0 ( / ) ( / )

a b f b a f a b a f a
c d g c d g d c b a g c f a
     
     − −     

 

  The quantity d – c(b/a) must be nonzero, in order for the system to be consistent when the quantity  
g – c( f /a) is nonzero (which can certainly happen). The condition that d – c(b/a) ≠ 0 can also be written 
as ad – bc ≠ 0, or ad ≠ bc. 

29. Swap R1 and R2; swap R1 and R2. 

30. Multiply R2 by –1/2; multiply R2 by –2. 

31. Replace R3 by R3 + (–4)R1; replace R3 by R3 + (4)R1. 

32. Replace R3 by R3 + (3)R2; replace R3 by R3 + (–3)R2. 

33. The first equation was given. The others are: 
   2 1 3 2 1 3( 20 40 )/4, or 4 60T T T T T T= + + + − − =  

   3 4 2 3 4 2( 40 30)/4, or 4 70T T T T T T= + + + − − =  

   4 1 3 4 1 3(10 30)/4, or 4 40T T T T T T= + + + − − =  
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  Rearranging, 

   

1 2 4

1 2 3

2 3 4

1 3 4

4 30
4 60

4 70
4 40

T T T
T T T

T T T
T T T

− − =
− + − =

− + − =
− − + =

 

34. Begin by interchanging R1 and R4, then create zeros in the first column: 

   

4 1 0 1 30 1 0 1 4 40 1 0 1 4 40
1 4 1 0 60 1 4 1 0 60 0 4 0 4 20

~ ~
0 1 4 1 70 0 1 4 1 70 0 1 4 1 70
1 0 1 4 40 4 1 0 1 30 0 1 4 15 190

− − − − − −     
     − − − − −     
     − − − − − −
     − − − − − −     

 

  Scale R1 by –1 and R2 by 1/4, create zeros in the second column, and replace R4 by R4 + R3: 

   

1 0 1 4 40 1 0 1 4 40 1 0 1 4 40
0 1 0 1 5 0 1 0 1 5 0 1 0 1 5

~ ~ ~
0 1 4 1 70 0 0 4 2 75 0 0 4 2 75
0 1 4 15 190 0 0 4 14 195 0 0 0 12 270

− − − − − −     
     − − −     
     − − − −
     − − −     

 

  Scale R4 by 1/12, use R4 to create zeros in column 4, and then scale R3 by 1/4: 

   

1 0 1 4 40 1 0 1 0 50 1 0 1 0 50
0 1 0 1 5 0 1 0 0 27.5 0 1 0 0 27.5

~ ~ ~
0 0 4 2 75 0 0 4 0 120 0 0 1 0 30
0 0 0 1 22.5 0 0 0 1 22.5 0 0 0 1 22.5

− −     
     −     
     −
     
     

 

  The last step is to replace R1 by R1 + (–1)R3: 

   

1 0 0 0 20.0
0 1 0 0 27.5

~ .
0 0 1 0 30.0
0 0 0 1 22.5

 
 
 
 
 
 

 The solution is (20, 27.5, 30, 22.5). 

Notes: The Study Guide includes a “Mathematical Note” about statements, “If … , then … .” 
This early in the course, students typically use single row operations to reduce a matrix. As a result, even 

the small grid for Exercise 34 leads to about 25 multiplications or additions (not counting operations with 
zero). This exercise should give students an appreciation for matrix programs such as MATLAB. Exercise 14 
in Section 1.10 returns to this problem and states the solution in case students have not already solved the 
system of equations. Exercise 31 in Section 2.5 uses this same type of problem in connection with an LU 
factorization. 

For instructors who wish to use technology in the course, the Study Guide provides boxed MATLAB 
notes at the ends of many sections. Parallel notes for Maple, Mathematica, and the TI-83+/86/89 and HP-48G 
calculators appear in separate appendices at the end of the Study Guide. The MATLAB box for Section 1.1 
describes how to access the data that is available for all numerical exercises in the text. This feature has the 
ability to save students time if they regularly have their matrix program at hand when studying linear algebra. 
The MATLAB box also explains the basic commands replace, swap, and scale. These commands are 
included in the text data sets, available from the text web site, www.laylinalgebra.com. 
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1.2 SOLUTIONS 

Notes: The key exercises are 1–20 and 23–28. (Students should work at least four or five from Exercises 
7–14, in preparation for Section 1.5.)  

 1. Reduced echelon form: a and b. Echelon form: d. Not echelon: c. 

 2.  Reduced echelon form: a. Echelon form: b and d. Not echelon: c. 

 3. 
1 2 3 4 1 2 3 4 1 2 3 4
4 5 6 7 ~ 0 3 6 9 ~ 0 1 2 3
6 7 8 9 0 5 10 15 0 5 10 15

     
     − − −     
     − − − − − −     

 

   
1 2 3 4 1 0 1 2

~ 0 1 2 3 ~ 0 1 2 3
0 0 0 0 0 0 0 0

− −   
   
   
      

.  Pivot cols 1 and 2.  
1 2 3 4
4 5 6 7
6 7 8 9

 
 
 
  

 

 4. 
1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7
3 5 7 9 ~ 0 4 8 12 ~ 0 1 2 3 ~ 0 1 2 3
5 7 9 1 0 8 16 34 0 8 16 34 0 0 0 10

       
       − − −       
       − − − − − − −       

 

   
1 3 5 7 1 3 5 0 1 0 1 0

~ 0 1 2 3 ~ 0 1 2 0 ~ 0 1 2 0
0 0 0 1 0 0 0 1 0 0 0 1

−     
     
     
          

.  Pivot cols
1, 2, and 4    

1 3 5 7
3 5 7 9
5 7 9 1

 
 
 
  

 

 5. 
* * 0

, ,
0 0 0 0 0
     
     
     

 6.
* * 0

0 , 0 0 , 0 0
0 0 0 0 0 0

     
     
     
          

 

 7. 
1 3 4 7 1 3 4 7 1 3 4 7 1 3 0 5

~ ~ ~
3 9 7 6 0 0 5 15 0 0 1 3 0 0 1 3

−       
       − −       

 

  Corresponding system of equations:  1 2

3

3 5
3

x x
x

+ = −
=

 

  The basic variables (corresponding to the pivot positions) are x1 and x3. The remaining variable x2 is free. 
Solve for the basic variables in terms of the free variable. The general solution is 

   
1 2

2

3

5 3
 is free

3

x x
x
x

= − −


 =

 

Note: Exercise 7 is paired with Exercise 10. 
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 8. 
1 4 0 7 1 4 0 7 1 4 0 7 1 0 0 9

~ ~ ~
2 7 0 10 0 1 0 4 0 1 0 4 0 1 0 4

−       
       − −       

 

  Corresponding system of equations:  1

2

9
4

x
x

= −
=

 

  The basic variables (corresponding to the pivot positions) are x1 and x2. The remaining variable x3 is free. 
Solve for the basic variables in terms of the free variable. In this particular problem, the basic variables 
do not depend on the value of the free variable.  

  General solution:  
1

2

3

9
4

 is free

x
x
x

= −
 =



 

Note: A common error in Exercise 8 is to assume that x3 is zero. To avoid this, identify the basic variables 
first. Any remaining variables are free. (This type of computation will arise in Chapter 5.) 

 9. 
0 1 6 5 1 2 7 6 1 0 5 4

~ ~
1 2 7 6 0 1 6 5 0 1 6 5

− − − −     
     − − − −     

 

  Corresponding system:  1 3

2 3

5 4
6 5

x x
x x

− =
− =

 

  Basic variables: x1, x2; free variable: x3. General solution: 
1 3

2 3

3

4 5
5 6

is free

x x
x x
x

= +
 = +



 

 10. 
1 2 1 3 1 2 1 3 1 2 0 4

~ ~
3 6 2 2 0 0 1 7 0 0 1 7

− − − − − −     
     − − − −     

 

  Corresponding system:  1 2

3

2 4
7

x x
x

− = −
= −

 

  Basic variables: x1, x3; free variable: x2. General solution: 
1 2

2

3

4 2
 is free

7

x x
x
x

= − +


 = −

 

 11. 
3 4 2 0 3 4 2 0 1 4 / 3 2 / 3 0
9 12 6 0 ~ 0 0 0 0 ~ 0 0 0 0
6 8 4 0 0 0 0 0 0 0 0 0

− − −     
     − −     
     − −     

 

  Corresponding system:  

1 2 3
4 2 0
3 3

0 0
0 0

x x x− + =

=
=

 



10 CHAPTER 1 • Linear Equations in Linear Algebra 

  Basic variable: x1; free variables x2, x3. General solution: 

1 2 3

2

3

4 2

3 3
 is free
 is free

x xx

x
x

 = −






 

 12. 
1 7 0 6 5 1 7 0 6 5 1 7 0 6 5
0 0 1 2 3 ~ 0 0 1 2 3 ~ 0 0 1 2 3
1 7 4 2 7 0 0 4 8 12 0 0 0 0 0

− − −     
     − − − − − −     
     − − −     

 

  Corresponding system:  
1 2 4

3 4

7 6 5
2 3

0 0

x x x
x x

− + =
− = −

=
 

  Basic variables: x1 and x3; free variables: x2, x4. General solution: 

1 2 4

2

3 4

4

5 7 6
 is free

3 2
 is free

x x x
x
x x
x

= + −


 = − +


 

 13. 

1 3 0 1 0 2 1 3 0 0 9 2 1 0 0 0 3 5
0 1 0 0 4 1 0 1 0 0 4 1 0 1 0 0 4 1

~ ~
0 0 0 1 9 4 0 0 0 1 9 4 0 0 0 1 9 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− − − − −     
     − − −     
     
     
     

 

  Corresponding system:  

1 5

2 5

4 5

3 5
4 1
9 4

0 0

x x
x x

x x

− =
− =
+ =

=

   

  Basic variables: x1, x2, x4; free variables: x3, x5. General solution: 

1 5

2 5

3

4 5

5

5 3
1 4

is free
4 9

is free

x x
x x
x
x x
x

= +
 = +

 = −


 

Note: The Study Guide discusses the common mistake x3 = 0. 

 14. 

1 2 5 6 0 5 1 0 7 0 0 9
0 1 6 3 0 2 0 1 6 3 0 2

~
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0

− − − −   
   − − − −   
   
   
   
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  Corresponding system:  

1 3

2 3 4

5

7 9
6 3 2

0
0 0

x x
x x x

x

+ = −
− − =

=
=

 

  Basic variables: x1, x2, x5; free variables: x3, x4. General solution: 

1 3

2 3 4

3

4

5

9 7
2 6 3

 is free
 is free

0

x x
x x x
x
x
x

= − −
 = + +




=

 

 15. a. The system is consistent, with a unique solution. 
b. The system is inconsistent. (The rightmost column of the augmented matrix is a pivot column). 

 16. a. The system is consistent, with a unique solution. 
b. The system is consistent. There are many solutions because x2 is a free variable. 

 17. 
2 3 2 3

~
4 6 7 0 0 7 2

h h
h

   
   −   

 The system has a solution only if 7 – 2h = 0, that is, if h = 7/2. 

 18. 
1 3 2 1 3 2

~
5 7 0 15 3h h

− − − −   
   − +   

 If h +15 is zero, that is, if h = –15, then the system has no solution, 

because 0 cannot equal 3. Otherwise, when 15,h ≠ −  the system has a solution. 

 19. 
1 2 1 2

~
4 8 0 8 4 8

h h
k h k

   
   − −   

  

a. When h = 2 and 8,k ≠  the augmented column is a pivot column, and the system is inconsistent. 
b. When 2,h ≠  the system is consistent and has a unique solution. There are no free variables.  
c. When h = 2 and k = 8, the system is consistent and has many solutions.  

 20. 
1 3 2 1 3 2

~
3 0 9 6h k h k
   
   − −   

 

a. When h = 9 and 6,k ≠  the system is inconsistent, because the augmented column is a pivot column. 
b. When 9,h ≠  the system is consistent and has a unique solution. There are no free variables. 
c. When h = 9 and k = 6, the system is consistent and has many solutions. 

 21. a. False. See Theorem 1. 
b. False. See the second paragraph of the section. 
c. True. Basic variables are defined after equation (4). 
d. True. This statement is at the beginning of Parametric Descriptions of Solution Sets. 
e. False. The row shown corresponds to the equation 5x4 = 0, which does not by itself lead to a 

contradiction. So the system might be consistent or it might be inconsistent. 
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 22. a. False. See the statement preceding Theorem 1. Only the reduced echelon form is unique. 
b. False. See the beginning of the subsection Pivot Positions. The pivot positions in a matrix are 

determined completely by the positions of the leading entries in the nonzero rows of any echelon 
form obtained from the matrix. 

c. True. See the paragraph after Example 3. 
d. False. The existence of at least one solution is not related to the presence or absence of free variables. 

If the system is inconsistent, the solution set is empty. See the solution of Practice Problem 2. 
e. True. See the paragraph just before Example 4. 

 23. Yes. The system is consistent because with three pivots, there must be a pivot in the third (bottom) row 
of the coefficient matrix. The reduced echelon form cannot contain a row of the form 
[0   0   0   0   0   1]. 

 24. The system is inconsistent because the pivot in column 5 means that there is a row of the form 
[0   0   0   0   1]. Since the matrix is the augmented matrix for a system, Theorem 2 shows that the system 
has no solution. 

 25. If the coefficient matrix has a pivot position in every row, then there is a pivot position in the bottom 
row, and there is no room for a pivot in the augmented column. So, the system is consistent, by  
Theorem 2. 

 26. Since there are three pivots (one in each row), the augmented matrix must reduce to the form 

   
1

2

3

1 0 0
0 1 0    and so   
0 0 1

a x a
b x b
c x c

= 
  = 
  = 

 

  No matter what the values of a, b, and c, the solution exists and is unique. 

 27. “If a linear system is consistent, then the solution is unique if and only if every column in the coefficient 
matrix is a pivot column; otherwise there are infinitely many solutions. ”  

  This statement is true because the free variables correspond to nonpivot columns of the coefficient 
matrix. The columns are all pivot columns if and only if there are no free variables. And there are no free 
variables if and only if the solution is unique, by Theorem 2. 

 28. Every column in the augmented matrix except the rightmost column is a pivot column, and the rightmost 
column is not a pivot column. 

 29. An underdetermined system always has more variables than equations. There cannot be more basic 
variables than there are equations, so there must be at least one free variable. Such a variable may be 
assigned infinitely many different values. If the system is consistent, each different value of a free 
variable will produce a different solution. 

 30. Example: 1 2 3

1 2 3

4
2 2 2 5

x x x
x x x

+ + =
+ + =

 

 31. Yes, a system of linear equations with more equations than unknowns can be consistent. 

  Example (in which x1 = x2 = 1): 
1 2

1 2

1 2

2
0

3 2 5

x x
x x
x x

+ =
− =
+ =

 



1.2 • Solutions   13 

 

 32. According to the numerical note in Section 1.2, when n = 30 the reduction to echelon form takes about 
2(30)3/3 = 18,000 flops, while further reduction to reduced echelon form needs at most (30)2 = 900 flops. 
Of the total flops, the “backward phase” is about 900/18900 = .048 or about 5%.  

   When n = 300, the estimates are 2(300)3/3 = 18,000,000 phase for the reduction to echelon form and 
(300)2 = 90,000 flops for the backward phase. The fraction associated with the backward phase is about 
(9×104) /(18×106) = .005, or about .5%. 

 33. For a quadratic polynomial p(t) = a0 + a1t + a2t2 to exactly fit the data (1, 12), (2, 15), and (3, 16), the 
coefficients a0, a1, a2 must satisfy the systems of equations given in the text. Row reduce the augmented 
matrix: 

   
1 1 1 12 1 1 1 12 1 1 1 12 1 1 1 12
1 2 4 15 ~ 0 1 3 3 ~ 0 1 3 3 ~ 0 1 3 3
1 3 9 16 0 2 8 4 0 0 2 2 0 0 1 1

       
       
       
       − −       

 

   
1 1 0 13 1 0 0 7

~ 0 1 0 6 ~ 0 1 0 6
0 0 1 1 0 0 1 1

   
   
   
   − −   

 

  The polynomial is p(t) = 7 + 6t – t2. 

 34. [M] The system of equations to be solved is: 

   

2 3 4 5
0 1 2 3 4 5

2 3 4 5
0 1 2 3 4 5

2 3 4 5
0 1 2 3 4 5

2 3 4 5
0 1 2 3 4 5

2 3 4 5
0 1 2 3 4 5

2 3
0 1 2 3

0 0 0 0 0 0

2 2 2 2 2 2.90

4 4 4 4 4 14.8

6 6 6 6 6 39.6

8 8 8 8 8 74.3

10 10 10

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

+ ⋅ + ⋅ + ⋅ + 4 5
4 510 10 119a a⋅ + ⋅ =

 

  The unknowns are a0, a1, …, a5. Use technology to compute the reduced echelon of the augmented 
matrix: 

   

2 3 4 5

1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 2 4 8 16 32 2.9 0 2 4 8 16 32 2.9
1 4 16 64 256 1024 14.8 0 0 8 48 224 960 9

~
1 6 36 216 1296 7776 39.6 0 0 24 192 1248 7680 30.9
1 8 64 512 4096 32768 74.3 0 0 48 480 4032 32640 62.7

0 0 80 960 9920 99840 101 10 10 10 10 10 119

 
 
 
 
 
 
 
 
   4.5

 
 
 
 
 
 
 
 
  

 

   

1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 2 4 8 16 32 2.9 0 2 4 8 16 32 2.9
0 0 8 48 224 960 9 0 0 8 48 224 960 9

~ ~
0 0 0 48 576 4800 3.9 0 0 0 48 576 4800 3.9
0 0 0 192 2688 26880 8.7 0 0 0 0 384 7680 6.9
0 0 0 480 7680 90240 14.5 0 0 0 0 1920 42240 24.5

   
   
   
   
   
   
   −
  

−     



 



14 CHAPTER 1 • Linear Equations in Linear Algebra 

   

1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 2 4 8 16 32 2.9 0 2 4 8 16 32 2.9
0 0 8 48 224 960 9 0 0 8 48 224 960 9

~ ~
0 0 0 48 576 4800 3.9 0 0 0 48 576 4800 3.9
0 0 0 0 384 7680 6.9 0 0 0 0 384 7680 6.9
0 0 0 0 0 3840 10 0 0 0 0 0 1 .0026

   
   
   
   
   
   
   − −
   
      

 

   

1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 2 4 8 16 0 2.8167 0 1 0 0 0 0 1.7125
0 0 8 48 224 0 6.5000 0 0 1 0 0 0 1.1948

~ ~ ~
0 0 0 48 576 0 8.6000 0 0 0 1 0 0 .6615
0 0 0 0 384 0 26.900 0 0 0 0 1 0 .0701
0 0 0 0 0 1 .002604 0 0 0 0 0 1 .0026

   
   
   
   −
   −   
   − −
   
      

 

  Thus p(t) = 1.7125t – 1.1948t2 + .6615t3 – .0701t4 + .0026t5, and p(7.5) = 64.6 hundred lb. 

Notes: In Exercise 34, if the coefficients are retained to higher accuracy than shown here, then p(7.5) = 64.8. 
If a polynomial of lower degree is used, the resulting system of equations is overdetermined. The augmented 
matrix for such a system is the same as the one used to find p, except that at least column 6 is missing. When 
the augmented matrix is row reduced, the sixth row of the augmented matrix will be entirely zero except for a 
nonzero entry in the augmented column, indicating that no solution exists. 

Exercise 34 requires 25 row operations. It should give students an appreciation for higher-level 
commands such as gauss and bgauss, discussed in Section 1.4 of the Study Guide. The command ref 
(reduced echelon form) is available, but I recommend postponing that command until Chapter 2. 

The Study Guide includes a “Mathematical Note” about the phrase, “If and only if,” used in Theorem 2. 

1.3 SOLUTIONS 

Notes: The key exercises are 11–14, 17–22, 25, and 26. A discussion of Exercise 25 will help students 
understand the notation [a1   a2   a3], {a1, a2, a3}, and Span{a1, a2, a3}. 

 1. 
1 3 1 ( 3) 4
2 1 2 ( 1) 1

− − − + − −       
+ = + = =       − + −       

u v .  

  Using the definitions carefully, 

   
1 3 1 ( 2)( 3) 1 6 5

2 ( 2)
2 1 2 ( 2)( 1) 2 2 4

− − − − − − +           
− = + − = + = =           − − − +           

u v , or, more quickly, 

   
1 3 1 6 5

2 2
2 1 2 2 4

− − − +       
− = − = =       − +       

u v . The intermediate step is often not written. 

 2. 
3 2 3 2 5
2 1 2 ( 1) 1

+       
+ = + = =       − + −       

u v .  

  Using the definitions carefully, 
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3 2 3 ( 2)(2) 3 ( 4) 1

2 ( 2)
2 1 2 ( 2)( 1) 2 2 4

− + − −           
− = + − = + = =           − − − +           

u v , or, more quickly, 

   
3 2 3 4 1

2 2
2 1 2 2 4

− −       
− = − = =       − +       

u v . The intermediate step is often not written. 

 3.  

  

x2

x1

u – 2v

– 2v

u – v

– v

v

u

u + v

 

 4.  

  

x2

x1

u – v

u

v

u + v
– v

– 2v

u – 2v

 

 5. 1 2

6 3 1
1 4 7
5 0 5

x x
−     

     − + = −     
     −     

,    
1 2

1 2

1

6 3 1
4 7

5 0 5

x x
x x
x

−     
     − + = −     
     −    

,    
1 2

1 2

1

6 3 1
4 7

5 5

x x
x x

x

−   
   − + = −   
   −  

 

   
1 2

1 2

1

6 3 1
4 7

5 5

x x
x x
x

− =
− + = −

= −
 

  Usually the intermediate steps are not displayed. 

 6. 1 2 3
2 8 1 0
3 5 6 0

x x x
−       

+ + =       −       
,    31 2

31 2

2 8 0
63 5 0
xx x

xx x
−       

+ + =      −       
,    1 2 3

1 2 3

2 8 0
3 5 6 0

x x x
x x x

− + +   
=   + −   

 

   2 2 3

1 2 3

2 8 0
3 5 6 0
x x x
x x x

− + + =
+ − =

 

  Usually the intermediate steps are not displayed. 

 7. See the figure below. Since the grid can be extended in every direction, the figure suggests that every 
vector in R2 can be written as a linear combination of u and v. 

  To write a vector a as a linear combination of u and v, imagine walking from the origin to a along the 
grid "streets" and keep track of how many "blocks" you travel in the u-direction and how many in the  
v-direction.  
a. To reach a from the origin, you might travel 1 unit in the u-direction and –2 units in the v-direction 

(that is, 2 units in the negative v-direction). Hence a = u – 2v. 
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b. To reach b from the origin, travel 2 units in the u-direction and –2 units in the v-direction. So  
b = 2u – 2v. Or, use the fact that b is 1 unit in the u-direction from a, so that  

   b = a + u = (u – 2v) + u = 2u – 2v 
c. The vector c is –1.5 units from b in the v-direction, so 
   c = b – 1.5v = (2u – 2v) – 1.5v = 2u – 3.5v 
d. The “map” suggests that you can reach d if you travel 3 units in the u-direction and –4 units in the  

v-direction. If you prefer to stay on the paths displayed on the map, you might travel from the origin 
to –3v, then move 3 units in the u-direction, and finally move –1 unit in the v-direction. So 

   d = –3v + 3u – v = 3u – 4v 
  Another solution is 
   d = b – 2v + u = (2u – 2v) – 2v + u = 3u – 4v 

    

w

x

v

u

a
c

d

2v
b

z

y
–2v –u

–v
0

 
Figure for Exercises 7 and 8 

 8. See the figure above. Since the grid can be extended in every direction, the figure suggests that every 
vector in R2 can be written as a linear combination of u and v. 
w. To reach w from the origin, travel –1 units in the u-direction (that is, 1 unit in the negative  

u-direction) and travel 2 units in the v-direction. Thus, w = (–1)u + 2v, or w = 2v – u. 
x. To reach x from the origin, travel 2 units in the v-direction and –2 units in the u-direction. Thus, 

x = –2u + 2v. Or, use the fact that x is –1 units in the u-direction from w, so that 
   x = w – u = (–u + 2v) – u = –2u + 2v 
y. The vector y is 1.5 units from x in the v-direction, so 
   y = x + 1.5v = (–2u + 2v) + 1.5v = –2u + 3.5v 
z. The map suggests that you can reach z if you travel 4 units in the v-direction and –3 units in the 

u-direction. So z = 4v – 3u = –3u + 4v. If you prefer to stay on the paths displayed on the “map,” you 
might travel from the origin to –2u, then 4 units in the v-direction, and finally move –1 unit in  
the u-direction. So  

   z = –2u + 4v – u = –3u + 4v 

 9. 
2 3

1 2 3

1 2 3

5 0
4 6 0

3 8 0

x x
x x x
x x x

+ =
+ − =

− + − =
, 

2 3

1 2 3

1 2 3

5 0
4 6 0

3 8 0

x x
x x x
x x x

+   
   + − =   
   − + −   

 

  
2 3

1 2 3

1 2 3

0 5 0
4 6 0

3 8 0

x x
x x x
x x x

       
       + + − =       
       − −       

, 1 2 3

0 1 5 0
4 6 1 0
1 3 8 0

x x x
       
       + + − =       
       − −       

 

  Usually, the intermediate calculations are not displayed. 
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Note: The Study Guide says, “Check with your instructor whether you need to “show work” on a problem 
such as Exercise 9.” 

 10. 
1 2 3

1 2 3

1 2 3

4 3 9
7 2 2

8 6 5 15

x x x
x x x
x x x

+ + =
− − =
+ − =

 , 
1 2 3

1 2 3

1 2 3

4 3 9
7 2 2

8 6 5 15

x x x
x x x
x x x

+ +   
   − − =   
   + −   

 

  
1 2 3

1 2 3

1 2 3

4 3 9
7 2 2

8 6 5 15

x x x
x x x
x x x

      
      + − + − =      
      −       

 , 1 2 3

4 1 3 9
1 7 2 2
8 6 5 15

x x x
       
       + − + − =       
       −       

 

  Usually, the intermediate calculations are not displayed. 

 11. The question 
   Is b a linear combination of a1, a2, and a3? 
  is equivalent to the question 
   Does the vector equation x1a1 + x2a2 + x3a3 = b have a solution? 
  The equation 

   

1 2 3

1 2 3

1 0 5 2
2 1 6 1
0 2 8 6

x x x
       
       − + + − = −       
              

↑ ↑ ↑ ↑
a a a b

  (*)

 

  has the same solution set as the linear system whose augmented matrix is 

   
1 0 5 2
2 1 6 1
0 2 8 6

M
 
 = − − − 
  

   

  Row reduce M until the pivot positions are visible: 

   
1 0 5 2 1 0 5 2

~ 0 1 4 3 ~ 0 1 4 3
0 2 8 6 0 0 0 0

M
   
   
   
      

 

  The linear system corresponding to M has a solution, so the vector equation (*) has a solution, and 
therefore b is a linear combination of a1, a2, and a3. 

 12. The equation 

   

1 2 3

1 2 3

1 0 2 5
2 5 0 11
2 5 8 7

x x x
−       

       − + + =       
       −       

↑ ↑ ↑ ↑
a a a b

 (*)

 

  has the same solution set as the linear system whose augmented matrix is 
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1 0 2 5
2 5 0 11
2 5 8 7

M
− 

 = − 
 − 

 

  Row reduce M until the pivot positions are visible: 

  
1 0 2 5 1 0 2 5

~ 0 5 4 1 ~ 0 5 4 1
0 5 4 3 0 0 0 2

M
− −   

   
   
      

 

  The linear system corresponding to M has no solution, so the vector equation (*) has no solution, and 
therefore b is not a linear combination of a1, a2, and a3. 

 13. Denote the columns of A by a1, a2, a3. To determine if b is a linear combination of these columns, use the 
boxed fact on page 34. Row reduced the augmented matrix until you reach echelon form: 

   
1 4 2 3 1 4 2 3
0 3 5 7 ~ 0 3 5 7
2 8 4 3 0 0 0 3

− −   
   − −   
   − − −   

 

  The system for this augmented matrix is inconsistent, so b is not a linear combination of the columns  
of A. 

 14. [a1   a2   a3   b] = 
1 2 6 11 1 2 6 11
0 3 7 5 ~ 0 3 7 5
1 2 5 9 0 0 11 2

− − − −   
   − −   
   − −   

. The linear system corresponding to this 

matrix has a solution, so b is a linear combination of the columns of A. 

 15. Noninteger weights are acceptable, of course, but some simple choices are 0·v1 + 0·v2 = 0, and 

   1·v1 + 0·v2 = 
7
1
6

 
 
 
 − 

,   0·v1 + 1·v2 = 
5
3
0

− 
 
 
  

 

   1·v1 + 1·v2 = 
2
4
6

 
 
 
 − 

,   1·v1 – 1·v2 = 
12

2
6

 
 − 
 − 

 

 16. Some likely choices are 0·v1 + 0·v2 = 0, and 

  1·v1 + 0·v2 = 
3
0
2

 
 
 
  

,   0·v1 + 1·v2 = 
2
0
3

− 
 
 
  

 

  1·v1 + 1·v2 = 
1
0
5

 
 
 
  

,   1·v1 – 1·v2 = 
5
0
1

 
 
 
 − 
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 17. [a1   a2   b]  = 
1 2 4 1 2 4 1 2 4 1 2 4
4 3 1 ~ 0 5 15 ~ 0 1 3 ~ 0 1 3
2 7 0 3 8 0 3 8 0 0 17h h h h

− − − −       
       − − − −       
       − + + +       

. The vector b is 

in Span{a1, a2} when h + 17 is zero, that is, when h = –17. 

 18. [v1   v2   y] = 
1 3 1 3 1 3
0 1 5 ~ 0 1 5 ~ 0 1 5
2 8 3 0 2 3 2 0 0 7 2

h h h

h h

− − −     
     − − −     
     − − − + +     

. The vector y is in   

Span{v1, v2} when 7 + 2h is zero, that is, when h = –7/2. 

 19. By inspection, v2 = (3/2)v1. Any linear combination of v1 and v2 is actually just a multiple of v1. For 
instance, 

   av1 + bv2 = av1 + b(3/2)v2 = (a + 3b/2)v1 
  So Span{v1, v2} is the set of points on the line through v1 and 0. 

Note: Exercises 19 and 20 prepare the way for ideas in Sections 1.4 and 1.7.  

 20. Span{v1, v2} is a plane in R3 through the origin, because the neither vector in this problem is a multiple 
of the other. Every vector in the set has 0 as its second entry and so lies in the xz-plane in ordinary  
3-space. So Span{v1, v2} is the xz-plane. 

 21. Let y = 
h
k
 
 
 

. Then [u   v   y] = 
2 2 2 2

~
1 1 0 2 / 2

h h
k k h

   
   − +   

. This augmented matrix corresponds to 

a consistent system for all h and k. So y is in Span{u, v} for all h and k. 

 22. Construct any 3×4 matrix in echelon form that corresponds to an inconsistent system. Perform sufficient 
row operations on the matrix to eliminate all zero entries in the first three columns. 

 23. a. False. The alternative notation for a (column) vector is (–4, 3), using parentheses and commas. 

b. False. Plot the points to verify this. Or, see the statement preceding Example 3. If 
5
2

− 
 
 

 were on 

the line through 
2
5

− 
 
 

 and the origin, then 
5
2

− 
 
 

 would have to be a multiple of 
2
5

− 
 
 

, which is not 

the case. 
c. True. See the line displayed just before Example 4. 
d. True. See the box that discusses the matrix in (5). 
e. False. The statement is often true, but Span{u, v} is not a plane when v is a multiple of u, or when 

u is the zero vector. 

 24. a. True. See the beginning of the subsection Vectors in Rn. 
b. True. Use Fig. 7 to draw the parallelogram determined by u – v and v. 
c. False. See the first paragraph of the subsection Linear Combinations. 
d. True. See the statement that refers to Fig. 11. 
e. True. See the paragraph following the definition of Span{v1, …, vp}. 
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25. a. There are only three vectors in the set {a1, a2, a3}, and b is not one of them. 
b. There are infinitely many vectors in W = Span{a1, a2, a3}. To determine if b is in W, use the method 

of Exercise 13. 

  

1 2 3

1 0 4 4 1 0 4 4 1 0 4 4
0 3 2 1 ~ 0 3 2 1 ~ 0 3 2 1
2 6 3 4 0 6 5 4 0 0 1 2

− − −     
     − − −     
     − − − −     

↑ ↑ ↑ ↑
a a a b

 

  The system for this augmented matrix is consistent, so b is in W. 
c. a1 = 1a1 + 0a2 + 0a3. See the discussion in the text following the definition of Span{v1, …, vp}. 

 26. a. [a1   a2   a3   b] = 
2 0 6 10 1 0 3 5 1 0 3 5 1 0 3 5

1 8 5 3 ~ 1 8 5 3 ~ 0 8 8 8 ~ 0 8 8 8

1 2 1 3 1 2 1 3 0 2 2 2 0 0 0 0

− −

− − − − −

       
       
       
              

 

  Yes, b is a linear combination of the columns of A, that is, b is in W.    
b. The third column of A is in W because a3 = 0·a1 + 0·a2 + 1·a3. 

 27. a. 5v1 is the output of 5 days’ operation of mine #1. 

b. The total output is x1v1 + x2v2, so x1 and x2 should satisfy 1 1 2 2
150

2825
x x

 
+ =  

 
v v . 

c. [M] Reduce the augmented matrix 
20 30 150 1 0 1.5

~
550 500 2825 0 1 4.0
   
   
   

.  

  Operate mine #1 for 1.5 days and mine #2 for 4 days. (This is the exact solution.) 

 28. a. The amount of heat produced when the steam plant burns x1 tons of anthracite and x2 tons of 
bituminous coal is 27.6x1 + 30.2x2 million Btu.   

b. The total output produced by x1 tons of anthracite and x2 tons of bituminous coal is given by the 

vector 1 2

27.6 30.2
3100 6400
250 360

x x
   
   +   
      

. 

c. [M] The appropriate values for x1 and x2 satisfy 1 2

27.6 30.2 162
3100 6400 23,610
250 360 1,623

x x
     
     + =     
          

.  

  To solve, row reduce the augmented matrix: 

   
27.6 30.2 162 1.000 0 3.900

3100 6400 23610 ~ 0 1.000 1.800
250 360 1623 0 0 0

   
   
   
      

 

The steam plant burned 3.9 tons of anthracite coal and 1.8 tons of bituminous coal. 
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 29. The total mass is 2 + 5 + 2 + 1 = 10. So v = (2v1 +5v2 + 2v3 + v4)/10. That is, 

   
5 4 4 9 10 20 8 9 1.3

1 12 4 5 3 2 3 8 8 15 6 8 .9
10 10

3 2 1 6 6 10 2 6 0

 − − + − −           
            = − + + − + = − + − + =                        − − − − +            

v  

 30. Let m be the total mass of the system. By definition, 

   1
1 1 1

1 ( ) k
k k k

mmm m
m m m

= + + = + +v v v v v  

  The second expression displays v as a linear combination of v1, …, vk, which shows that v is in  
Span{v1, …, vk}. 

 31. a. The center of mass is 
0 8 2 10 / 31 1 1 1
1 1 4 23

        
⋅ + ⋅ + ⋅ =        
        

. 

b. The total mass of the new system is 9 grams. The three masses added, w1, w2, and w3, satisfy the 
equation 

   ( ) ( ) ( )1 2 3
0 8 2 21 1 1 1
1 1 4 29

w w w
        

+ ⋅ + + ⋅ + + ⋅ =        
        

 

  which can be rearranged to  

   ( ) ( ) ( )1 2 3
0 8 2 18

1 1 1
1 1 4 18

w w w
       

+ ⋅ + + ⋅ + + ⋅ =       
       

 

  and 

   1 2 3
0 8 2 8
1 1 4 12

w w w
       

⋅ + ⋅ + ⋅ =       
       

 

  The condition w1 + w2 + w3 = 6 and the vector equation above combine to produce a system of three 
equations whose augmented matrix is shown below, along with a sequence of row operations: 

   
1 1 1 6 1 1 1 6 1 1 1 6
0 8 2 8 ~ 0 8 2 8 ~ 0 8 2 8
1 1 4 12 0 0 3 6 0 0 1 2

     
     
     
          

 

    
1 1 0 4 1 0 0 3.5 1 0 0 3.5

~ 0 8 0 4 ~ 0 8 0 4 ~ 0 1 0 .5
0 0 1 2 0 0 1 2 0 0 1 2

     
     
     
          

 

  Answer: Add 3.5 g at (0, 1), add .5 g at (8, 1), and add 2 g at (2, 4). 

Extra problem: Ignore the mass of the plate, and distribute 6 gm at the three vertices to make the center of 
mass at (2, 2). Answer: Place 3 g at (0, 1), 1 g at (8, 1), and 2 g at (2, 4).  

 32. See the parallelograms drawn on Fig. 15 from the text. Here c1, c2, c3, and c4 are suitable scalars. The 
darker parallelogram shows that b is a linear combination of v1 and v2, that is  

   c1v1 + c2v2 + 0·v3 = b 



22 CHAPTER 1 • Linear Equations in Linear Algebra 

  The larger parallelogram shows that b is a linear combination of v1 and v3, that is,  
   c4v1 + 0·v2 + c3v3 = b 
  So the equation x1v1 + x2v2 + x3v3 = b has at least two solutions, not just one solution. (In fact, the 

equation has infinitely many solutions.) 

    

c2v2

c3v3

0

v3

c4v1

c1v1

v1

v2

b

 

 33. a. For j = 1,…, n, the jth entry of (u + v) + w is (uj + vj) + wj. By associativity of addition in R, this 
entry equals uj + (vj + wj), which is the jth entry of u + (v + w). By definition of equality of vectors, 
(u + v) + w = u + (v + w). 

b. For any scalar c, the jth entry of c(u + v) is c(uj + vj), and the jth entry of cu + cv is cuj + cvj (by 
definition of scalar multiplication and vector addition). These entries are equal, by a distributive law 
in R. So c(u + v) = cu + cv. 

 34. a. For j = 1,…, n, uj + (–1)uj = (–1)uj + uj = 0, by properties of R. By vector equality, 
   u + (–1)u = (–1)u + u = 0. 
b. For scalars c and d, the jth entries of c(du) and (cd )u are c(duj) and (cd )uj, respectively. These 

entries in R are equal, so the vectors c(du) and (cd)u are equal. 

Note: When an exercise in this section involves a vector equation, the corresponding technology data (in the 
data files on the web) is usually presented as a set of (column) vectors. To use MATLAB or other technology, 
a student must first construct an augmented matrix from these vectors. The MATLAB note in the Study Guide 
describes how to do this. The appendices in the Study Guide give corresponding information about Maple, 
Mathematica, and the TI and HP calculators. 

1.4 SOLUTIONS 

Notes: Key exercises are 1–20, 27, 28, 31 and 32. Exercises 29, 30, 33, and 34 are harder. Exercise 34 
anticipates the Invertible Matrix Theorem but is not used in the proof of that theorem. 

 1. The matrix-vector product Ax product is not defined because the number of columns (2) in the 3×2 

matrix 
4 2
1 6
0 1

− 
 
 
  

 does not match the number of entries (3) in the vector 
3
2
7

 
 − 
  

. 
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 2. The matrix-vector product Ax product is not defined because the number of columns (1) in the 3×1 

matrix 
2
6
1

 
 
 
 − 

 does not match the number of entries (2) in the vector 
5
1

 
 − 

. 

 3. 
6 5 6 5 12 15 3

2
4 3 2 4 3 3 8 9 1

3
7 6 7 6 14 18 4

A
− −           

            = − − = − − − = − + =            −            − −           

x , and 

  
6 5 6 2 5 ( 3) 3

2
4 3 ( 4) 2 ( 3) ( 3) 1

3
7 6 7 2 6 ( 3) 4

A
⋅ + ⋅ − −     

      = − − = − ⋅ + − ⋅ − =      −      ⋅ + ⋅ − −     

x  

 4. 
1

8 3 4 8 3 4 8 3 4 7
1 1 1 1

5 1 2 5 1 2 5 1 2 8
1

A
 

− − + −            = = ⋅ + ⋅ + ⋅ = =             + +             

x , and 

  
1

8 3 4 8 1 3 1 ( 4) 1 7
1

5 1 2 5 1 1 1 2 1 8
1

A
 

− ⋅ + ⋅ + − ⋅      = = =       ⋅ + ⋅ + ⋅       

x  

 5. On the left side of the matrix equation, use the entries in the vector x as the weights in a linear 
combination of the columns of the matrix A: 

   
5 1 8 4 8

5 1 3 2
2 7 3 5 16

− −         
⋅ − ⋅ + ⋅ − ⋅ =         − − −         

 

 6. On the left side of the matrix equation, use the entries in the vector x as the weights in a linear 
combination of the columns of the matrix A: 

   

7 3 1
2 1 9

2 5
9 6 12
3 2 4

−     
     −     − ⋅ − ⋅ =
     −
     − −     

 

 7. The left side of the equation is a linear combination of three vectors. Write the matrix A whose columns 
are those three vectors, and create a variable vector x with three entries: 

   

4 5 7 4 5 7
1 3 8 1 3 8
7 5 0 7 5 0
4 1 2 4 1 2

A

 − −       
        − − − −        = =
        − −
        − −         

 and 
1

2

3

x
x
x

 
 =  
  

x . Thus the equation Ax = b is  

   
1

2

3

4 5 7 6
1 3 8 8
7 5 0 0
4 1 2 7

x
x
x

−   
    − − −    =    −
     − −   
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  For your information: The unique solution of this equation is (5, 7, 3). Finding the solution by hand 
would be time-consuming. 

Note: The skill of writing a vector equation as a matrix equation will be important for both theory and 
application throughout the text. See also Exercises 27 and 28. 

 8. The left side of the equation is a linear combination of four vectors. Write the matrix A whose columns 
are those four vectors, and create a variable vector with four entries: 

  
4 4 5 3 4 4 5 3
2 5 4 0 2 5 4 0

A
 − − − −         

= =          − −          
, and 

1

2

3

4

z
z
z
z

 
 
 =
 
 
  

z . Then the equation Az = b  

is 

1

2

3

4

4 4 5 3 4
2 5 4 0 13

z
z
z
z

 
 − −     =    −   
 
  

. 

  For your information: One solution is (7, 3, 3, 1). The general solution is z1 = 6 + .75z3 – 1.25z4,            
z2 = 5 – .5z3 – .5z4, with z3 and z4 free.  

 9. The system has the same solution set as the vector equation 

   1 2 3
3 1 5 9
0 1 4 0

x x x
−       

+ + =       
       

 

  and this equation has the same solution set as the matrix equation 

   
1

2

3

3 1 5 9
0 1 4 0

x
x
x

 
−     =         

 

 10. The system has the same solution set as the vector equation 

   1 2

8 1 4
5 4 1
1 3 2

x x
−     

     + =     
     −     

 

  and this equation has the same solution set as the matrix equation 

   1

2

8 1 4
5 4 1
1 3 2

x
x

−   
    =        −   

 

 11. To solve Ax = b, row reduce the augmented matrix [a1   a2   a3   b] for the corresponding linear system: 

  
1 2 4 2 1 2 4 2 1 2 4 2 1 2 0 6 1 0 0 0
0 1 5 2 ~ 0 1 5 2 ~ 0 1 5 2 ~ 0 1 0 3 ~ 0 1 0 3
2 4 3 9 0 0 5 5 0 0 1 1 0 0 1 1 0 0 1 1

− − − −         
         − −         
         − − −         
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  The solution is 
1

2

3

0
3
1

x
x
x

=
 = −
 =

. As a vector, the solution is x = 
1

2

3

0
3
1

x
x
x

   
   = −   
     

. 

 12. To solve Ax = b, row reduce the augmented matrix [a1   a2   a3   b] for the corresponding linear system: 

   
1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0
3 1 2 1 ~ 0 5 5 1 ~ 0 5 5 1 ~ 0 5 5 1
0 5 3 1 0 5 3 1 0 0 2 2 0 0 1 1

       
       − −       
       − − − −       

 

   
1 2 0 1 1 2 0 1 1 0 0 3/ 5

~ 0 5 0 4 ~ 0 1 0 4 / 5 ~ 0 1 0 4 / 5
0 0 1 1 0 0 1 1 0 0 1 1

− −     
     − − −     
          

 

  The solution is 
1

2

3

3/ 5
4 /5
1

x
x
x

=
 = −
 =

. As a vector, the solution is x = 
1

2

3

3/ 5
4 / 5
1

x
x
x

   
   = −   
     

. 

 13. The vector u is in the plane spanned by the columns of A if and only if u is a linear combination of the 
columns of A. This happens if and only if the equation Ax = u has a solution. (See the box preceding 
Example 3 in Section 1.4.) To study this equation, reduce the augmented matrix [A   u] 

  
3 5 0 1 1 4 1 1 4 1 1 4
2 6 4 ~ 2 6 4 ~ 0 8 12 ~ 0 8 12
1 1 4 3 5 0 0 8 12 0 0 0

−       
       − −       
       − − −       

 

  The equation Ax = u has a solution, so u is in the plane spanned by the columns of A. 
  For your information: The unique solution of Ax = u is (5/2, 3/2). 

 14. Reduce the augmented matrix [A   u] to echelon form: 

  
5 8 7 2 1 3 0 2 1 3 0 2 1 3 0 2
0 1 1 3 ~ 0 1 1 3 ~ 0 1 1 3 ~ 0 1 1 3
1 3 0 2 5 8 7 2 0 7 7 8 0 0 0 29

       
       − − − − − − − −       
       − − −       

 

  The equation Ax = u has no solution, so u is not in the subset spanned by the columns of A. 

 15. The augmented matrix for Ax = b is 1

2

2 1
6 3

b
b

− 
 − 

, which is row equivalent to 1

2 1

2 1
0 0 3

b
b b

− 
 + 

. 

This shows that the equation Ax = b is not consistent when 3b1 + b2 is nonzero. The set of b for which the 
equation is consistent is a line through the origin–the set of all points (b1, b2) satisfying b2 = –3b1. 

 16. Row reduce the augmented matrix [A   b]: 
1

2

3

1 3 4
3 2 6 , .
5 1 8

b
A b

b

− −   
  = − =   
  − −   

b  

  
1 1

2 2 1

3 3 1

1 3 4 1 3 4
3 2 6 ~ 0 7 6 3
5 1 8 0 14 12 5

b b
b b b
b b b

− − − −   
   − − − +   
   − − −   
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1 1

2 1 2 1

3 1 2 1 1 2 3

1 3 4 1 3 4
~ 0 7 6 3 0 7 6 3

0 0 0 5 2( 3 ) 0 0 0 2

b b
b b b b

b b b b b b b

− − − −   
   − − + = − − +   
   − + + + +   

 

  The equation Ax = b is consistent if and only if b1 + 2b2 + b3 = 0. The set of such b is a plane through the 
origin in R3. 

 17. Row reduction shows that only three rows of A contain a pivot position: 

  

1 3 0 3 1 3 0 3 1 3 0 3 1 3 0 3
1 1 1 1 0 2 1 4 0 2 1 4 0 2 1 4

~ ~ ~
0 4 2 8 0 4 2 8 0 0 0 0 0 0 0 5
2 0 3 1 0 6 3 7 0 0 0 5 0 0 0 0

A

       
       − − − − − −       =
       − − − −
       − − −       

 

  Because not every row of A contains a pivot position, Theorem 4 in Section 1.4 shows that the equation 
Ax = b does not have a solution for each b in R4. 

 18. Row reduction shows that only three rows of B contain a pivot position: 

  

1 3 2 2 1 3 2 2 1 3 2 2 1 3 2 2
0 1 1 5 0 1 1 5 0 1 1 5 0 1 1 5

~ ~ ~
1 2 3 7 0 1 1 5 0 0 0 0 0 0 0 7
2 8 2 1 0 2 2 3 0 0 0 7 0 0 0 0

B

− − − −       
       − − − −       =
       − − − −
       − − − − − −       

 

  Because not every row of B contains a pivot position, Theorem 4 in Section 1.4 shows that the equation 
Bx = y does not have a solution for each y in R4. 

 19. The work in Exercise 17 shows that statement (d) in Theorem 4 is false. So all four statements in 
Theorem 4 are false. Thus, not all vectors in R4 can be written as a linear combination of the columns  
of A. Also, the columns of A do not span R4. 

 20. The work in Exercise 18 shows that statement (d) in Theorem 4 is false. So all four statements in 
Theorem 4 are false. Thus, not all vectors in R4 can be written as a linear combination of the columns  
of B. The columns of B certainly do not span R3, because each column of B is in R4, not R3. (This 
question was asked to alert students to a fairly common misconception among students who are just 
learning about spanning.)  

 21. Row reduce the matrix [v1   v2   v3] to determine whether it has a pivot in each row. 

  

1 0 1 1 0 1 1 0 1 1 0 1
0 1 0 0 1 0 0 1 0 0 1 0

~ ~ ~ .
1 0 0 0 0 1 0 0 1 0 0 1
0 1 1 0 1 1 0 0 1 0 0 0

       
       − − −       
       −
       − − −       

 

  The matrix [v1   v2   v3] does not have a pivot in each row, so the columns of the matrix do not span R4, 
by Theorem 4. That is, {v1, v2, v3} does not span R4. 

Note: Some students may realize that row operations are not needed, and thereby discover the principle 
covered in Exercises 31 and 32. 
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 22. Row reduce the matrix [v1   v2   v3] to determine whether it has a pivot in each row. 

  
0 0 4 2 8 5
0 3 1 ~ 0 3 1
2 8 5 0 0 4

− −   
   − − − −   
   − −   

 

  The matrix [v1   v2   v3] has a pivot in each row, so the columns of the matrix span R4, by Theorem 4. 
That is, {v1, v2, v3} spans R4. 

 23. a. False. See the paragraph following equation (3). The text calls Ax = b a matrix equation. 
b. True. See the box before Example 3. 
c. False. See the warning following Theorem 4. 
d. True. See Example 4. 
e. True. See parts (c) and (a) in Theorem 4. 
f. True. In Theorem 4, statement (a) is false if and only if statement (d) is also false. 

 24. a. True. This statement is in Theorem 3. However, the statement is true without any "proof" because, by 
definition, Ax is simply a notation for x1a1 + ⋅ ⋅ ⋅ + xnan, where a1, …, an are the columns of A. 

b. True. See Example 2. 
c.  True, by Theorem 3. 
d. True. See the box before Example 2. Saying that b is not in the set spanned by the columns of A is the 

same a saying that b is not a linear combination of the columns of A. 
e. False. See the warning that follows Theorem 4. 
f. True. In Theorem 4, statement (c) is false if and only if statement (a) is also false. 

 25. By definition, the matrix-vector product on the left is a linear combination of the columns of the matrix, 
in this case using weights –3, –1, and 2. So c1 = –3, c2 = –1, and c3 = 2. 

 26. The equation in x1 and x2 involves the vectors u, v, and w, and it may be viewed as 

  [ ] 1

2
.

x
x
 

= 
 

u v w  By definition of a matrix-vector product, x1u + x2v = w. The stated fact that  

3u – 5v – w = 0 can be rewritten as 3u – 5v = w. So, a solution is x1 = 3, x2 = –5. 

 27. Place the vectors q1, q2, and q3 into the columns of a matrix, say, Q and place the weights x1, x2, and x3 
into a vector, say, x. Then the vector equation becomes 

   Qx = v, where Q = [q1   q2   q3] and 
1

2

3

x
x
x

 
 =  
  

x  

  Note: If your answer is the equation Ax = b, you need to specify what A and b are. 

 28. The matrix equation can be written as c1v1 + c2v2 + c3v3 + c4v4 + c5v5 = v6, where 
  c1 = –3, c2 = 2, c3 = 4, c4 = –1, c5 = 2, and  

  1 2 3 4 5 6
3 5 4 9 7 8

, , , , ,
5 8 1 2 4 1

− −           
= = = = = =           − − −           

v v v v v v  
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 29. Start with any 3×3 matrix B in echelon form that has three pivot positions. Perform a row operation  
(a row interchange or a row replacement) that creates a matrix A that is not in echelon form. Then A has 
the desired property. The justification is given by row reducing A to B, in order to display the pivot 
positions. Since A has a pivot position in every row, the columns of A span R3, by Theorem 4. 

 30. Start with any nonzero 3×3 matrix B in echelon form that has fewer than three pivot positions. Perform  
a row operation that creates a matrix A that is not in echelon form. Then A has the desired property. Since 
A does not have a pivot position in every row, the columns of A do not span R3, by Theorem 4. 

 31. A 3×2 matrix has three rows and two columns. With only two columns, A can have at most two pivot 
columns, and so A has at most two pivot positions, which is not enough to fill all three rows. By  
Theorem 4, the equation Ax = b cannot be consistent for all b in R3. Generally, if A is an m×n matrix 
with m > n, then A can have at most n pivot positions, which is not enough to fill all m rows. Thus, the 
equation Ax = b cannot be consistent for all b in R3. 

 32. A set of three vectors in cannot span R4. Reason: the matrix A whose columns are these three vectors has 
four rows. To have a pivot in each row, A would have to have at least four columns (one for each pivot), 
which is not the case. Since A does not have a pivot in every row, its columns do not span R4, by 
Theorem 4. In general, a set of n vectors in Rm cannot span Rm when n is less than m. 

 33. If the equation Ax = b has a unique solution, then the associated system of equations does not have any 
free variables. If every variable is a basic variable, then each column of A is a pivot column. So the 

reduced echelon form of A must be 

1 0 0

0 1 0

0 0 1

0 0 0

� �
� �
� �
� �
� �
� �� �

. 

Note: Exercises 33 and 34 are difficult in the context of this section because the focus in Section 1.4 is on 
existence of solutions, not uniqueness. However, these exercises serve to review ideas from Section 1.2, and 
they anticipate ideas that will come later. 

 34. If the equation Ax = b has a unique solution, then the associated system of equations does not have any 
free variables. If every variable is a basic variable, then each column of A is a pivot column. So the 

reduced echelon form of A must be 

1 0 0

0 1 0

0 0 1

� �
� �
� �
� �� �

. Now it is clear that A has a pivot position in each row. 

By Theorem 4, the columns of A span R3. 

 35. Given Ax1 = y1 and Ax2 = y2, you are asked to show that the equation Ax = w has a solution, where 
w = y1 + y2. Observe that w = Ax1 + Ax2 and use Theorem 5(a) with x1 and x2 in place of u and v, 
respectively. That is, w = Ax1 + Ax2 = A(x1 + x2). So the vector x = x1 + x2 is a solution of w = Ax. 

 36. Suppose that y and z satisfy Ay = z. Then 4z = 4Ay. By Theorem 5(b), 4Ay = A(4y). So 4z = A(4y), 
which shows that 4y is a solution of Ax = 4z. Thus, the equation Ax = 4z is consistent. 

 37. [M] 

7 2 5 8 7 2 5 8 7 2 5 8

5 3 4 9 0 11/ 7 3/ 7 23/ 7 0 11/ 7 3/ 7 23/ 7
~ ~

6 10 2 7 0 58/ 7 16 / 7 1/ 7 0 0 50 /11 189 /11

7 9 2 15 0 11 3 23 0 0 0 0

� � �� � � � � �
� � � � � �� � � � � � �� � � � � �
� � � � � �� �
� � � � � �� �� � � � � �� � � � � �
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  or, approximately 

7 2 5 8
0 1.57 .429 3.29
0 0 4.55 17.2
0 0 0 0

− 
 − − 
 −
 
  

, to three significant figures. The original matrix does not 

have a pivot in every row, so its columns do not span R4, by Theorem 4. 

 38. [M] 

5 7 4 9 5 7 4 9 5 7 4 9
6 8 7 5 0 2 / 5 11/ 5 29 / 5 0 2 / 5 11/ 5 29 / 5

~ ~
4 4 9 9 0 8/ 5 29 / 5 81/ 5 0 0 3 7
9 11 16 7 0 8/ 5 44 / 5 116 / 5 0 0 * *

− − − − − −     
     − − − − − −     
     − − − − −
     − −     

 

  MATLAB shows starred entries for numbers that are essentially zero (to many decimal places). So, with 
pivots only in the first three rows, the original matrix has columns that do not span R4, by Theorem 4. 

 39. [M] 

12 7 11 9 5 12 7 11 9 5
9 4 8 7 3 0 5/ 4 1/ 4 1/ 4 3/ 4

~
6 11 7 3 9 0 15/ 2 3/ 2 3/ 2 13/ 2
4 6 10 5 12 0 11/ 3 19 / 3 2 31/ 3

− − − −   
   − − − −   
   − − − − − −
   − − − −   

 

  

12 7 11 9 5 12 7 11 9 5
0 5/ 4 1/ 4 1/ 4 3/ 4 0 5/ 4 1/ 4 1/ 4 3/ 4

~ ~
0 0 0 0 2 0 0 28/ 5 41/15 122 /15
0 0 28/ 5 41/15 122 /15 0 0 0 0 2

− − − −   
   − −   
   − −
   − −   

 

  The original matrix has a pivot in every row, so its columns span R4, by Theorem 4. 

 40. [M] 

8 11 6 7 13 8 11 6 7 13
7 8 5 6 9 0 13/8 1/ 4 1/8 19 /8

~
11 7 7 9 6 0 65/8 5/ 4 5/8 191/8

3 4 1 8 7 0 65/8 5/ 4 43/8 95/8

− − − −   
   − − − − −   
   − − − − −
   − −   

 

  

8 11 6 7 13 8 11 6 7 13
0 13/8 1/ 4 1/8 19 /8 0 13/8 1/ 4 1/8 19 /8

~ ~
0 0 0 0 12 0 0 0 6 0
0 0 0 6 0 0 0 0 0 12

− − − −   
   − − − −   
   −
   −   

 

  The original matrix has a pivot in every row, so its columns span R4, by Theorem 4. 

 41. [M] Examine the calculations in Exercise 39. Notice that the fourth column of the original matrix, say A, 
is not a pivot column. Let Ao be the matrix formed by deleting column 4 of A, let B be the echelon form 
obtained from A, and let Bo be the matrix obtained by deleting column 4 of B. The sequence of row 
operations that reduces A to B also reduces Ao to Bo. Since Bo is in echelon form, it shows that Ao has a 
pivot position in each row. Therefore, the columns of Ao span R4. 

  It is possible to delete column 3 of A instead of column 4. In this case, the fourth column of A becomes a 
pivot column of Ao, as you can see by looking at what happens when column 3 of B is deleted. For later 
work, it is desirable to delete a nonpivot column. 
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Note: Exercises 41 and 42 help to prepare for later work on the column space of a matrix. (See Section 2.9 or 
4.6.) The Study Guide points out that these exercises depend on the following idea, not explicitly mentioned 
in the text: when a row operation is performed on a matrix A, the calculations for each new entry depend only 
on the other entries in the same column. If a column of A is removed, forming a new matrix, the absence of 
this column has no affect on any row-operation calculations for entries in the other columns of A. (The 
absence of a column might affect the particular choice of row operations performed for some purpose, but that 
is not being considered here.) 

 42. [M] Examine the calculations in Exercise 40. The third column of the original matrix, say A, is not a 
pivot column. Let Ao be the matrix formed by deleting column 3 of A, let B be the echelon form obtained 
from A, and let Bo be the matrix obtained by deleting column 3 of B. The sequence of row operations that 
reduces A to B also reduces Ao to Bo. Since Bo is in echelon form, it shows that Ao has a pivot position in 
each row. Therefore, the columns of Ao span R4. 

  It is possible to delete column 2 of A instead of column 3. (See the remark for Exercise 41.) However, 
only one column can be deleted. If two or more columns were deleted from A, the resulting matrix would 
have fewer than four columns, so it would have fewer than four pivot positions. In such a case, not every 
row could contain a pivot position, and the columns of the matrix would not span R4, by Theorem 4. 

Notes: At the end of Section 1.4, the Study Guide gives students a method for learning and mastering linear 
algebra concepts. Specific directions are given for constructing a review sheet that connects the basic 
definition of “span” with related ideas: equivalent descriptions, theorems, geometric interpretations, special 
cases, algorithms, and typical computations. I require my students to prepare such a sheet that reflects their 
choices of material connected with “span”, and I make comments on their sheets to help them refine their 
review. Later, the students use these sheets when studying for exams. 

The MATLAB box for Section 1.4 introduces two useful commands gauss and bgauss that allow a 
student to speed up row reduction while still visualizing all the steps involved. The command 
B = gauss(A,1) causes MATLAB to find the left-most nonzero entry in row 1 of matrix A, and use that 
entry as a pivot to create zeros in the entries below, using row replacement operations. The result is a matrix 
that a student might write next to A as the first stage of row reduction, since there is no need to write a new 
matrix after each separate row replacement. I use the gauss command frequently in lectures to obtain an 
echelon form that provides data for solving various problems. For instance, if a matrix has 5 rows, and if row 
swaps are not needed, the following commands produce an echelon form of A: 

 B = gauss(A,1),  B = gauss(B,2),  B = gauss(B,3),  B = gauss(B,4)  

If an interchange is required, I can insert a command such as B = swap(B,2,5) . The command bgauss 
uses the left-most nonzero entry in a row to produce zeros above that entry. This command, together with 
scale, can change an echelon form into reduced echelon form. 

The use of gauss and bgauss creates an environment in which students use their computer program 
the same way they work a problem by hand on an exam. Unless you are able to conduct your exams in a 
computer laboratory, it may be unwise to give students too early the power to obtain reduced echelon forms 
with one command—they may have difficulty performing row reduction by hand during an exam. Instructors 
whose students use a graphic calculator in class each day do not face this problem. In such a case, you may 
wish to introduce rref earlier in the course than Chapter 4 (or Section 2.8), which is where I finally allow 
students to use that command.  

1.5 SOLUTIONS  

Notes: The geometry helps students understand Span{u, v}, in preparation for later discussions of subspaces. 
The parametric vector form of a solution set will be used throughout the text. Figure 6 will appear again in 
Sections 2.9 and 4.8.  
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For solving homogeneous systems, the text recommends working with the augmented matrix, although no 
calculations take place in the augmented column. See the Study Guide comments on Exercise 7 that illustrate 
two common student errors. 

All students need the practice of Exercises 1–14. (Assign all odd, all even, or a mixture. If you do not 
assign Exercise 7, be sure to assign both 8 and 10.) Otherwise, a few students may be unable later to find a 
basis for a null space or an eigenspace. Exercises 29–34 are important. Exercises 33 and 34 help students later 
understand how solutions of Ax = 0 encode linear dependence relations among the columns of A. Exercises 
35–38 are more challenging. Exercise 37 will help students avoid the standard mistake of forgetting that 
Theorem 6 applies only to a consistent equation Ax = b. 

 1. Reduce the augmented matrix to echelon form and circle the pivot positions. If a column of the 
coefficient matrix is not a pivot column, the corresponding variable is free and the system of equations 
has a nontrivial solution. Otherwise, the system has only the trivial solution. 

  
2 5 8 0 2 5 8 0 2 5 8 0
2 7 1 0 ~ 0 12 9 0 ~ 0 12 9 0
4 2 7 0 0 12 9 0 0 0 0 0

− − −     
     − − − −     
     −     

 

  The variable x3 is free, so the system has a nontrivial solution. 

 2. 
1 3 7 0 1 3 7 0 1 3 7 0
2 1 4 0 ~ 0 5 10 0 ~ 0 5 10 0
1 2 9 0 0 5 2 0 0 0 12 0

− − −     
     − − − −     
          

 

  There is no free variable; the system has only the trivial solution. 

 3. 
3 5 7 0 3 5 7 0

~
6 7 1 0 0 3 15 0

− − − −   
   − −   

. The variable x3 is free; the system has nontrivial solutions. 

An alert student will realize that row operations are unnecessary. With only two equations, there can be 
at most two basic variables. One variable must be free. Refer to Exercise 31 in Section 1.2. 

 4. 
5 7 9 0 1 2 6 0 1 2 6 0

~ ~
1 2 6 0 5 7 9 0 0 3 39 0

− − −     
     − − −     

. x3 is a free variable; the system has 

nontrivial solutions. As in Exercise 3, row operations are unnecessary. 

 5. 
1 3 1 0 1 3 1 0 1 0 5 0 1 0 5 0
4 9 2 0 ~ 0 3 6 0 ~ 0 3 6 0 ~ 0 1 2 0
0 3 6 0 0 3 6 0 0 0 0 0 0 0 0 0

− −       
       − −       
       − − − −       

 

  
1 3

2 3

5 0
2 0

0 0

x x
x x

− =
+ =

=
. The variable x3 is free, x1 = 5x3, and x2 = –2x3.  

  In parametric vector form, the general solution is 
1 3

2 3 3

3 3

5 5
2 2

1

x x
x x x
x x

     
     = = − = −     
          

x . 
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 6. 
1 3 5 0 1 3 5 0 1 3 5 0 1 0 4 0
1 4 8 0 ~ 0 1 3 0 ~ 0 1 3 0 ~ 0 1 3 0
3 7 9 0 0 2 6 0 0 0 0 0 0 0 0 0

− − −       
       − − − −       
       − − −       

 

  
1 3

2 3

4 0
3 0

0 0

x x
x x

+ =
− =

=
. The variable x3 is free, x1 = –4x3, and x2 = 3x3.  

  In parametric vector form, the general solution is 
1 3

2 3 3

3 3

4 4
3 3

1

x x
x x x
x x

− −     
     = = =     
          

x . 

 7. 
1 3 3 7 0 1 0 9 8 0

~
0 1 4 5 0 0 1 4 5 0

− −   
   − −   

.   1 3 4

2 3 4

9 8 0
4 5 0

x x x
x x x

+ − =
− + =

 

  The basic variables are x1 and x2, with x3 and x4 free. Next, x1 = –9x3 + 8x4, and x2 = 4x3 – 5x4. The 
general solution is 

  

1 3 4 43

2 3 4 43
3 4

3 3 3

4 4 4

9 8 89 9 8
4 5 54 4 5

0 1 0
0 0 1

x x x xx
x x x xx

x x
x x x
x x x

− + − −          
          − − −          = = = + = +
          
          

                    

x  

 8. 
1 2 9 5 0 1 0 5 7 0

~
0 1 2 6 0 0 1 2 6 0

− − − −   
   − −   

.   1 3 4

2 3 4

5 7 0
2 6 0

x x x
x x x

− − =
+ − =

 

  The basic variables are x1 and x2, with x3 and x4 free. Next, x1 = 5x3 + 7x4 and x2 = –2x3 + 6x4. The general 
solution in parametric vector form is 

  

1 3 4 43

2 3 4 43
3 4

3 3 3

4 4 4

5 7 75 5 7
2 6 62 2 6

0 1 0
0 0 1

x x x xx
x x x xx

x x
x x x
x x x

+          
          − + − −          = = = + = +
          
          

                    

x  

 9. 
3 9 6 0 1 3 2 0 1 3 2 0

~ ~
1 3 2 0 3 9 6 0 0 0 0 0

− − −     
     − − −     

   1 2 33 2 0
0 0

x x x− + =
=

. 

  The solution is x1 = 3x2 – 2x3, with x2 and x3 free. In parametric vector form, 

  
2 3 2 3

2 2 2 3

3 3

3 2 3 2 3 2
0 1 0

0 0 1

x x x x
x x x x
x x

− − −         
         = = + = +         
                  

x . 

 10. 
1 3 0 4 0 1 3 0 4 0

~
2 6 0 8 0 0 0 0 0 0

− −   
   −   

  1 2 43 4 0
0 0

x x x− − =
=

. 

  The only basic variable is x1, so x2, x3, and x4 are free. (Note that x3 is not zero.) Also, x1 = 3x2 + 4x4. The 
general solution is 
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1 2 4 42

2 2 2
2 3 4

3 3 3

4 4 4

3 4 43 0 3 0 4
00 1 0 0
00 0 1 0

0 0 0 0 1

x x x xx
x x x

x x x
x x x
x x x

+              
              
              = = = + + = + +
              
              

                            

x  

 11. 

1 4 2 0 3 5 0 1 4 2 0 0 7 0 1 4 0 0 0 5 0
0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0

~ ~
0 0 0 0 1 4 0 0 0 0 0 1 4 0 0 0 0 0 1 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− − − − − −     
     − − −     
     − − −
     
          

 

  

1 2 6

3 6

5 6

4 5 0
0

4 0
0 0

x x x
x x

x x

− + =
− =
− =

=

.  The basic variables are x1, x3, and x5. The remaining variables are free. 

In particular, x4 is free (and not zero as some may assume). The solution is x1 = 4x2 – 5x6, x3 = x6, 
x5 = 4x6, with x2, x4, and x6 free. In parametric vector form, 

  

1 2 6 62

2 2 2

3 6 6
2 4

4 4 4

5 6 6

6 6 6

4 5 54 0 4 0
00 1 0

0 0 0 0
00 0

4 40 0 0
0 0 0

x x x xx
x x x
x x x

x x
x x x
x x x
x x x

− −          
          
          
          

= = = + + = +          
          
          
          

                    

x 6

5
0
1

1 0
0 4
0 1

x

−   
   
   
   

+   
   
   
   
      

↑ ↑ ↑
u v w

 

Note: The Study Guide discusses two mistakes that students often make on this type of problem. 

 12. 

1 5 2 6 9 0 0 1 5 2 6 9 0 0 1 5 0 8 1 0 0
0 0 1 7 4 8 0 0 0 1 7 4 0 0 0 0 1 7 4 0 0

~ ~
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− −     
     − − − −     
     
     
          

 

  

1 2 4 5

3 4 5

6

5 8 0
7 4 0

0
0 0

x x x x
x x x

x

+ + + =
− + =

=
=

. 

  The basic variables are x1, x3, and x6; the free variables are x2, x4, and x5. The general solution is 
x1 = –5x2 – 8x4 – x5, x3 = 7x4 – 4x5, and x6 = 0. In parametric vector form, the solution is 
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1 2 4 5 2 4 5

2 2 2

3 4 5 4 5
2

4 4 4

5 5 5

6

5 8 5 8 5
0 0 1

7 4 0 7 4 0
0 0 0
0 0 0

0 0 0 0 0

x x x x x x x
x x x
x x x x x

x
x x x
x x x
x

− − − − − − −           
           
          
          − −

= = = + + =          
          
          
          

                    

x 4 5

8 1
0 0
7 4
1 0
0 1
0 0

x x

− −   
   

    
    −

+ +    
    
    
    
       

 

13. To write the general solution in parametric vector form, pull out the constant terms that do not involve 
the free variable: 

  

1 3 3

2 3 3 3 3

3 3 3

5 4 5 4 5 4
2 7 2 7 2 7 .

0 0 1

x x x
x x x x x
x x x

+          
          = = − − = − + − = − + − = +          
                    

↑ ↑

x p q

p q
 

  Geometrically, the solution set is the line through 
5
2
0

 
 − 
  

 in the direction of 
4
7
1

 
 − 
  

. 

14. To write the general solution in parametric vector form, pull out the constant terms that do not involve 
the free variable: 

  

1 4 4

2 4 4
4 4

3 4 4

4 4 4

3 30 0 3
8 8 8 1
2 5 52 2 5

0 0 1

x x x
x x x

x x
x x x
x x x

          
          +          = = = + = + = +
          − − −
          
               

↑ ↑

x p q

p q
 

  The solution set is the line through p in the direction of q. 

15. Row reduce the augmented matrix for the system: 

  
1 3 1 1 1 3 1 1 1 3 1 1
4 9 2 1 ~ 0 3 6 3 ~ 0 3 6 3
0 3 6 3 0 3 6 3 0 0 0 0

     
     − − −     
     − − − − − −     

 

  
1 3 1 1 1 0 5 2

~ 0 1 2 1 ~ 0 1 2 1
0 0 0 0 0 0 0 0

− −   
   
   
      

.   
1 3

2 3

5 2
2 1
0 0

x x
x x

− = −
+ =

=
. 

  Thus x1 = –2 + 5x3, x2 = 1 – 2x3, and x3 is free. In parametric vector form, 

  
1 3 3

2 3 3 3

3 3 3

2 5 2 5 2 5
1 2 1 2 1 2

0 0 1

x x x
x x x x
x x x

− + − −           
           = = − = + − = + −           
                      

x  
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  The solution set is the line through 
2
1
0

− 
 
 
  

, parallel to the line that is the solution set of the homogeneous 

system in Exercise 5. 

16. Row reduce the augmented matrix for the system: 

  
1 3 5 4 1 3 5 4 1 3 5 4 1 0 4 5
1 4 8 7 ~ 0 1 3 3 ~ 0 1 3 3 ~ 0 1 3 3
3 7 9 6 0 2 6 6 0 0 0 0 0 0 0 0

− − − −       
       − − − −       
       − − − −       

 

  
1 3

2 3

4 5
3 3
0 0

x x
x x

+ = −
− =

=
. Thus x1 = –5 – 4x3, x2 = 3 + 3x3, and x3 is free. In parametric vector form,  

  
1 3 3

2 3 3 3

3 3 3

5 4 5 4 5 4
3 3 3 3 3 3

0 0 1

x x x
x x x x
x x x

− − − − − −           
           = = + = + = +           
                      

x  

  The solution set is the line through 
5
3
0

− 
 
 
  

, parallel to the line that is the solution set of the homogeneous 

system in Exercise 6. 

17. Solve x1 + 9x2 – 4x3 = –2 for the basic variable: x1 = –2 – 9x2 + 4x3, with x2 and x3 free. In vector form, 
the solution is 

  
1 2 3 2 3

2 2 2 2 3

3 3 3

2 9 4 2 9 4 2 9 4
0 0 0 1 0
0 0 0 0 1

x x x x x
x x x x x
x x x

− − + − − − −               
               = = = + + = + +               
                              

x  

  The solution of x1 + 9x2 – 4x3 = 0 is x1 = –9x2 + 4x3, with x2 and x3 free. In vector form, 

  
1 2 3 2 3

2 2 2 2 3

3 3 3

9 4 9 4 9 4
0 1 0

0 0 1

x x x x x
x x x x x
x x x

− + − −           
           = = = + = +           
                      

x  = x2u + x3v 

  The solution set of the homogeneous equation is the plane through the origin in R3 spanned by 
u and v. The solution set of the nonhomogeneous equation is parallel to this plane and passes through the 

point p = 
2
0
0

− 
 
 
  

. 

18. Solve x1 – 3x2 + 5x3 = 4 for the basic variable: x1 = 4 + 3x2 – 5x3, with x2 and x3 free. In vector form, the 
solution is 

  
1 2 3 2 3

2 2 2 2 3

3 3 3

4 3 5 4 3 5 4 3 5
0 0 0 1 0
0 0 0 0 1

x x x x x
x x x x x
x x x

+ − − −               
               = = = + + = + +               
                              

x  
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  The solution of x1 – 3x2 + 5x3 = 0 is x1 = 3x2 – 5x3, with x2 and x3 free. In vector form, 

  
1 2 3 2 3

2 2 2 2 3

3 3 3

3 5 3 5 3 5
0 1 0

0 0 1

x x x x x
x x x x x
x x x

− − −           
           = = = + = +           
                      

x  = x2u + x3v 

  The solution set of the homogeneous equation is the plane through the origin in R3 spanned by u and v. 
The solution set of the nonhomogeneous equation is parallel to this plane and passes through the 

point p = 
4
0
0

 
 
 
  

. 

19. The line through a parallel to b can be written as x = a + t b, where t represents a parameter: 

  x = 1

2

2 5
0 3

x
t

x
− −     

= +     
    

, or 1

2

2 5
3

x t
x t

= − −
 =

 

20. The line through a parallel to b can be written as x = a + tb, where t represents a parameter:  

  x = 1

2

3 7
4 8

x
t

x
−     

= +     −    
, or 1

2

3 7
4 8

x t
x t

= −
 = − +

 

21. The line through p and q is parallel to q – p. So, given  
2 3

 and
5 1

−   
= =   −   

p q , form 

3 2 5
1 ( 5) 6
− − −   

− = =   − −   
q p , and write the line as x = p + t(q – p) = 

2 5
5 6

t
−   

+   −   
. 

22. The line through p and q is parallel to q – p. So, given 
6 0

 and 
3 4

−   
= =   −   

p q , form 

0 ( 6) 6
4 3 7

− −   
− = =   − − −   

q p , and write the line as x = p + t(q – p) = 
6 6
3 7

t
−   

+   −   
 

Note: Exercises 21 and 22 prepare for Exercise 27 in Section 1.8. 

23. a. True. See the first paragraph of the subsection titled Homogeneous Linear Systems. 
b. False. The equation Ax = 0 gives an implicit description of its solution set. See the subsection entitled 

Parametric Vector Form. 
c. False. The equation Ax = 0 always has the trivial solution. The box before Example 1 uses the word 

nontrivial instead of trivial. 
d. False. The line goes through p parallel to v. See the paragraph that precedes Fig. 5. 
e. False. The solution set could be empty! The statement (from Theorem 6) is true only when there 

exists a vector p such that Ap = b. 

24. a. False. A nontrivial solution of Ax = 0 is any nonzero x that satisfies the equation. See the 
 sentence before Example 2. 
b. True. See Example 2 and the paragraph following it. 
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c. True. If the zero vector is a solution, then b = Ax = A0 = 0. 
d. True. See the paragraph following Example 3. 
e. False. The statement is true only when the solution set of Ax = 0 is nonempty. Theorem 6 applies  

only to a consistent system. 

25. Suppose p satisfies Ax = b. Then Ap = b. Theorem 6 says that the solution set of Ax = b equals the  
set S ={w : w = p + vh for some vh such that Avh = 0}. There are two things to prove: (a) every vector  
in S satisfies Ax = b, (b) every vector that satisfies Ax = b is in S. 
a. Let w have the form w = p + vh, where Avh = 0. Then 
   Aw = A(p + vh) = Ap + Avh. By Theorem 5(a) in section 1.4 
        = b + 0 = b 
  So every vector of the form p + vh satisfies Ax = b. 
b. Now let w be any solution of Ax = b, and set vh = w − p. Then 
   Avh = A(w – p) = Aw – Ap = b – b = 0 
  So vh satisfies Ax = 0. Thus every solution of Ax = b has the form w = p + vh. 

26. (Geometric argument using Theorem 6.) Since Ax = b is consistent, its solution set is obtained by 
translating the solution set of Ax = 0, by Theorem 6. So the solution set of Ax = b is a single vector if  
and only if the solution set of Ax = 0 is a single vector, and that happens if and only if Ax = 0 has only 
the trivial solution. 

   (Proof using free variables.) If Ax = b has a solution, then the solution is unique if and only if there 
are no free variables in the corresponding system of equations, that is, if and only if every column of A is 
a pivot column. This happens if and only if the equation Ax = 0 has only the trivial solution. 

27. When A is the 3×3 zero matrix, every x in R3 satisfies Ax = 0. So the solution set is all vectors in R3. 

28. No. If the solution set of Ax = b contained the origin, then 0 would satisfy A0= b, which is not true 
since b is not the zero vector. 

29. a. When A is a 3×3 matrix with three pivot positions, the equation Ax = 0 has no free variables and 
hence has no nontrivial solution.  

b. With three pivot positions, A has a pivot position in each of its three rows. By Theorem 4 in 
Section 1.4, the equation Ax = b has a solution for every possible b. The term "possible" in the 
exercise means that the only vectors considered in this case are those in R3, because A has three rows. 

30.  a. When A is a 3×3 matrix with two pivot positions, the equation Ax = 0 has two basic variables and 
   one free variable.  So Ax = 0 has a nontrivial solution.   

b. With only two pivot positions, A cannot have a pivot in every row, so by Theorem 4 in Section 1.4, 
the equation Ax = b cannot have a solution for every possible b (in R3). 

31. a. When A is a 3×2 matrix with two pivot positions, each column is a pivot column. So the equation 
  Ax = 0 has no free variables and hence no nontrivial solution. 
b. With two pivot positions and three rows, A cannot have a pivot in every row. So the equation Ax = b 

cannot have a solution for every possible b (in R3), by Theorem 4 in Section 1.4. 

32. a. When A is a 2×4 matrix with two pivot positions, the equation Ax = 0 has two basic variables and 
  two free variables. So Ax = 0 has a nontrivial solution. 
b. With two pivot positions and only two rows, A has a pivot position in every row. By Theorem 4 in 

Section 1.4, the equation Ax = b has a solution for every possible b (in R2). 
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33. Look at 1 2

2 6
7 21
3 9

x x
− −   
   +   
   − −   

 and notice that the second column is 3 times the first. So suitable values for 

x1 and x2 would be 3 and –1 respectively. (Another pair would be 6 and –2, etc.) Thus 
3
1

 
=  − 

x  

satisfies Ax = 0.  

34. Inspect how the columns a1 and a2 of A are related. The second column is –3/2 times the first. Put 

another way, 3a1 + 2a2 = 0. Thus 
3
2
 
 
 

 satisfies Ax = 0. 

Note: Exercises 33 and 34 set the stage for the concept of linear dependence. 

35. Look for A = [a1   a2   a3] such that 1·a1 + 1a2 + 1·a3 = 0. That is, construct A so that each row sum (the 
sum of the entries in a row) is zero. 

36. Look for A = [a1   a2   a3] such that 1·a1 – 2·a2 + 1·a3 = 0. That is, construct A so that the sum of the 
first and third columns is twice the second column. 

37. Since the solution set of Ax = 0 contains the point (4,1), the vector x = (4,1) satisfies Ax = 0. Write this 
equation as a vector equation, using a1 and a2 for the columns of A: 

   4·a1 + 1·a2 = 0 
  Then a2 = –4a1. So choose any nonzero vector for the first column of A and multiply that column by – 4 

to get the second column of A. For example, set 
1 4
1 4

A
− 

=  − 
.  

  Finally, the only way the solution set of Ax = b could not be parallel to the line through (1,4) and the 
origin is for the solution set of Ax = b to be empty. This does not contradict Theorem 6, because that 
theorem applies only to the case when the equation Ax = b has a nonempty solution set. For b, take any 
vector that is not a multiple of the columns of A. 

Note: In the Study Guide, a “Checkpoint” for Section 1.5 will help students with Exercise 37. 

38. No. If Ax = y has no solution, then A cannot have a pivot in each row. Since A is 3×3, it has at most two 
pivot positions. So the equation Ax = z for any z has at most two basic variables and at least one free 
variable. Thus, the solution set for Ax = z is either empty or has infinitely many elements. 

39. If u satisfies Ax = 0, then Au = 0. For any scalar c, Theorem 5(b) in Section 1.4 shows that A(cu) =  
cAu = c·0 = 0. 

40. Suppose Au = 0 and Av = 0. Then, since A(u + v) = Au + Av by Theorem 5(a) in Section 1.4, 
   A(u + v) = Au + Av = 0 + 0 = 0.  
  Now, let c and d be scalars. Using both parts of Theorem 5,  
   A(cu + dv) = A(cu) + A(dv) = cAu + dAv = c0 + d0 = 0. 

Note: The MATLAB box in the Study Guide introduces the zeros command, in order to augment a matrix 
with a column of zeros. 
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1.6 SOLUTIONS 

 1. Fill in the exchange table one column at a time. The entries in a column describe where a sector's output 
goes. The decimal fractions in each column sum to 1. 

   

Distribution of 
Output From:

Goods Services Purchased by:
output input

.2 .7 Goods

.8 .3 Services

↓ ↓
→
→

 

  Denote the total annual output (in dollars) of the sectors by pG and pS. From the first row, the total input 
to the Goods sector is .2 pG + .7 pS. The Goods sector must pay for that. So the equilibrium prices must 
satisfy 

   
G G S

income expenses
= .2 .7p p p+

 

  From the second row, the input (that is, the expense) of the Services sector is .8 pG + .3 pS.  
The equilibrium equation for the Services sector is 

   
S G S

income expenses
= .8 .3p p p+

 

  Move all variables to the left side and combine like terms: 

  G S

G S

.8 .7 0

.8 .7 0
p p
p p

− =
− + =

 

  Row reduce the augmented matrix: 
.8 .7 0 .8 .7 0 1 .875 0

~ ~
.8 .7 0 0 0 0 0 0 0

− − −     
     −     

 

  The general solution is pG = .875 pS, with pS free. One equilibrium solution is pS = 1000 and pG = 875.  
If one uses fractions instead of decimals in the calculations, the general solution would be written  
pG = (7/8) pS, and a natural choice of prices might be pS = 80 and pG = 70. Only the ratio of the prices 
is important: pG = .875 pS. The economic equilibrium is unaffected by a proportional change in prices. 

 2. Take some other value for pS, say 200 million dollars. The other equilibrium prices are then  
pC = 188 million, pE = 170 million. Any constant nonnegative multiple of these prices is a set of 
equilibrium prices, because the solution set of the system of equations consists of all multiples of one 
vector. Changing the unit of measurement to, say, European euros has the same effect as multiplying 
all equilibrium prices by a constant. The ratios of the prices remain the same, no matter what currency 
is used. 

 3. a. Fill in the exchange table one column at a time. The entries in a column describe where a sector’s 
   output goes. The decimal fractions in each column sum to 1. 
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Distribution of Output From: Purchased
Chemicals Fuels Machinery  by:

output input
.2 .8 .4 Chemicals
.3 .1 .4 Fuels
.5 .1 .2 Machinery

↓ ↓ ↓
 

b. Denote the total annual output (in dollars) of the sectors by pC, pF, and pM. From the first row of the 
table, the total input to the Chemical & Metals sector is .2 pC + .8 pF + .4 pM. So the equillibrium 
prices must satisfy 

   
C C F M

income expenses
= .2 .8 .4p p p p+ +

 

  From the second and third rows of the table, the income/expense requirements for the Fuels & Power 
sector and the Machinery sector are, respectively, 

   F C F M

M C F M

.3 .1 .4
.5 .1 .2

p p p p
p p p p

= + +
= + +

 

  Move all variables to the left side and combine like terms: 

  
C F M

C F M

C F M

.8 – .8 – .4 0
–.3 .9 – .4 0
–.5 – .1 .8 0

p p p
p p p
p p p

=
+ =

+ =
 

c. [M] You can obtain the reduced echelon form with a matrix program. Actually, hand calculations are 
not too messy. To simplify the calculations, first scale each row of the augmented matrix by 10, then 
continue as usual. 

   

8 8 4 0 1 1 .5 0 1 1 .5 0
3 9 4 0 ~ 3 9 4 0 ~ 0 6 5.5 0
5 1 8 0 5 1 8 0 0 6 5.5 0

1 1 .5 0 1 0 1.417 0 The number of decimal
~ 0 1 .917 0 ~ 0 1 .917 0 places displayed is

0 0 0 0 0 0 0 0 somewhat arbit

− − − − − −     
     − − − − −     
     − − − − −     

− − −   
   − −   
       rary.

 

  The general solution is pC = 1.417 pM, pF = .917 pM, with pM free. If pM is assigned the value 100, then 
pC = 141.7 and pF = 91.7. Note that only the ratios of the prices are determined. This makes sense, for 
if the were converted from, say, dollars to yen or Euros, the inputs and outputs of each sector would 
still balance. The economic equilibrium is not affected by a proportional change in prices. 
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 4. a. Fill in the exchange table one column at a time. The entries in each column must sum to 1. 

  

Distribution of Output From  :

Purchased by :Agric. Energy Manuf . Transp.
output input

.65 .30 .30 .20 Agric.

.10 .10 .15 .10 Energy

.25 .35 .15 .30 Manuf .
0 .25 .40 .40 Transp.

↓ ↓ ↓ ↓
→
→
→
→

 

b. Denote the total annual output of the sectors by pA, pE, pM, and pT, respectively. From the first row of 
the table, the total input to Agriculture is .65pA + .30pE + .30pM + .20 pT. So the equilibrium prices 
must satisfy 

  
A A E M T

income expenses
.65 .30 .30 .20p p p p p= + + +

 

  From the second, third, and fourth rows of the table, the equilibrium equations are 

   
E A E M T

M A E M T

T E M T

.10 .10 .15 .10

.25 .35 .15 .30
.25 .40 .40

p p p p p
p p p p p
p p p p

= + + +
= + + +
= + +

 

  Move all variables to the left side and combine like terms: 

   

A E M T

A E M T

A E M T

E M T

.35 .30 .30 .20 0

.10 .90 .15 .10 0

.25 .35 .85 .30 0
.25 .40 .60 0

p p p p
p p p p
p p p p

p p p

− − − =
− + − − =
− − + − =

− − + =

 

  Use gauss, bgauss, and scale operations to reduce the augmented matrix to reduced echelon form 

  

.35 .3 .3 .2 0 .35 .3 0 .55 0 .35 0 0 .71 0
0 .81 .24 .16 0 0 .81 0 .43 0 0 1 0 .53 0

~ ~
0 0 1.0 1.17 0 0 0 1 1.17 0 0 0 1 1.17 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− − − − − −     
     − − − −     
     − − −
     
     

 

  Scale the first row and solve for the basic variables in terms of the free variable pT, and obtain  
pA = 2.03pT, pE = .53pT, and pM = 1.17pT. The data probably justifies at most two significant figures, 
so take pT = 100 and round off the other prices to pA = 200, pE = 53, and pM = 120. 

 5. The following vectors list the numbers of atoms of boron (B), sulfur (S), hydrogen (H), and oxygen (O): 

   2 3 2 3 3 2

2 0 1 0 boron
3 0 0 1 sulfur

B S : , H O: , H BO : , H S:
0 2 3 2 hydrogen
0 1 3 0 oxygen

       
       
       
       
       
       

 

  The coefficients in the equation x1⋅B2S3 + x2⋅H20  →   x3⋅H3BO3 + x4⋅H2S satisfy 
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   1 2 3 4

2 0 1 0
3 0 0 1
0 2 3 2
0 1 3 0

x x x x

       
       
       + = +
       
       
       

 

  Move the right terms to the left side (changing the sign of each entry in the third and fourth vectors) and 
row reduce the augmented matrix of the homogeneous system: 

  

2 0 1 0 0 2 0 1 0 0 2 0 1 0 0 2 0 1 0 0
3 0 0 1 0 0 0 3/ 2 1 0 0 1 3 0 0 0 1 3 0 0

~ ~ ~
0 2 3 2 0 0 2 3 2 0 0 0 3/ 2 1 0 0 0 3/ 2 1 0
0 1 3 0 0 0 1 3 0 0 0 2 3 2 0 0 0 3 2 0

− − − −       
       − − − −       
       − − − − − −
       − − − − −              

 

  

2 0 1 0 0 2 0 0 2 / 3 0 1 0 0 1/ 3 0
0 1 3 0 0 0 1 0 2 0 0 1 0 2 0

~ ~ ~
0 0 1 2 / 3 0 0 0 1 2 / 3 0 0 0 1 2 / 3 0
0 0 3 2 0 0 0 0 0 0 0 0 0 0 0

− − −     
     − − −     
     − − −
     −          

 

  The general solution is x1 = (1/3) x4, x2 = 2x4, x3 = (2/3) x4, with x4 free. Take x4 = 3. Then x1 = 1,  
x2 = 6, and x3 = 2. The balanced equation is 

   B2S3  +  6H20   →    2H3BO3 + 3H2S 

 6. The following vectors list the numbers of atoms of sodium (Na), phosphorus (P), oxygen (O), 
barium (Ba), and nitrogen(N): 

   3 4 3 2 3 4 2 3

3 0 0 1 sodium
1 0 2 0 phosphorus

Na PO : , Ba(NO ) : , Ba (PO ) : , NaNO :4 6 8 3 oxygen
0 1 3 0 barium
0 2 0 1 nitrogen

       
       
       
       
       
       
              

 

  The coefficients in the equation x1⋅Na3PO4  +  x2⋅Ba(NO3)2   →    x3⋅Ba3(PO4)2  +  x4⋅NaNO3 satisfy 

   1 2 3 4

3 0 0 1
1 0 2 0
4 6 8 3
0 1 3 0
0 2 0 1

x x x x

       
       
       
       + = +
       
       
              

 

  Move the right terms to the left side (changing the sign of each entry in the third and fourth vectors) and 
row reduce the augmented matrix of the homogeneous system: 

   

3 0 0 1 0 1 0 2 0 0 1 0 2 0 0 1 0 2 0 0
1 0 2 0 0 3 0 0 1 0 0 0 6 1 0 0 1 3 0 0

~ ~ ~4 6 8 3 0 4 6 8 3 0 0 6 0 3 0 0 6 0 3 0
0 1 3 0 0 0 1 3 0 0 0 1 3 0 0 0 0 6 1 0
0 2 0 1 0 0 2 0 1 0 0 2 0 1 0 0 2 0 1 0

− − − −       
       − − − −       
       − − − − − −
       − − − −       
       − − − −       
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1 0 2 0 0 1 0 2 0 0 1 0 0 1/ 3 0
0 1 3 0 0 0 1 3 0 0 0 1 0 1/ 2 0

~ ~ ~0 0 18 3 0 0 0 1 1/ 6 0 0 0 1 1/ 6 0
0 0 6 1 0 0 0 0 0 0 0 0 0 0 0
0 0 6 1 0 0 0 0 0 0 0 0 0 0 0

− − −     
     − − −     
     − − −
     −     
     −     

 

  The general solution is x1 = (1/3)x4, x2 = (1/2)x4, x3 = (1/6)x4, with x4 free. Take x4 = 6. Then x1 = 2, 
x2 = 3, and x3 = 1. The balanced equation is 

   2Na3PO4  +  3Ba(NO3)2   →    Ba3(PO4)2  +  6NaNO3 

 7. The following vectors list the numbers of atoms of sodium (Na), hydrogen (H), carbon (C), and 
oxygen (O): 

   3 3 6 5 7 3 6 5 7 2 2

1 0 3 0 0 sodium
1 8 5 2 0 hydrogen

NaHCO : , H C H O : , Na C H O : , H O : , CO :
1 6 6 0 1 carbon
3 7 7 1 2 oxygen

         
         
         
         
         
         

 

  The order of the various atoms is not important. The list here was selected by writing the elements in the 
order in which they first appear in the chemical equation, reading left to right: 

   x1 · NaHCO3  + x2 · H3C6H5O7   →   x3 · Na3C6H5O7  +  x4 · H2O  +  x5 · CO2. 
  The coefficients x1, …, x5 satisfy the vector equation 

   1 2 3 4 5

1 0 3 0 0
1 8 5 2 0
1 6 6 0 1
3 7 7 1 2

x x x x x

         
         
         + = + +
         
         
                  

 

  Move all the terms to the left side (changing the sign of each entry in the third, fourth, and fifth vectors) 
and reduce the augmented matrix: 

   

1 0 3 0 0 0 1 0 0 0 1 0
1 8 5 2 0 0 0 1 0 0 1/ 3 0

~ ~
1 6 6 0 1 0 0 0 1 0 1/ 3 0
3 7 7 1 2 0 0 0 0 1 1 0

− −   
   − − −   ⋅ ⋅ ⋅
   − − −
   − − − −   

 

  The general solution is x1 = x5, x2 = (1/3)x5, x3 = (1/3)x5, x4 = x5, and x5 is free. Take x5 = 3. Then x1 = x4 = 
3, and x2 = x3 = 1. The balanced equation is 

   3NaHCO3  + H3C6H5O7   →   Na3C6H5O7  +  3H2O  +  3CO2 

 8. The following vectors list the numbers of atoms of potassium (K), manganese (Mn), oxygen (O), 
sulfur (S), and hydrogen (H): 

   4 4 2 2 2 4 2 4

1 0 0 0 2 0

1 1 0 1 0 0

KMnO : ,   MnSO : ,   H O: ,   MnO : ,   K SO : ,   H SO : 4 4 1 2 4 4

0 1 0 0 1 1

0 0 2 0 0 2

potassium
manganese
oxyg

           
           
           
           
           
           
                      

en
sulfur
hydrogen

 

  The coefficients in the chemical equation 
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   x1⋅KMnO4  +  x2⋅MnSO4  +  x3⋅H2O   →    x4⋅MnO2  +  x5⋅K2SO4  +  x6⋅H2SO4 
  satisfy the vector equation 

  1 2 3 4 5 6

1 0 0 0 2 0
1 1 0 1 0 0
4 4 1 2 4 4
0 1 0 0 1 1
0 0 2 0 0 2

x x x x x x

           
           
           
           + + = + +
           
           
                      

 

  Move the terms to the left side (changing the sign of each entry in the last three vectors) and reduce the 
augmented matrix: 

  

1 0 0 0 2 0 0 1 0 0 0 0 1.0 0
1 1 0 1 0 0 0 0 1 0 0 0 1.5 0

~4 4 1 2 4 4 0 0 0 1 0 0 1.0 0
0 1 0 0 1 1 0 0 0 0 1 0 2.5 0
0 0 2 0 0 2 0 0 0 0 0 1 .5 0

− −   
   − −   
   − − − −
   − − −   
   − −   

 

  The general solution is x1 = x6, x2 = (1.5)x6, x3 = x6, x4 = (2.5)x6, x5 = .5x6, and x6 is free.  
Take x6 = 2. Then x1 = x3 = 2, and x2 = 3, x4 = 5, and x5 = 1. The balanced equation is 

   2KMnO4  +  3MnSO4  +  2H2O   →    5MnO2  +  K2SO4  +  2H2SO4 

 9. [M] Set up vectors that list the atoms per molecule. Using the order lead (Pb), nitrogen (N), chromium 
(Cr), manganese (Mn), and oxygen (O), the vector equation to be solved is 

   1 2 3 4 5 6

1 0 3 0 0 0 lead
6 0 0 0 0 1 nitrogen
0 1 0 2 0 0 chromium
0 2 0 0 1 0 manganese
0 8 4 3 2 1 oxygen

x x x x x x

           
           
           
           + = + + +
           
           
                      

 

  The general solution is x1 = (1/6)x6, x2 = (22/45)x6, x3 = (1/18)x6, x4 = (11/45)x6, x5 = (44/45)x6, and 
x6 is free. Take x6 = 90. Then x1 = 15, x2 = 44, x3 = 5, x4 = 22, and x5 = 88. The balanced equation is 

   15PbN6 + 44CrMn2O8   →    5Pb3O4 + 22Cr2O3 + 88MnO2 + 90NO 

 10. [M] Set up vectors that list the atoms per molecule. Using the order manganese (Mn), sulfur (S), arsenic 
(As), chromium (Cr), oxygen (O), and hydrogen (H), the vector equation to be solved is 

  1 2 3 4 5 6 7

1 0 0 1 0 0 0
1 0 1 0 0 3 0
0 2 0 0 1 0 0
0 10 0 0 0 1 0
0 35 4 4 0 12 1
0 0 2 1 3 0 2

x x x x x x x

             
             
             
             

+ + = + + +            
            
            
            
                         

manganese
sulfur
arsenic
chromium
oxygen
hydrogen







  

  In rational format, the general solution is x1 = (16/327)x7, x2 = (13/327)x7, x3 = (374/327)x7, 
x4 = (16/327)x7, x5 = (26/327)x7, x6 = (130/327)x7, and x7 is free. Take x7 = 327 to make the other 
variables whole numbers. The balanced equation is 

  16MnS + 13As2Cr10O35 + 374H2SO4  →   16HMnO4 + 26AsH3 + 130CrS3O12 + 327H2O 
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  Note that some students may use decimal calculation and simply "round off" the fractions that relate x1, 
..., x6 to x7. The equations they construct may balance most of the elements but miss an atom or two. Here 
is a solution submitted by two of my students: 

  5MnS + 4As2Cr10O35 + 115H2SO4  →   5HMnO4 + 8AsH3 + 40CrS3O12 + 100H2O 
  Everything balances except the hydrogen. The right side is short 8 hydrogen atoms. Perhaps the students 

thought that the 4H2 (hydrogen gas) escaped! 

 11. Write the equations for each node: 

   
1 3

2 3 4

1 2

4

Node Flow in Flow out
A 20
B
C 80

Total flow: 80 = x 20

x x
x x x

x x

+ =
= +
= +

+

 

  Rearrange the equations: 

   

1 3

2 3 4

1 2

4

20
0

80
60

x x
x x x

x x
x

+ =
− − =

+ =
=

 

  Reduce the augmented matrix: 

   

1 0 1 0 20 1 0 1 0 20
0 1 1 1 0 0 1 1 0 60

~ ~
1 1 0 0 80 0 0 0 1 60
0 0 0 1 60 0 0 0 0 0

   
   − − −   ⋅ ⋅ ⋅
   
   
      

 

  For this type of problem, the best description of the general solution uses the style of 
Section 1.2 rather than parametric vector form: 

   

1 3

2 3

3

4

20
60

 is free
x 60

x x
x x
x

= −
 = +


 =

. Since x1 cannot be negative, the largest value of x3 is 20.   

12. Write the equations for each intersection: 

   

1 3 4

1 2

2 3 5

4 5

Intersection Flow in Flow out
A 40
B 200
C 100
D 60

Total flow: 200 = 200

x x x
x x

x x x
x x

= + +
= +

+ = +
+ =

 40

x1 x2

x3

200

100

60

x4 x5

A

B

C

D

20

80

x1

x2

x3

x4

A

C

B
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Rearrange the equations: 

   

1 3 4

1 2

2 3 5

4 5

40
200
100

60

x x x
x x

x x x
x x

− − =
+ =

+ − =
+ =

 

  Reduce the augmented matrix: 

  

1 0 1 1 0 40 1 0 1 0 1 100
1 1 0 0 0 200 0 1 1 0 1 100

~
0 1 1 0 1 100 0 0 0 1 1 60
0 0 0 1 1 60 0 0 0 0 0 0

− − −   
   −   
   −
   
      

 

  The general solution (written in the style of Section 1.2) is 

   

1 3 5

2 3 5

3

4 5

5

100
100

 is free
60

 is free

x x x
x x x
x
x x
x

= + −
 = − +

 = −


 b. When x4 = 0, x5 must be 60, and 

1 3

2 3

3

4

5

40
160

 is free
0
60

x x
x x
x
x
x

= +
 = −

 =

=

 

c. The minimum value of x1 is 40 cars/minute, because x3 cannot be negative. 

 13. Write the equations for each intersection: 

   

2 1

3 5 2 4

6 5

4 6

1 3

Intersection Flow in Flow out
A 30 80
B
C 100 40
D 40 90
E 60 20

Total flow: 230 230

x x
x x x x

x x
x x
x x

+ = +
+ = +
+ = +
+ = +
+ = +

=

 

  Rearrange the equations: 

   

1 2

2 3 4 5

5 6

4 6

1 3

50
0

60
50
40

x x
x x x x

x x
x x

x x

− = −
− + − =

− =
− =

− −

 

  Reduce the augmented matrix: 

   

1 1 0 0 0 0 50 1 1 0 0 0 0 50
0 1 1 1 1 0 0 0 1 1 1 1 0 0

~ ~0 0 0 0 1 1 60 0 0 0 1 0 1 50
0 0 0 1 0 1 50 0 0 0 0 1 1 60
1 0 1 0 0 0 40 0 0 0 0 0 0 0

− − − −   
   − − − −   
   ⋅ ⋅ ⋅− −
   − −   
   − −   

 

60

80

90

100
x1 x6

x2

x3

x5

x4

20 40

30 40

A

E

C

D

B
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1 0 1 0 0 0 40
0 1 1 0 0 0 10

~ ~ 0 0 0 1 0 1 50
0 0 0 0 1 1 60
0 0 0 0 0 0 0

− − 
 − 
 ⋅ ⋅ ⋅ −
 − 
  

 

a. The general solution is 

1 3

2 3

3

4 6

5 6

6

40
10

 is free
50
60

 is free

x x
x x
x
x x
x x
x

= −
 = +

 = +
 = +



   

b. To find minimum flows, note that since x1 cannot be negative, x3 > 40. This implies that 
x2 > 50. Also, since x6 cannot be negative, x4 > 50 and x5 > 60. The minimum flows are 
x2 = 50, x3 = 40, x4 = 50, x5 = 60 (when x1 = 0 and x6 = 0). 

 14. Write the equations for each intersection. 

   

1 2

2 3

3 4

4 5

5 6

6 1

Intersection Flow in Flow out
A 100
B 50
C 120
D 150
E 80
F 100

x x
x x

x x
x x

x x
x x

= +
+ =

= +
+ =

= +
+ =

 

  Rearrange the equations: 

   

1 2

2 3

3 4

4 5

5 6

1 6

100
50

120
150

80
100

x x
x x

x x
x x

x x
x x

− =
− = −

− =
− = −

− =
− + = −

 

  Reduce the augmented matrix: 

   

1 1 0 0 0 0 100 1 1 0 0 0 0 100
0 1 1 0 0 0 50 0 1 1 0 0 0 50
0 0 1 1 0 0 120 0 0 1 1 0 0 120

~ ~
0 0 0 1 1 0 150 0 0 0 1 1 0 150
0 0 0 0 1 1 80 0 0 0 0 1 1 80
1 0 0 0 0 1 100 0 0 0 0 0 0 0

− −   
   − − − −   
   − −

⋅⋅ ⋅   − − − −   
   − −
   
− −      

 

100

50

x3

80

100

120 150

x2

x1

x6

x5
x4

A

B E

F

C D
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1 0 0 0 0 1 100
0 1 0 0 0 1 0
0 0 1 0 0 1 50

~ ~
0 0 0 1 0 1 70
0 0 0 0 1 1 80
0 0 0 0 0 0 0

− 
 − 
 −

⋅⋅ ⋅  − − 
 −
 
  

. The general solution is 

1 6

2 6

3 6

4 6

5 6

6

100

50
70

80
 is free

x x
x x
x x
x x
x x
x

= +
 =
 = +
 = − +
 = +



. 

  Since x4 cannot be negative, the minimum value of x6 is 70. 

Note: The MATLAB box in the Study Guide discusses rational calculations, needed for balancing the 
chemical equations in Exercises 9 and 10. As usual, the appendices cover this material for Maple, 
Mathematica, and the TI and HP graphic calculators. 

1.7 SOLUTIONS 

Note: Key exercises are 9–20 and 23–30. Exercise 30 states a result that could be a theorem in the text. There 
is a danger, however, that students will memorize the result without understanding the proof, and then later 
mix up the words row and column. Exercises 37 and 38 anticipate the discussion in Section 1.9 of one-to-one 
transformations. Exercise 44 is fairly difficult for my students. 

 1. Use an augmented matrix to study the solution set of x1u + x2v + x3w = 0 (*), where u, v, and w are the 

three given vectors. Since 
5 7 9 0 5 7 9 0
0 2 4 0 ~ 0 2 4 0
0 6 8 0 0 0 4 0

   
   
   
   − −   

, there are no free variables. So the 

homogeneous equation (*) has only the trivial solution. The vectors are linearly independent. 

 2. Use an augmented matrix to study the solution set of x1u + x2v + x3w = 0 (*), where u, v, and w are the 

three given vectors.  Since 
0 0 3 0 2 8 1 0
0 5 4 0 ~ 0 5 4 0
2 8 1 0 0 0 3 0

− −   
   
   
   − −   

, there are no free variables. So the 

homogeneous equation (*) has only the trivial solution. The vectors are linearly independent. 

 3. Use the method of Example 3 (or the box following the example). By comparing entries of the vectors, 
one sees that the second vector is –3 times the first vector. Thus, the two vectors are linearly dependent. 

 4. From the first entries in the vectors, it seems that the second vector of the pair 
1 2

,
4 8

− −   
   −   

 may be 2 

times the first vector. But there is a sign problem with the second entries. So neither of the vectors is a 
multiple of the other. The vectors are linearly independent. 

 5. Use the method of Example 2. Row reduce the augmented matrix for Ax = 0: 

  

0 8 5 0 1 3 2 0 1 3 2 0 1 3 2 0 1 3 2 0
3 7 4 0 3 7 4 0 0 2 2 0 0 2 2 0 0 2 2 0

~ ~ ~ ~
1 5 4 0 1 5 4 0 0 2 2 0 0 0 0 0 0 0 3 0
1 3 2 0 0 8 5 0 0 8 5 0 0 0 3 0 0 0 0 0

− − − − −         
         − − − − −         
         − − − − − −
         − − − −                  
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  There are no free variables. The equation Ax = 0 has only the trivial solution and so the columns of A are 
linearly independent. 

 6. Use the method of Example 2. Row reduce the augmented matrix for Ax = 0: 

  

4 3 0 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0
0 1 4 0 0 1 4 0 0 1 4 0 0 1 4 0 0 1 4 0

~ ~ ~ ~
1 0 3 0 4 3 0 0 0 3 12 0 0 0 0 0 0 0 7 0
5 4 6 0 5 4 6 0 0 4 9 0 0 0 7 0 0 0 0 0

− −         
         − − − − −         
         − − −
         −                  

 

  There are no free variables. The equation Ax = 0 has only the trivial solution and so the columns of A are 
linearly independent. 

 7. Study the equation Ax = 0. Some people may start with the method of Example 2: 

  
1 4 3 0 0 1 4 3 0 0 1 4 3 0 0
2 7 5 1 0 ~ 0 1 1 1 0 ~ 0 1 1 1 0
4 5 7 5 0 0 11 5 5 0 0 0 6 6 0

− − −     
     − − − −     
     − − − −     

 

  But this is a waste of time. There are only 3 rows, so there are at most three pivot positions. Hence, at 
least one of the four variables must be free. So the equation Ax = 0 has a nontrivial solution and the 
columns of A are linearly dependent. 

 8. Same situation as with Exercise 7. The (unnecessary) row operations are 

  
1 3 3 2 0 1 3 3 2 0 1 3 3 2 0
3 7 1 2 0 ~ 0 2 8 4 0 ~ 0 2 8 4 0
0 1 4 3 0 0 1 4 3 0 0 0 0 1 0

− − − − − −     
     − − − − − −     
     − −     

 

  Again, because there are at most three pivot positions yet there are four variables, the equation Ax = 0 
has a nontrivial solution and the columns of A are linearly dependent. 

 9. a. The vector v3 is in Span{v1, v2} if and only if the equation x1v1 + x2v2 = v3 has a solution. To find out, 
row reduce [v1   v2   v3], considered as an augmented matrix: 

  
1 3 5 1 3 5
3 9 7 ~ 0 0 8
2 6 0 0 10h h

− −   
   − −   
   − −   

 

  At this point, the equation 0 = 8 shows that the original vector equation has no solution. So v3 is in 
Span{v1, v2} for no value of h. 

b. For {v1, v2, v3} to be linearly independent, the equation x1v1 + x2v2 + x3v3 = 0 must have only the 
trivial solution. Row reduce the augmented matrix [v1   v2   v3   0]  

  
1 3 5 0 1 3 5 0 1 3 5 0
3 9 7 0 ~ 0 0 8 0 ~ 0 0 8 0
2 6 0 0 0 10 0 0 0 0 0h h

− − −     
     − −     
     − −     

 

  For every value of h, x2 is a free variable, and so the homogeneous equation has a nontrivial solution. 
Thus {v1, v2, v3} is a linearly dependent set for all h. 
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 10. a.  The vector v3 is in Span{v1, v2} if and only if the equation x1v1 + x2v2 = v3 has a solution. To find out, 
row reduce [v1   v2   v3], considered as an augmented matrix: 

  
1 2 2 1 2 2
5 10 9 ~ 0 0 1
3 6 0 0 6h h

− −   
   − −   
   − +   

 

  At this point, the equation 0 = 1 shows that the original vector equation has no solution. So v3 is in 
Span{v1, v2} for no value of h. 

b. For {v1, v2, v3} to be linearly independent, the equation x1v1 + x2v2 + x3v3 = 0 must have only the 
trivial solution. Row reduce the augmented matrix [v1   v2   v3   0]  

  
1 2 2 0 1 2 2 0 1 2 2 0
5 10 9 0 ~ 0 0 1 0 ~ 0 0 1 0
3 6 0 0 0 6 0 0 0 0 0h h

− − −     
     − −     
     − +     

 

  For every value of h, x2 is a free variable, and so the homogeneous equation has a nontrivial solution. 
Thus {v1, v2, v3} is a linearly dependent set for all h. 

 11. To study the linear dependence of three vectors, say v1, v2, v3, row reduce the augmented matrix 
[v1   v2   v3   0]: 

  
1 3 1 0 1 3 1 0 1 3 1 0
1 5 5 0 ~ 0 2 4 0 ~ 0 2 4 0
4 7 0 0 5 4 0 0 0 6 0h h h

− − −     
     − − − −     
     − + −     

 

  The equation x1v1 + x2v2 + x3v3 = 0 has a nontrivial solution if and only if h – 6 = 0 (which corresponds to 
x3 being a free variable). Thus, the vectors are linearly dependent if and only if h = 6. 

 12. To study the linear dependence of three vectors, say v1, v2, v3, row reduce the augmented matrix 
[v1   v2   v3   0]: 

  
2 6 8 0 2 6 8 0
4 7 0 ~ 0 5 16 0
1 3 4 0 0 0 0 0

h h
− −   

   − − +   
   −   

 

  The equation x1v1 + x2v2 + x3v3 = 0 has a free variable and hence a nontrivial solution no matter what the 
value of h. So the vectors are linearly dependent for all values of h. 

 13. To study the linear dependence of three vectors, say v1, v2, v3, row reduce the augmented matrix 
[v1   v2   v3   0]: 

  
1 2 3 0 1 2 3 0
5 9 0 ~ 0 1 15 0
3 6 9 0 0 0 0 0

h h
− −   

   − −   
   − −   

 

  The equation x1v1 + x2v2 + x3v3 = 0 has a free variable and hence a nontrivial solution no matter what the 
value of h. So the vectors are linearly dependent for all values of h. 
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 14. To study the linear dependence of three vectors, say v1, v2, v3, row reduce the augmented matrix 
[v1   v2   v3   0]: 

  
1 5 1 0 1 5 1 0 1 5 1 0
1 7 1 0 ~ 0 2 2 0 ~ 0 2 2 0
3 8 0 0 7 3 0 0 0 10 0h h h

− − −     
     −     
     − − + +     

 

  The equation x1v1 + x2v2 + x3v3 = 0 has a nontrivial solution if and only if h + 10 = 0 (which corresponds 
to x3 being a free variable). Thus, the vectors are linearly dependent if and only  
if h = –10. 

 15. The set is linearly dependent, by Theorem 8, because there are four vectors in the set but only two entries 
in each vector. 

 16. The set is linearly dependent because the second vector is 3/2 times the first vector. 

 17. The set is linearly dependent, by Theorem 9, because the list of vectors contains a zero vector. 

 18. The set is linearly dependent, by Theorem 8, because there are four vectors in the set but only two entries 
in each vector. 

 19. The set is linearly independent because neither vector is a multiple of the other vector. [Two of the 
entries in the first vector are – 4 times the corresponding entry in the second vector. But this multiple 
does not work for the third entries.] 

 20. The set is linearly dependent, by Theorem 9, because the list of vectors contains a zero vector. 

 21. a. False. A homogeneous system always has the trivial solution. See the box before Example 2. 
b. False. See the warning after Theorem 7. 
c. True. See Fig. 3, after Theorem 8. 
d. True. See the remark following Example 4. 

 22. a. True. See Fig. 1. 

b. False. For instance, the set consisting of 
1 2
2  and –4
3 6

   
   −   
      

 is linearly dependent. See the warning after 

Theorem 8. 
c. True. See the remark following Example 4. 
d. False. See Example 3(a). 

 23. 
* *

0 *
0 0

 
 
 
  

 24. 
* 0 0 0

, ,
0 0 0 0 0 0
     
     
     

 25. 

* 0
0 0 0

 and 
0 0 0 0
0 0 0 0

   
   
   
   
   
      
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 26. 

* *
0 *
0 0
0 0 0

 
 
 
 
 
  

. The columns must linearly independent, by Theorem 7, because the first column is not 

zero, the second column is not a multiple of the first, and the third column is not a linear combination 
of the preceding two columns (because a3 is not in Span{a1, a2}). 

 27. All five columns of the 7×5 matrix A must be pivot columns. Otherwise, the equation Ax = 0 would have 
a free variable, in which case the columns of A would be linearly dependent. 

 28. If the columns of a 5×7 matrix A span R5, then A has a pivot in each row, by Theorem 4. Since each pivot 
position is in a different column, A has five pivot columns. 

 29. A: any 3×2 matrix with two nonzero columns such that neither column is a multiple of the other. In this 
case the columns are linearly independent and so the equation Ax = 0 has only the trivial solution.  

  B: any 3×2 matrix with one column a multiple of the other. 

 30. a. n   
b. The columns of A are linearly independent if and only if the equation Ax = 0 has only the trivial 

solution. This happens if and only if Ax = 0 has no free variables, which in turn happens if and only if 
every variable is a basic variable, that is, if and only if every column of A is a pivot column. 

 31. Think of A = [a1   a2   a3]. The text points out that a3 = a1 + a2. Rewrite this as a1 + a2 – a3 = 0. As a 
matrix equation, Ax = 0 for x = (1, 1, –1). 

 32. Think of A = [a1   a2   a3]. The text points out that a1 + 2a2 = a3. Rewrite this as a1 + 2a2 – a3 = 0. As a 
matrix equation, Ax = 0 for x = (1, 2, –1). 

 33. True, by Theorem 7. (The Study Guide adds another justification.) 

 34. True, by Theorem 9. 

 35. False. The vector v1 could be the zero vector. 

 36. False. Counterexample: Take v1, v2, and v4 all to be multiples of one vector. Take v3 to be not a multiple 
of that vector. For example, 

   1 2 3 4

1 2 1 4
1 2 0 4

, , ,
1 2 0 4
1 2 0 4

       
       
       = = = =
       
       
              

v v v v  

 37. True. A linear dependence relation among v1, v2, v3 may be extended to a linear dependence relation 
among v1, v2, v3, v4 by placing a zero weight on v4. 

 38. True. If the equation x1v1 + x2v2 + x3v3 = 0 had a nontrivial solution (with at least one of x1, x2, x3 
nonzero), then so would the equation x1v1 + x2v2 + x3v3 + 0⋅v4 = 0. But that cannot happen because 
{v1, v2, v3, v4} is linearly independent. So {v1, v2, v3} must be linearly independent. This problem can 
also be solved using Exercise 37, if you know that the statement there is true. 
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 39. If for all b the equation Ax = b has at most one solution, then take b = 0, and conclude that the equation 
Ax = 0 has at most one solution. Then the trivial solution is the only solution, and so the columns of A are 
linearly independent. 

 40. An m×n matrix with n pivot columns has a pivot in each column. So the equation Ax = b has no free 
variables. If there is a solution, it must be unique. 

 41. [M] 

8 3 0 7 2 8 3 0 7 2
9 4 5 11 7 0 5/8 5 25/8 19 / 4

~
6 2 2 4 4 0 1/ 4 2 5/ 4 5/ 2
5 1 7 0 10 0 7 /8 7 35/8 35/ 4

A

− − − −   
   − − −   =
   − −
   −      

 

  

8 3 0 7 2 8 3 0 7 2
0 5/8 5 25/8 19 / 4 0 5/8 5 25/8 19 / 4

~ ~
0 0 0 0 22 / 5 0 0 0 0 22 / 5
0 0 0 0 77 / 5 0 0 0 0 0

− − − −   
   − −   
   
   
      

 

  The pivot columns of A are 1, 2, and 5. Use them to form 

8 3 2
9 4 7
6 2 4
5 1 10

B

− 
 − − =
 −
 −  

.   

  Other likely choices use columns 3 or 4 of A instead of 2: 

8 0 2 8 7 2
9 5 7 9 11 7

,
6 2 4 6 4 4
5 7 10 5 0 10

−   
   − − − −   
   −
   
      

. 

  Actually, any set of three columns of A that includes column 5 will work for B, but the concepts needed 
to prove that are not available now. (Column 5 is not in the two-dimensional subspace spanned by the 
first four columns.) 

 42. [M] 

  

12 10 6 3 7 10 12 10 6 3 7 10
7 6 4 7 9 5 0 1/ 6 1/ 2 21/ 4 59 /12 65/ 6

~ ~9 9 9 5 5 1 0 0 0 89 / 2 89 / 2 89
4 3 1 6 8 9 0 0 0 0 0 3
8 7 5 9 11 8 0 0 0 0 0 0

− − − −   
   − − − − −   
   ⋅ ⋅ ⋅− − − −
   − − −   
   − − −   

 

  The pivot columns of A are 1, 2, 4, and 6. Use them to form 

12 10 3 10
7 6 7 5
9 9 5 1
4 3 6 9
8 7 9 8

B

− 
 − − 
 = − −
 − − 
 − − 

. 

  Other likely choices might use column 3 of A instead of 2, and/or use column 5 instead of 4. 
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 43. [M] Make v any one of the columns of A that is not in B and row reduce the augmented matrix [B   v]. 
The calculations will show that the equation Bx = v is consistent, which means that v is a linear 
combination of the columns of B. Thus, each column of A that is not a column of B is in the set spanned 
by the columns of B. 

 44. [M] Calculations made as for Exercise 43 will show that each column of A that is not a column of B is in 
the set spanned by the columns of B. Reason: The original matrix A has only four pivot columns. If one 
or more columns of A are removed, the resulting matrix will have at most four pivot columns. (Use 
exactly the same row operations on the new matrix that were used to reduce A to echelon form.) If v is a 
column of A that is not in B, then row reduction of the augmented matrix [B   v] will display at most four 
pivot columns. Since B itself was constructed to have four pivot columns, adjoining v cannot produce a 
fifth pivot column. Thus the first four columns of [B   v] are the pivot columns. This implies that the 
equation Bx = v has a solution. 

Note: At the end of Section 1.7, the Study Guide has another note to students about “Mastering Linear 
Algebra Concepts.” The note describes how to organize a review sheet that will help students form a mental 
image of linear independence. The note also lists typical misuses of terminology, in which an adjective is 
applied to an inappropriate noun. (This is a major problem for my students.) I require my students to prepare a 
review sheet as described in the Study Guide, and I try to make helpful comments on their sheets. I am 
convinced, through personal observation and student surveys, that the students who prepare many of these 
review sheets consistently perform better than other students. Hopefully, these students will remember 
important concepts for some time beyond the final exam. 

1.8 SOLUTIONS 

Notes: The key exercises are 17–20, 25 and 31. Exercise 20 is worth assigning even if you normally assign 
only odd exercises. Exercise 25 (and 27) can be used to make a few comments about computer graphics, even 
if you do not plan to cover Section 2.6. For Exercise 31, the Study Guide encourages students not to look at 
the proof before trying hard to construct it. Then the Guide explains how to create the proof.  

Exercises 19 and 20 provide a natural segue into Section 1.9. I arrange to discuss the homework on these 
exercises when I am ready to begin Section 1.9. The definition of the standard matrix in Section 1.9 follows 
naturally from the homework, and so I’ve covered the first page of Section 1.9 before students realize we are 
working on new material. 

The text does not provide much practice determining whether a transformation is linear, because the time 
needed to develop this skill would have to be taken away from some other topic. If you want your students to 
be able to do this, you may need to supplement Exercises 29, 30, 32 and 33. 

If you skip the concepts of one-to-one and “onto” in Section 1.9, you can use the result of Exercise 31 to 
show that the coordinate mapping from a vector space onto Rn (in Section 4.4) preserves linear independence 
and dependence of sets of vectors. (See Example 6 in Section 4.4.) 

 1. T(u) = Au = 
2 0 1 2
0 2 3 6
     

=     − −     
, T(v) = 

2 0 2
0 2 2

a a
b b

     
=     

     
 

 2. T(u) = Au =
.5 0 0 1 .5
0 .5 0 0 0
0 0 .5 4 2

     
     =     
     − −     

, T(v) = 
.5 0 0 .5
0 .5 0 .5
0 0 .5 .5

a a
b b
c c

     
     =     
          
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 3. [ ]
1 0 2 1 1 0 2 1 1 0 2 1
2 1 6 7 ~ 0 1 2 5 ~ 0 1 2 5
3 2 5 3 0 2 1 0 0 0 5 10

A
− − − − − −     

     = −     
     − − − −     

b  

  
1 0 2 1 1 0 0 3 3

~ 0 1 2 5 ~ 0 1 0 1 1 ,
0 0 1 2 0 0 1 2 2

− −     
     =     
          

x  unique solution 

 4. [ ]
1 3 2 6 1 3 2 6 1 3 2 6
0 1 4 7 ~ 0 1 4 7 ~ 0 1 4 7
3 5 9 9 0 4 15 27 0 0 1 1

A
− − −     

     = − − − − − −     
     − − − − −     

b  

  
1 3 0 4 1 0 0 5 5

~ 0 1 0 3 ~ 0 1 0 3 3
0 0 1 1 0 0 1 1 1

− − −     
     − − = −     
          

x , unique solution 

 5. [ ] 1 5 7 2 1 5 7 2 1 0 3 3
~ ~

3 7 5 2 0 1 2 1 0 1 2 1
A

− − − − − −     
=      − −     

b  

  Note that a solution is not 
3
1

 
 
 

. To avoid this common error, write the equations: 

  1 3

2 3

3 3
2 1

x x
x x

+ =
+ =

 and solve for the basic variables: 
1 3

2 3

3

3 3
1 2

is free

x x
x x
x

= −
 = −



  

  General solution 
1 3

2 3 3

3 3

3 3 3 3
1 2 1 2

0 1

x x
x x x
x x

− −       
       = = − = + −       
             

x . For a particular solution, one might choose  

x3 = 0 and 
3
1
0

 
 =  
  

x . 

 6. [ ]

1 2 1 1 1 2 1 1 1 2 1 1 1 0 3 7
3 4 5 9 0 2 2 6 0 1 1 3 0 1 1 3

~ ~ ~
0 1 1 3 0 1 1 3 0 0 0 0 0 0 0 0
3 5 4 6 0 1 1 3 0 0 0 0 0 0 0 0

A

− − −       
       −       =
       
       − − − − − −              

b  

  1 3

2 3

3 7
3

x x
x x

+ =
+ =

.      
1 3

2 3

3

7 3
3

 is free

x x
x x
x

= −
 = −



  

  General solution: 
1 3

2 3 3

3 3

7 3 7 3
3 3 1

0 1

x x
x x x
x x

− −       
       = = − = + −       
              

x , one choice: 
7
3
0

 
 
 
  

. 
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 7. a = 5; the domain of T is R5, because a 6×5 matrix has 5 columns and for Ax to be defined, x must be in 
R5. b = 6; the codomain of T is R6, because Ax is a linear combination of the columns of A, and each 
column of A is in R6. 

 8. A must have 5 rows and 4 columns. For the domain of T to be R4, A must have four columns so that Ax is 
defined for x in R4. For the codomain of T to be R5, the columns of A must have five entries (in which 
case A must have five rows), because Ax is a linear combination of the columns of A. 

 9. Solve Ax = 0. 
1 4 7 5 0 1 4 7 5 0 1 4 7 5 0
0 1 4 3 0 ~ 0 1 4 3 0 ~ 0 1 4 3 0
2 6 6 4 0 0 2 8 6 0 0 0 0 0 0

− − − − − −     
     − − −     
     − − −     

 

  
1 0 9 7 0

~ 0 1 4 3 0
0 0 0 0 0

− 
 − 
  

   
1 3 4

2 3 4

9 7 0
4 3 0

0 0

x x x
x x x

− + =
− + =

=
,  

1 3 4

2 3 4

3

4

9 7
4 3

 is free
 is free

x x x
x x x
x
x

= −
 = −




 

  x = 

1 3 4

2 3 4
3 4

3 3

4 4

9 7 9 7
4 3 4 3

1 0
0 1

x x x
x x x

x x
x x
x x

− −       
       − −       = = +
       
       

             

 

 10. Solve Ax = 0. 

1 3 9 2 0 1 3 9 2 0 1 3 9 2 0
1 0 3 4 0 0 3 6 6 0 0 1 2 3 0

~ ~
0 1 2 3 0 0 1 2 3 0 0 3 6 6 0
2 3 0 5 0 0 9 18 9 0 0 9 18 9 0

     
     − − − −     
     − − −
     −          

 

  

1 3 9 2 0 1 3 9 0 0 1 0 3 0 0
0 1 2 3 0 0 1 2 0 0 0 1 2 0 0

~ ~ ~
0 0 0 3 0 0 0 0 1 0 0 0 0 1 0
0 0 0 18 0 0 0 0 0 0 0 0 0 0 0

     
     
     
     
     −          

 

  
1 3

2 3

4

3 0
2 0

0

x x
x x

x

+ =
+ =

=
     

1 3

2 3

3

4

3
2

 is free
0

x x
x x
x
x

= −
 = −


 =

     

3

3
3

3

3 3
2 2

1
0 0

x
x

x
x

− −   
   − −   = =
   
   
      

x  

 11. Is the system represented by [A   b] consistent? Yes, as the following calculation shows. 

  
1 4 7 5 1 1 4 7 5 1 1 4 7 5 1
0 1 4 3 1 ~ 0 1 4 3 1 ~ 0 1 4 3 1
2 6 6 4 0 0 2 8 6 2 0 0 0 0 0

− − − − − − − − −     
     − − −     
     − − −     

 

  The system is consistent, so b is in the range of the transformation Ax x . 
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 12. Is the system represented by [A   b] consistent? 

  

1 3 9 2 1 1 3 9 2 1 1 3 9 2 1
1 0 3 4 3 0 3 6 6 4 0 1 2 3 1

~ ~
0 1 2 3 1 0 1 2 3 1 0 3 6 6 4
2 3 0 5 4 0 9 18 9 2 0 9 18 9 2

− − −     
     − − − − −     
     − − − − −
     −          

 

  

1 3 9 2 1 1 3 9 2 1
0 1 2 3 1 0 1 2 3 1

~ ~
0 0 0 3 1 0 0 0 3 1
0 0 0 18 11 0 0 0 0 17

− −   
   − −   
   
   −      

  

  The system is inconsistent, so b is not in the range of the transformation Ax x . 

 13.  14. 

  

x2

u

v

T(u)

T(v)

x1

 

x1

x2

u

v

T(v)

T(u)

 
   A reflection through the origin.  A contraction by the factor .5. 

  The transformation in Exercise 13 may also be described as a rotation of π radians about the origin or 
a rotation of –π radians about the origin. 

 15.  16.  

  

x1

x2

u

v T(v)

T(u)

 

x1

x2

u

v

T(u)

T(v)

 
   A projection onto the x2-axis  A reflection through the line x2 = x1. 

 17. T(3u) = 3T(u) = 
2 6

3
1 3

   
=   

   
, T(2v) = 2T(v) = 

1 2
2

3 6
− −   

=   
   

, and  

  T(3u + 2v) = 3T(u) = 2T(v) = 
6 2 4
3 6 9

−     
+ =     

     
. 
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18. Draw a line through w parallel to v, and draw a line through w parallel to u. See the left part of the figure 
below. From this, estimate that w = u + 2v. Since T is linear, T(w) = T(u) + 2T(v). Locate T(u) and 2T(v) 
as in the right part of the figure and form the associated parallelogram to locate T(w).  

  

x1

x2

x1

x2

uw

v2v

T(v)

2T(v)

T(u)

T(w)

 

 19. All we know are the images of e1 and e2 and the fact that T is linear. The key idea is to write 

  x = 1 2
5 1 0

5 3 5 3
3 0 1

.= − = −
−
     
     
     

e e  Then, from the linearity of T, write 

   T(x) = T(5e1 – 3e2) = 5T(e1) – 3T(e2) = 5y1 – 3y2 = 
2 1 13

5 3 .
5 6 7

−
− =

     
     
     

 

  To find the image of 1

2

x
x
 
 
 

, observe that 1
1 2 1 1 2 2

2

1 0
0 1

x
x x x x

x
     

= = + = +     
    

x e e . Then 

   T(x) = T(x1e1 + x2e2) = x1T(e1) + x2T(e2) = 1 2
1 2

1 2

22 1
5 65 6

x x
x x

x x
−−     

+ =      +     
 

 20. Use the basic definition of Ax to construct A. Write 

   [ ] 1
1 1 2 2 1 2

2

2 7 2 7
( ) ,    

5 3 5 3
x

T x x A
x

− −     
= + = = =     − −    

x v v v v x  

 21. a. True. Functions from Rn to Rm are defined before Fig. 2. A linear transformation is a function with 
certain properties. 

b. False. The domain is R5. See the paragraph before Example 1. 
c. False. The range is the set of all linear combinations of the columns of A. See the paragraph before 

Example 1. 
d. False. See the paragraph after the definition of a linear transformation. 
e. True. See the paragraph following the box that contains equation (4). 

 22. a. True. See the paragraph following the definition of a linear transformation. 
b. False. If A is an m×n matrix, the codomain is Rm. See the paragraph before Example 1. 
c. False. The question is an existence question. See the remark about Example 1(d), following the 

solution of Example 1. 
d. True. See the discussion following the definition of a linear transformation. 
e. True. See the paragraph following equation (5). 
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23. 

  

x1

x2

u

cu

T (cu)
T(u)

T(u)

T(u + v)

u + v

x1

x2

T(v)

v
u

 

 24. Given any x in Rn, there are constants c1, …, cp such that x = c1v1 + ··· cpvp, because v1, …, vp span Rn. 
Then, from property (5) of a linear transformation, 

   T(x) = c1T(v1) + ··· + cpT(vp) = c10 + ·· + cp0 = 0 

 25. Any point x on the line through p in the direction of v satisfies the parametric equation  
  x = p + tv for some value of t. By linearity, the image T(x) satisfies the parametric equation  
   T(x) = T(p + tv) = T(p) + tT(v)  (*) 
  If T(v) = 0, then T(x) = T(p) for all values of t, and the image of the original line is just a single point. 

Otherwise, (*) is the parametric equation of a line through T(p) in the direction of T(v). 

 26. Any point x on the plane P satisfies the parametric equation x = su + tv for some values of s and t.  
By linearity, the image T(x) satisfies the parametric equation 

   T(x) = sT(u) + tT(v) (s, t in R)  (*) 
  The set of images is just Span{T(u), T(v)}. If T(u) and T(v) are linearly independent, Span{T(u), T(v)} is 

a plane through T(u), T(v), and 0. If T(u) and T(v) are linearly dependent and not both zero, then 
Span{T(u), T(v)} is a line through 0. If T(u) = T(v) = 0, then Span{T(u), T(v)} is {0}.  

 27. a. From Fig. 7 in the exercises for Section 1.5, the line through T(p) and T(q) is in the direction of q – p, 
and so the equation of the line is x = p + t(q – p) = p + tq – tp = (1 – t)p + tq. 

b. Consider x = (1 – t)p + tq for t such that 0 < t < 1. Then, by linearity of T,  
   T(x) = T((1 – t)p + tq) = (1 – t)T(p) + tT(q)      0 < t < 1  (*) 
  If T(p) and T(q) are distinct, then (*) is the equation for the line segment between T(p) and T(q), as 

shown in part (a) Otherwise, the set of images is just the single point T(p), because 
   (1 – t)T(p) + tT(q) =(1 – t)T(p) + tT(p) = T(p) 

 28. Consider a point x in the parallelogram determined by u and v, say x = au + bv for 0 < a < 1, 0 < b < 1. 
By linearity of T, the image of x is 

   T(x) = T(au + bv) = aT(u) + bT(v), for 0 < a < 1, 0 < b < 1  (*) 
  This image point lies in the parallelogram determined by T(u) and T(v).  
  Special “degenerate” cases arise when T(u) and T(v) are linearly dependent. If one of the images is not 

zero, then the “parallelogram” is actually the line segment from 0 to T(u) + T(v). If both T(u) and T(v) 
are zero, then the parallelogram is just {0}. Another possibility is that even u and v are linearly 
dependent, in which case the original parallelogram is degenerate (either a line segment or the zero 
vector). In this case, the set of images must be degenerate, too. 

 29. a. When b = 0, f (x) = mx. In this case, for all x,y in R and all scalars c and d, 
   f (cx + dy) = m(cx + dy) = mcx + mdy = c(mx) + d(my) = c·f (x) + d·f (y) 
  This shows that f is linear. 
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b. When f (x) = mx + b, with b nonzero, f(0) = m(0) = b = b ≠ 0. This shows that f is not linear, because 
every linear transformation maps the zero vector in its domain into the zero vector in the codomain. 
(In this case, both zero vectors are just the number 0.) Another argument, for instance, would be to 
calculate f (2x) = m(2x) + b and 2f (x) = 2mx + 2b. If b is nonzero, then f (2x) is not equal to 2f (x) and 
so f is not a linear transformation. 

c. In calculus, f is called a “linear function” because the graph of f is a line. 

 30. Let T(x) = Ax + b for x in Rn. If b is not zero, T(0) = A0 + b = b ≠  0. Actually, T fails both properties  
of a linear transformation. For instance, T(2x) = A(2x) + b = 2Ax + b, which is not the same as 2T(x) = 
2(Ax + b) = 2Ax + 2b. Also,  

   T(x + y) = A(x + y) + b = Ax + Ay + b 
  which is not the same as 
   T(x) + T(y) = Ax + b + Ay + b 

 31. (The Study Guide has a more detailed discussion of the proof.) Suppose that {v1, v2, v3} is linearly 
dependent. Then there exist scalars c1, c2, c3, not all zero, such that 

   c1v1 + c2v2 + c3v3 = 0 
  Then T(c1v1 + c2v2 + c3v3) = T(0) = 0. Since T is linear, 
   c1T(v1) + c2T(v2) + c3T(v3) = 0 
  Since not all the weights are zero, {T(v1), T(v2), T(v3)} is a linearly dependent set. 

 32. Take any vector (x1, x2) with x2 ≠  0, and use a negative scalar. For instance, T(0, 1) = (–2, 3), but 
T(–1·(0, 1)) = T(0, –1) = (2, 3) ≠  (–1)·T(0, 1). 

 33. One possibility is to show that T does not map the zero vector into the zero vector, something that every 
linear transformation does do. T(0, 0) = (0, 4, 0). 

 34. Suppose that {u, v} is a linearly independent set in Rn and yet T(u) and T(v) are linearly dependent. Then 
there exist weights c1, c2, not both zero, such that  

  c1T(u) + c2T(v) = 0  
  Because T is linear, T(c1u + c2v) = 0. That is, the vector x = c1u + c2v satisfies T(x) = 0. Furthermore, 

x cannot be the zero vector, since that would mean that a nontrivial linear combination of u and v is zero, 
which is impossible because u and v are linearly independent. Thus, the equation T(x) = 0 has a 
nontrivial solution. 

 35. Take u and v in R3 and let c and d be scalars. Then 
  cu + dv = (cu1 + dv1, cu2 + dv2, cu3 + dv3). The transformation T is linear because 
  T(cu + dv) = (cu1 + dv1, cu2 + dv2, – (cu3 + dv3)) = (cu1 + dv1, cu2 + dv2,  cu3  dv3) 
   = (cu1, cu2,   cu3) + (dv1, dv2,  dv3) = c(u1, u2,     u3) + d(v1, v2,   v3) 
   = cT(u) + dT(v) 

 36. Take u and v in R3 and let c and d be scalars. Then 
  cu + dv = (cu1 + dv1, cu2 + dv2, cu3 + dv3). The transformation T is linear because 
  T(cu + dv) = (cu1 + dv1, 0, cu3 + dv3) = (cu1, 0, cu3) + (dv1, 0, dv3)  
   = c(u1, 0, u3) + d(v1, 0, v3) 
   = cT(u) + dT(v) 



1.8 • Solutions   61 

 

 37. [M] 

4 2 5 5 0 1 0 0 7 / 2 0
9 7 8 0 0 0 1 0 9 / 2 0

~ ,
6 4 5 3 0 0 0 1 0 0
5 3 8 4 0 0 0 0 0 0

− − −   
   − − −   
   −
   − −      

  

1 4

2 4

3

4

(7 / 2)
(9 / 2)
0

 is free

x x
x x
x
x

=
 =
 =


    4

7 / 2
9 / 2

0
1

x

 
 
 =
 
 
 

x  

 38. [M] 

9 4 9 4 0 1 0 0 3/ 4 0
5 8 7 6 0 0 1 0 5/ 4 0

~
7 11 16 9 0 0 0 1 7 / 4 0
9 7 4 5 0 0 0 0 0 0

− − −   
   − −   
   − −
   − −      

,  

1 4

2 4

3 4

4

(3/ 4)
(5/ 4)

(7 / 4)
 is free

x x
x x
x x
x

= −
 = −
 =


    4

3/ 4
5/ 4

7 / 4
1

x

− 
 − =
 
 
  

x  

 39. [M] 

4 2 5 5 7 1 0 0 7 / 2 4
9 7 8 0 5 0 1 0 9 / 2 7

~
6 4 5 3 9 0 0 1 0 1
5 3 8 4 7 0 0 0 0 0

− − −   
   − − −   
   −
   − −      

,  yes, b is in the range of the transformation, 

because the augmented matrix shows a consistent system. In fact, 

  the general solution is 

1 4

2 4

3

4

4 (7 / 2)
7 (9 / 2)
1

 is free

x x
x x
x
x

= +
 = +
 =


; when x4 = 0 a solution is 

4
7
1
0

 
 
 =
 
 
  

x . 

 40. [M] 

9 4 9 4 7 1 0 0 3/ 4 5/ 4
5 8 7 6 7 0 1 0 5/ 4 11/ 4

~
7 11 16 9 13 0 0 1 7 / 4 13/ 4
9 7 4 5 5 0 0 0 0 0

− − − − −   
   − − − −   
   − −
   − − −      

,  yes, b is in the range of the 

transformation, because the augmented matrix shows a consistent system. In fact, 

  the general solution is 

1 4

2 4

3 4

4

5 / 4 (3/ 4)
11/ 4 (5/ 4)

13/ 4 (7 / 4)
 is free

x x
x x
x x
x

= − −
 = − −
 = +


; when x4 = 1 a solution is 

2
4
5
1

− 
 − =
 
 
  

x . 

Notes: At the end of Section 1.8, the Study Guide provides a list of equations, figures, examples,  
and connections with concepts that will strengthen a student’s understanding of linear transformations.  
I encourage my students to continue the construction of review sheets similar to those for “span” and “linear 
independence,” but I refrain from collecting these sheets. At some point the students have to assume the 
responsibility for mastering this material. 

If your students are using MATLAB or another matrix program, you might insert the definition of matrix 
multiplication after this section, and then assign a project that uses random matrices to explore properties of 
matrix multiplication. See Exercises 34–36 in Section 2.1. Meanwhile, in class you can continue with your 
plans for finishing Chapter 1. When you get to Section 2.1, you won’t have much to do. The Study Guide’s 
MATLAB note for Section 2.1 contains the matrix notation students will need for a project on matrix 
multiplication. The appendices in the Study Guide have the corresponding material for Mathematica, Maple, 
and the T-83+/86/89 and HP-48G graphic calculators. 
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1.9 SOLUTIONS 

Notes: This section is optional if you plan to treat linear transformations only lightly, but many instructors 
will want to cover at least Theorem 10 and a few geometric examples. Exercises 15 and 16 illustrate a fast 
way to solve Exercises 17–22 without explicitly computing the images of the standard basis. 

The purpose of introducing one-to-one and onto is to prepare for the term isomorphism (in Section 4.4) 
and to acquaint math majors with these terms. Mastery of these concepts would require a substantial 
digression, and some instructors prefer to omit these topics (and Exercises 25–40). In this case, you can use 
the result of Exercise 31 in Section 1.8 to show that the coordinate mapping from a vector space onto Rn (in 
Section 4.4) preserves linear independence and dependence of sets of vectors. (See Example 6 in Section 4.4.) 
The notions of one-to-one and onto appear in the Invertible Matrix Theorem (Section 2.3), but can be omitted 
there if desired 

Exercises 25–28 and 31–36 offer fairly easy writing practice. Exercises 31, 32, and 35 provide important 
links to earlier material. 

 1. A = [T(e1)   T(e2)] = 

3 5
1 2
3 0
1 0

− 
 
 
 
 
  

 

 2. A = [T(e1)   T(e2)   T(e3)] = 
1 4 5
3 7 4

− 
 − 

 

 3. T(e1) = –e2, T(e2) = e1. A = [ ]2 1
0 1
1 0

− =
 
 − 

e e    

 4. T(e1) = 
1/ 2

1/ 2

 
 
−  

, T(e2) = 
1/ 2

1/ 2

 
 
  

, A = 
1/ 2 1/ 2

1/ 2 1/ 2

 
 
−  

 

 5. T(e1) = e1 – 2e2 = 
1
2

 
 − 

, T(e2) = e2, A = 
1 0
2 1

 
 − 

 

 6. T(e1) = e1, T(e2) = e2 + 3e1 = 
3
1
 
 
 

, A = 
1 3
0 1
 
 
 

 

 7. Follow what happens to e1 and e2. Since e1 is on the unit 
circle in the plane, it rotates through –3 /4π  radians into a 
point on the unit circle that lies in the third quadrant and 
on the line 2 1x x=  (that is, y x=  in more familiar notation). 
The point (–1,–1) is on the ine 2 1x x= , but its distance 
from the origin is 2.  So the rotational image of e1 is 
(–1/ 2, –1/ 2) . Then this image reflects in the horizontal 
axis to (–1/ 2,1/ 2) . 

  Similarly, e2 rotates into a point on the unit circle that lies in 
the second quadrant and on the line 2 1x x= , namely, 
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(–1/ 2, –1/ 2) . Then this image reflects in the horizontal 
axis to (–1/ 2,1/ 2) . 

  When the two calculations described above are written in vertical vector notation, the transformation’s 
standard matrix [T(e1)   T(e2)] is easily seen: 

  1 2
1/ 2 1/ 2 1/ 2 1/ 2

,
1/ 2 1/ 2 1/ 2 1/ 2

       − −
→ → → →       

− −              
e e ,  

1/ 2 1/ 2

1/ 2 1/ 2
A

 −
=  
  

 

 8. [ ]1 1 2 2 2 1 2 1
0 1

 and ,  so 
1 0

A
− 

→ → → − → − = − =  
 

e e e e e e e e  

 9. The horizontal shear maps e1 into e1, and then the reflection in the line x2 = –x1 maps e1 into –e2.   
(See Table 1.) The horizontal shear maps e2 into e2 into e2 – 2e1. To find the image of e2 – 2e1 when it is 
reflected in the line x2 = –x1, use the fact that such a reflection is a linear transformation. So, the image of 
e2 – 2e1 is the same linear combination of the images of e2 and e1, namely, –e1 – 2(–e2) = – e1 + 2e2. 
To summarize, 

  1 1 2 2 2 1 1 2
0 1

  and 2 2 ,  so 
1 2

A
− 

→ → − → − → − + =  − 
e e e e e e e e  

  To find the image of e2 – 2e1 when it is reflected through the vertical axis use the fact that such a 
reflection is a linear transformation. So, the image of e2 – 2e1 is the same linear combination of the 
images of e2 and e1, namely, e2 + 2e1. 

10. 1 1 2 2 2 1 ,
0 1

 and   so
1 0

A→ → → →
− 

− − − =  − 
e e e e e e  

11. The transformation T described maps 1 1 1→ → −e e e  and maps 2 2 2.→ − → −e e e  A rotation through 
π radians also maps e1 into –e1 and maps e2 into –e2. Since a linear transformation is completely 
determined by what it does to the columns of the identity matrix, the rotation transformation has the 
same effect as T on every vector in 2.R  

12. The transformation T in Exercise 8 maps 1 1 2→ →e e e  and maps 2 2 1→ − → −e e e . A rotation about the 
origin through / 2π  radians also maps e1 into e2 and maps e2 into –e1. Since a linear transformation is 
completely determined by what it does to the columns of the identity matrix, the rotation transformation 
has the same effect as T on every vector in 2.R  

13. Since (2, 1) = 2e1 + e2, the image of (2, 1) under T is 2T(e1) + T(e2), by linearity of T. On the figure in the 
exercise, locate 2T(e1) and use it with T(e2) to form the parallelogram shown below.  

 
x1

x2

T(e2)
2T(e1)

T(e1)

T(2, 1)
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14. Since T(x) = Ax = [a1   a2]x = x1a1 + x2a2 = –a1 + 3a2, when x = (–1, 3), the image of x is located by 
forming the parallelogram shown below. 

  

x1

x2

T(–1, 3)

a2

a1

–a1

 

15. By inspection, 
1 1 3

2 1

3 1 2 3

3 0 2 3 2
4 0 0 4
1 1 1

x x x
x x
x x x x

− −     
     =     
     − − +     

 

16. By inspection, 
1 2

1
1 2

2
1

1 1
2 1 2
1 0

x x
x

x x
x

x

− −   
    − = − +           

 

17. To express T(x) as Ax , write T(x) and x as column vectors, and then fill in the entries in A by inspection, 
as done in Exercises 15 and 16. Note that since T(x) and x have four entries, A must be a 4×4 matrix. 

  T(x) = 

1 1

1 2 2 2

2 3 3 3

3 4 4 4

0 0 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

x x
x x x x

A
x x x x
x x x x

        
        +        = =
        +
        +                

 

18. As in Exercise 17, write T(x) and x as column vectors. Since x has 2 entries, A has 2 columns. Since T(x) 
has 4 entries, A has 4 rows. 

  

2 1

1 2 1 1

2 2

2

2 3 3 2
4 1 4

0 0 0
0 1

x x
x x x x

A
x x

x

− −     
     − −        = =           
     

         

 

19. Since T(x) has 2 entries, A has 2 rows. Since x has 3 entries, A has 3 columns. 

  
1 1

1 2 3
2 2

2 3
3 3

5 4 1 5 4
6 0 1 6

x x
x x x

A x x
x x

x x

   
− + −        = =        − −           

 

20. Since T(x) has 1 entry, A has 1 row. Since x has 4 entries, A has 4 columns. 

  

1 1

2 2
1 3 4

3 3

4 4

[2 3 4 ] [ ] [2 0 3 4]

x x
x x

x x x A
x x
x x

   
   
   + − = = −
   
   
      
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21. T(x) = 1 2 1 1

1 2 2 2

1 1
4 5 4 5

x x x x
A

x x x x
+        

= =        +         
. To solve T(x) = 

3
8
 
 
 

, row reduce the augmented matrix: 

1 1 3 1 1 3 1 0 7 7
~ ~ ,

4 5 8 0 1 4 0 1 4 4
       

=       − − −       
x . 

22. T(x) = 
1 2

1 1
1 2

2 2
1 2

2 1 2
3 1 3

3 2 3 2

x x
x x

x x A
x x

x x

− −     
        − + = = −                − −     

. To solve T(x) = 
1
4
9

− 
 
 
  

, row reduce the augmented 

matrix:  

  
1 2 1 1 2 1 1 2 1 1 0 5
1 3 4 ~ 0 1 3 ~ 0 1 3 ~ 0 1 3
3 2 9 0 4 12 0 0 0 0 0 0

− − − − − −       
       −       
       −       

,  
5

.
3
 

=  
 

x  

23. a. True. See Theorem 10. 
b. True. See Example 3. 
c. False. See the paragraph before Table 1. 
d. False. See the definition of onto. Any function from Rn to Rm maps each vector onto another vector. 
e. False. See Example 5. 

24.  a. False. See the paragraph preceding Example 2. 
b. True. See Theorem 10. 
c. True. See Table 1. 
d. False. See the definition of one-to-one. Any function from Rn to Rm maps a vector onto a single 

(unique) vector. 
e. True. See the solution of Example 5. 

25. Three row interchanges on the standard matrix A of the transformation T in Exercise 17 produce 
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 0

 
 
 
 
 
  

. This matrix shows that A has only three pivot positions, so the equation Ax = 0 has a 

nontrivial solution. By Theorem 11, the transformation T is not one-to-one. Also, since A does not have a 
pivot in each row, the columns of A do not span R4. By Theorem 12, T does not map R4 onto R4. 

26. The standard matrix A of the transformation T in Exercise 2 is 2×3. Its columns are linearly dependent 
because A has more columns than rows. So T is not one-to-one, by Theorem 12. Also, A is row 

equivalent to 
1 4 5
0 19 19

− 
 − 

, which shows that the rows of A span R2. By Theorem 12, T maps R3 

onto R2. 

27. The standard matrix A of the transformation T in Exercise 19 is 
1 5 4
0 1 6

− 
 − 

. The columns of A are 

linearly dependent because A has more columns than rows. So T is not one-to-one, by Theorem 12. Also, 
A has a pivot in each row, so the rows of A span R2. By Theorem 12, T maps R3 onto R2. 
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28. The standard matrix A of the transformation T in Exercise 14 has linearly independent columns, because 
the figure in that exercise shows that a1 and a2 are not multiples. So T is one-to-one, by Theorem 12. 
Also, A must have a pivot in each column because the equation Ax = 0 has no free variables. Thus, the 

echelon form of A is 
*

0
. 

 
 

 Since A has a pivot in each row, the columns of A span R2. So T maps R2 

onto R2. An alternate argument for the second part is to observe directly from the figure in Exercise 14 
that a1 and a2 span R2. This is more or less evident, based on experience with grids such as those in 
Figure 8 and Exercise 7 of Section 1.3. 

29. By Theorem 12, the columns of the standard matrix A must be linearly independent and hence the 

equation Ax = 0 has no free variables. So each column of A must be a pivot column: 

* *
0 *

~ .
0 0
0 0 0

A

 
 
 
 
 
  

 

Note that T cannot be onto because of the shape of A. 

30. By Theorem 12, the columns of the standard matrix A must span R3. By Theorem 4, the matrix must 

have a pivot in each row. There are four possibilities for the echelon form: 

  
* * * * * * * * * 0 * *

0 * * , 0 * * , 0 0 * , 0 0 *
0 0 * 0 0 0 0 0 0 0 0 0

       
       
       
              

 

  Note that T cannot be one-to-one because of the shape of A. 

31. “T is one-to-one if and only if A has n pivot columns.” By Theorem 12(b), T is one-to-one if and only if 
the columns of A are linearly independent. And from the statement in Exercise 30 in Section 1.7, the 
columns of A are linearly independent if and only if A has n pivot columns. 

32. The transformation T maps Rn onto Rm if and only if the columns of A span Rm, by Theorem 12. This 
happens if and only if A has a pivot position in each row, by Theorem 4 in Section 1.4. Since A has  
m rows, this happens if and only if A has m pivot columns. Thus, “T maps Rn onto Rm if and only A has 
m pivot columns.” 

33. Define : n mT →R R  by T(x) = Bx for some m×n matrix B, and let A be the standard matrix for T.  
By definition, A = [T(e1)   ⋅ ⋅ ⋅   T(en)], where ej is the jth column of In. However, by matrix-vector 
multiplication, T(ej) = Bej = bj, the jth column of B. So A = [b1   ⋅ ⋅ ⋅   bn] = B. 

34. The transformation T maps Rn onto Rm if and only if for each y in Rm there exists an x in Rn such that  
y = T(x). 

35. If : n mT →R R  maps nR  onto mR , then its standard matrix A has a pivot in each row, by Theorem 12 
and by Theorem 4 in Section 1.4. So A must have at least as many columns as rows. That is, m < n. When 
T is one-to-one, A must have a pivot in each column, by Theorem 12, so m > n. 

36. Take u and v in Rp and let c and d be scalars. Then 
  T(S(cu + dv)) = T(c⋅S(u) + d⋅S(v)) because S is linear 
     = c⋅T(S(u)) + d⋅T(S(v)) because T is linear 
  This calculation shows that the mapping x →  T(S(x)) is linear. See equation (4) in Section 1.8. 
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37. [M]  

5 10 5 4 1 0 0 44 / 35 1 0 0 1.2571
8 3 4 7 0 1 0 79 / 35 0 1 0 2.2571

~ ~ ~
4 9 5 3 0 0 1 86 / 35 0 0 1 2.4571
3 2 5 4 0 0 0 0 0 0 0 0

− −     
     −     ⋅ ⋅ ⋅
     − −
     − −          

. There is no pivot in the 

fourth column of the standard matrix A, so the equation Ax = 0 has a nontrivial solution. By Theorem 11, 
the transformation T is not one-to-one. (For a shorter argument, use the result of Exercise 31.) 

38. [M]  

7 5 4 9 1 0 7 0
10 6 16 4 0 1 9 0

~ ~
12 8 12 7 0 0 0 1

8 6 2 5 0 0 0 0

−   
   − −   ⋅ ⋅ ⋅
   
   − − −      

. No. There is no pivot in the third column of the 

standard matrix A, so the equation Ax = 0 has a nontrivial solution. By Theorem 11, the transformation T 
is not one-to-one. (For a shorter argument, use the result of Exercise 31.) 

39. [M]  

4 7 3 7 5 1 0 0 5 0
6 8 5 12 8 0 1 0 1 0

~ ~7 10 8 9 14 0 0 1 2 0
3 5 4 2 6 0 0 0 0 1
5 6 6 7 3 0 0 0 0 0

−   
   − −   
   ⋅ ⋅ ⋅− − − −
   − −   
   − − −   

. There is not a pivot in every row, so 

the columns of the standard matrix do not span R5. By Theorem 12, the transformation T does not map 
R5 onto R5. 

40. [M]  

9 13 5 6 1 1 0 0 0 5
14 15 7 6 4 0 1 0 0 4

~ ~8 9 12 5 9 0 0 1 0 0
5 6 8 9 8 0 0 0 1 1

13 14 15 2 11 0 0 0 0 0

−   
   − − −   
   ⋅ ⋅ ⋅− − − −
   − − −   
      

. There is not a pivot in every row, so 

the columns of the standard matrix do not span R5. By Theorem 12, the transformation T does not map 
R5 onto R5. 

1.10 SOLUTIONS 

 1. a. If x1 is the number of servings of Cheerios and x2 is the number of servings of 100% Natural Cereal, 
then x1 and x2 should satisfy  

  1 2

nutrients nutrients quantities
per serving per serving of of  nutrients
of Cheerios 100% Natural required

x x
     

+ =     
          

 

  That is, 

  1 2

110 130 295
4 3 9

20 18 48
2 5 8

x x

     
     
     + =
     
     
          
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b. The equivalent matrix equation is 1

2

110 130 295
4 3 9

20 18 48
2 5 8

x
x

   
       =     
   
      

. To solve this, row reduce the augmented 

matrix for this equation. 

  

110 130 295 2 5 8 1 2.5 4
4 3 9 4 3 9 4 3 9

~ ~
20 18 48 20 18 48 10 9 24

2 5 8 110 130 295 110 130 295

     
     
     
     
     
          

 

  

1 2.5 4 1 2.5 4 1 0 1.5
0 7 7 0 1 1 0 1 1

~ ~ ~
0 16 16 0 0 0 0 0 0
0 145 145 0 0 0 0 0 0

     
     − −     
     − −
     − −          

 

  The desired nutrients are provided by 1.5 servings of Cheerios together with 1 serving of 100% 
Natural Cereal. 

 2. Set up nutrient vectors for one serving of Kellogg’s Cracklin’ Oat Bran (COB) and Kellogg's Crispix 
(Crp): 

  

Nutrients: COB Crp

calories 110 110
protein 3 2
carbohydrate 21 25
fat 3 .4

   
   
   
   
   
   

.  

a. Let [ ]

110 110
3 2 3

COB    Crp ,
21 25 2
3 .4

B

 
    = = =     
 
  

u . 

  Then Bu lists the amounts of calories, protein, carbohydrate, and fat in a mixture of three servings of 
Cracklin' Oat Bran and two servings of Crispix. 

b. Let u1 and u2 be the number of servings of Cracklin’ Oat Bran and Crispix, respectively. Can these 

numbers satisfy the equation 1

2

110
2.25
24
1

B
u
u

 
    =    
 
  

? To find out, row reduce the augmented matrix 

  

110 110 110 1 1 1 1 1 1 1 1 1
3 2 2.25 3 2 2.25 0 1 .75 0 1 .75

~ ~ ~
21 25 24 21 25 24 0 4 3 0 0 0
3 .4 1 3 .4 1 0 2.6 2 0 0 .05

       
       − − − −       
       
       − − −              
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  The last row identifies an inconsistent system, because 0 = –.05 is impossible. So, technically, there is 
no mixture of the two cereals that will supply exactly the desired list of nutrients. However, one could 
tentatively ignore the final equation and see what the other equations prescribe. They reduce 
to u1 = .25 and u2 = .75. What does the corresponding mixture provide? 

  COB  +  Crp  =

110 110 110
3 2 2.25

.25 .75  .25 .75
21 25 24
3 .4 1.05

     
     
     ⋅ ⋅ + =
     
     
          

 

  The error of 5% for fat might be acceptable for practical purposes. Actually, the data in COB and Crp 
are certainly not precise and may have some errors even greater than 5%. 

 3. Here are the data, assembled from Table 1 and Exercise 3: 

   

Mg of Nutrients/Unit Nutrients
Requiredsoy soyNutrient (milligrams)milk flour whey prot.

protein 36 51 13 80 33
carboh. 52 34 74 0 45
fat 0 7 1.1 3.4 3
calcium 1.26 .19 .8 .18 .8

 

a. Let x1, x2, x3, x4 represent the number of units of nonfat milk, soy flour, whey, and isolated soy 
protein, respectively. These amounts must satisfy the following matrix equation 

  

1

2

3

4

36 51 13 80 33
52 34 74 0 45
0 7 1.1 3.4 3

1.26 .19 .8 .18 .8

x
x
x
x

    
    
    =
    
    

        

 

b. [M]  

36 51 13 80 33 0 0 0 .641
52 34 74 0 45 0 0 0 .541~ ~
0 7 1.1 3.4 3 0 0 0 .091

1.26 .19 .8 .18 .8 0 0 0 .211

   
   
   ⋅ ⋅ ⋅
   −
   
   −   

 

  The “solution” is x1 = .64, x2 = .54, x3 = –.09, x4 = –.21. This solution is not feasible, because the 
mixture cannot include negative amounts of whey and isolated soy protein. Although the coefficients 
of these two ingredients are fairly small, they cannot be ignored. The mixture of .64 units of nonfat 
milk and .54 units of soy flour provide 50.6 g of protein, 51.6 g of carbohydrate, 3.8 g of fat, and .9 g 
of calcium. Some of these nutrients are nowhere close to the desired amounts. 

 4. Let x1, x2, and x3 be the number of units of foods 1, 2, and 3, respectively, needed for a meal. The values 
of x1, x2, and x3 should satisfy 

   1 2 3

nutrients nutrients nutrients milligrams(in mg) (in mg) (in mg) of  nutrientsper unit per unit per unit requiredof Food 1 of Food 2 of Food 3
x x x
            + + =                    
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  From the given data, 

   1 2 3

10 20 20 100

50 40 10 300

30 10 40 200

x x x
       
       + + =       
              

 

  To solve, row reduce the corresponding augmented matrix: 

   
10 20 20 100 10 20 20 100 1 2 2 10
50 40 10 300 ~ 0 60 90 200 ~ 0 1 3/ 2 10 / 3
30 10 40 200 0 50 20 100 0 5 2 10

     
     − − −     
     − − −     

 

   
1 2 2 10 1 2 0 250 / 33 1 0 0 50 /11

~ 0 1 3/ 2 10 / 3 ~ 0 1 0 50 / 33 ~ 0 1 0 50 / 33
0 0 1 40 / 33 0 0 1 40 / 33 0 0 1 40 /33

     
     
     
          

 

   
50 /11 4.55 units of Food 1
50 / 33 1.52 units of Food 2
40 / 33 1.21 units of Food 3

     
     = = =     
          

x  

 5. Loop 1: The resistance vector is 

  

1

2 2
1

3

4

Total of four RI voltage drops for current 5
Voltage drop for  is negative;  flows in opposite direction2
Current  does not flow in loop 10
Current  does not flow in loop 10

I
I I

I
I

 
 
− =
 
 
 

r  

  Loop 2: The resistance vector is  

  
1 1

2
2

3 3

2 Voltage drop for  is negative;  flows in opposite direction
11 Total of four RI voltage drops for current 

Voltage drop for  is negative;  flows in opposite direction3
Current0

I I
I

I I

 −
 
 =
 −
 
 

r

4
  does not flow in loop 2I

 

  Also, r3 = 

0
3

17
4

 
 − 
 
 −  

, r4 = 

0
0
4

25

 
 
 
 −
 
  

, and R = [r1   r2   r3   r4] = 

5 0 02
3 02 11

0 3 17 4
0 0 254

 −
 

−− 
 − −
 
 − 

. 

  Notice that each off-diagonal entry of R is negative (or zero). This happens because the loop current 
directions are all chosen in the same direction on the figure. (For each loop j, this choice forces the 
currents in other loops adjacent to loop j to flow in the direction opposite to current Ij.) 

  Next, set v = 

40
30
20
10

 
 
− 
 
 
 − 

. The voltages in loops 2 and 4 are negative because the battery orientation in each 

loop is opposite to the direction chosen for positive current flow. Thus, the equation Ri = v becomes 
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1

2

3

4

5 0 0 402
3 0 302 11

0 3 17 204
0 0 25 104

I
I
I
I

    −
    

− −−     =
    − −
    

     −−    

.    [M]: The solution is i = 

1

2

3

4

7.56
1.10

.93

.25

I
I
I
I

   
   

−   =
   
   

   −  

. 

 6. Loop 1: The resistance vector is 

  
1

2 2
1

3

4

4 Total of four RI voltage drops for current 
1 Voltage drop for  is negative;  flows in opposite direction
0 Current  does not flow in loop 1
0 Current  does not flow in loop 1

I
I I

I
I

 
 
− =
 
 
 

r  

  Loop 2: The resistance vector is  

  
1 1

2
2

3 3

1 Voltage drop for  is negative;  flows in opposite direction
6 Total of four RI voltage drops for current 
2 Voltage drop for  is negative;  flows in opposite direction

Current 0

I I
I

I I

 −
 
 =
 −
 
 

r

4
 does not flow in loop 2I

 

  Also, r3 =

0
2

10
3

 
 − 
 
 −  

, r4 =

0
0
3

12

 
 
 
 −
 
  

, and R = [r1   r2   r3   r4]. Set v = 

40
30
20
10

 
 
 
 
 
  

. Then Ri = v becomes 

  

1

2

3

4

4 1 0 0 40
1 6 2 0 30
0 2 10 3 20
0 0 3 12 10

I
I
I
I

−     
    − −     =
    − −
    −        

.  [M]: The solution is i =

1

2

3

4

12.11
8.44
4.26
1.90

I
I
I
I

   
   
   =
   
   

     

. 

 7. Loop 1: The resistance vector is 

  
1

2 2
1

3

44

12 Total of three RI voltage drops for current 
7 Voltage drop for  is negative;  flows in opposite direction
0 Current  does not flow in loop 1

Voltage drop for  is negative; 4

I
I I

I
I I

 
 
− =
 
 
− 

r

flows in opposite direction

 

  Loop 2: The resistance vector is  

  

11

2
2

3 3

Voltage drop for  is negative;  flows in opposite direction7
15 Total of three RI voltage drops for current 
6 Voltage drop for  is negative;  flows in opposite direction
0 Curren

I I
I

I I

 −
 
 =
 −
 
 

r

4
t  does not flow in loop 2I
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  Also, r3 = 

0
6

14
5

 
 − 
 
 −  

, r4 = 

4
0
5

13

− 
 
 
 −
 
  

, and R = [r1   r2   r3   r4] = 

12 7 0 4
7 15 6 0
0 6 14 5
4 0 5 13

− − 
 − − 
 − −
 − −  

. 

  Notice that each off-diagonal entry of R is negative (or zero). This happens because the loop current 
directions are all chosen in the same direction on the figure. (For each loop j, this choice forces the 
currents in other loops adjacent to loop j to flow in the direction opposite to current Ij.) 

  Next, set v 

40
30
20
10

 
 
 =
 
 −  

. Note the negative voltage in loop 4. The current direction chosen in loop 4 is 

opposed by the orientation of the voltage source in that loop. Thus Ri = v becomes 

  

1

2

3

4

12 7 0 4 40
7 15 6 0 30
0 6 14 5 20
4 0 5 13 10

I
I
I
I

− −     
    − −     =
    − −
    − − −        

. [M]: The solution is i =

1

2

3

4

11.43
10.55
8.04
5.84

I
I
I
I

   
   
   =
   
   

     

. 

 8. Loop 1: The resistance vector is 

  

1

2 2

1 3

4

Total of four RI voltage drops for current 15
5 Voltage drop for  is negative;  flows in opposite direction
0 Current  does not flow in loop 1
5 Voltage drop for  is negativ
1

I
I I

I
I

 
 
− 
 =
 
− 
 − 

r

4

5 5

e;  flows in opposite direction
Voltage drop for  is negative;  flows in opposite direction

I
I I

 

  Loop 2: The resistance vector is  

  

1 1

2

2
3 3

5 Voltage drop for  is negative; flows in opposite direction
15 Total of four RI voltage drops for current 

5 Voltage drop for  is negative;  flows in opposite direction
0 Cu
2

I I
I

I I

 −
 
 
 = −
 
 
 − 

r

4

5 5

rrent  does not flow in loop 2
Voltage drop for  is negative;  flows in opposite direction

I
I I

 

  Also, r3 = 

0
5

15
5
3

 
 − 
 
 − 
 − 

, r4 = 

5
0
5

15
4

− 
 
 
 −
 
 
 − 

, r5 = 

1
2
3
4

10

− 
 − 
 −
 − 
  

, and R = 

15 5 0 5 1
5 15 5 0 2
0 5 15 5 3
5 0 5 15 4
1 2 3 4 10

− − − 
 − − − 
 − − −
 − − − 
 − − − − 

. Set v = 

40
30
20
10

0

 
 − 
 
 − 
  

. Note the 

negative voltages for loops where the chosen current direction is opposed by the orientation of the 
voltage source in that loop. Thus Ri = v becomes: 
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1

2

3

4

5

15 5 0 5 1 40
5 15 5 0 2 30
0 5 15 5 3 20
5 0 5 15 4 10
1 2 3 4 10 0

I
I
I
I
I

− − −     
    − − − −    
    =− − −
    − − − −    
    − − − −    

.   [M]  The solution is 

1

2

3

4

5

3.37
.11

2.27
1.67
1.70

I
I
I
I
I

   
   
   
   =
   
   
     

. 

 9. The population movement problems in this section assume that the total population is constant, with no 
migration or immigration. The statement that “about 5% of the city’s population moves to the suburbs” 
means also that the rest of the city’s population (95%) remain in the city. This determines the entries in 
the first column of the migration matrix (which concerns movement from the city). 

   
From:

City Suburbs To:
.95 City
.05 Suburbs
 
 
 

 

  Likewise, if 4% of the suburban population moves to the city, then the other 96% remain in the suburbs. 

This determines the second column of the migration matrix:, M = 
.95 .04
.05 .96
 
 
 

. The difference equation is 

xk+1 = Mxk  for k = 0, 1, 2, …. Also, x0 = 
600,000
400,000
 
 
 

 

  The population in 2001 (when k = 1) is x1 = Mx0 = 
.95 .04 600,000 586,000
.05 .96 400,000 414,000
     

=     
     

 

  The population in 2002 (when k = 2) is x2 = Mx1 = 
.95 .04 586,000 573,260
.05 .96 414,000 426,740
     

=     
     

 

 10. The data in the first sentence implies that the migration matrix has the form: 

   
From:

City Suburbs To:
.03 City

.07 Suburbs
 
 
 

 

  The remaining entries are determined by the fact that the numbers in each column must sum to 1. (For 
instance, if 7% of the city people move to the suburbs, then the rest, or 93%, remain in the city.) So the 

migration matrix is M = 
.93 .03
.07 .97
 
 
 

. The initial population is x0 = 
800,000
500,000
 
 
 

. 

  The population in 2001 (when k = 1) is x1 = Mx0 = 
.93 .03 800,000 759,000
.07 .97 500,000 541,000
     

=     
     

 

  The population in 2002 (when k = 2) is x2 = Mx1 = 
.93 .03 759,000 722,100
.07 .97 541,000 577,900
     

=     
     

 

 11. The problem concerns two groups of people–those living in California and those living outside California 
(and in the United States). It is reasonable, but not essential, to consider the people living inside 
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California first. That is, the first entry in a column or row of a vector will concern the people living in 
California. With this choice, the migration matrix has the form: 

   
From:

Calif. Outside To:
Calif.
Outside

 
 
 

 

a. For the first column of the migration matrix M, compute 

  
{ }

{ }

Calif. persons
who moved 509,500 .017146

Total Calif. pop. 29,726,000
= =  

  The other entry in the first column is 1 – .017146 = .982854. The exercise requests that 5 decimal 
places be used. So this number should be rounded to .98285. Whatever number of decimal places 
is used, it is important that the two entries sum to 1. So, for the first fraction, use .01715. 

  For the second column of M, compute 
{ }

{ }

outside persons
who moved 564,100 .00258

Total outside pop. 218,994,000
= = . The other entry 

is 1 – .00258 = .99742. Thus, the migration matrix is 

  
From:

Calif. Outside To:
.98285 .00258 Calif.
.01715 .99742 Outside
 
 
 

 

b. [M] The initial vector is x0 = (29.716, 218.994), with data in millions of persons. Since x0 describes 
the population in 1990, and x1 describes the population in 1991, the vector x10 describes the projected 
population for the year 2000, assuming that the migration rates remain constant and there are no 
deaths, births, or migration. Here are some of the vectors in the calculation, with only the first 4 or 5 
figures displayed. Numbers are in millions of persons: 

  
29.7 29.8 29.8 30.1 30.18 30.223

, , , , , ,
219.0 218.9 218.9 218.6 218.53 218.487
           

⋅ ⋅ ⋅           
           

= x10. 

 12. Set M = 0

.97 .05 .10 305

.00 .90 .05   and  48

.03 .05 .85 98

   
   =   
      

x . Then x1 = 
.97 .05 .10 305 308
.00 .90 .05 48 48
.03 .05 .85 98 95

     
     ≈     
          

, and 

x2 = 
.97 .05 .10 308 311
.00 .90 .05 48 48
.03 .05 .85 95 92

     
     ≈     
          

. The entries in x2 give the approximate distribution of cars on 

Wednesday, two days after Monday. 

 13. [M] The order of entries in a column of a migration matrix must match the order of the columns. For 
instance, if the first column concerns the population in the city, then the first entry in each column must 
be the fraction of the population that moves to (or remains in) the city. In this case, the data in the 

exercise leads to M = 
.95 .03
.05 .97
 
 
 

 and x0 = 
600,000
400,000
 
 
 

 



1.10 • Solutions   75 

 

a. Some of the population vectors are 

  5 10 15 20
523,293 472,737 439,417 417,456

, , ,
476,707 527,263 560,583 582,544
       

= = = =       
       

x x x x  

  The data here shows that the city population is declining and the suburban population is increasing, 
but the changes in population each year seem to grow smaller. 

b. When x0 = 
350,000
650,000
 
 
 

, the situation is different. Now 

  5 10 15 20
358,523 364,140 367,843 370,283

, , ,
641,477 635,860 632,157 629,717
       

= = = =       
       

x x x x  

  The city population is increasing slowly and the suburban population is decreasing. No other 
conclusions are expected. (This example will be analyzed in greater detail later in the text.)  

 14. Here are Figs. (a) and (b) for Exercise 13, followed by the figure for Exercise 34 in Section 1.1: 

   

10˚

10˚

40˚

40˚

20˚ 20˚

30˚ 30˚

1 2

4 3

0˚

0˚

0˚

0˚

20˚ 20˚

20˚ 20˚

1 2

4 3

10˚

10˚

40˚

40˚

0˚ 0˚

10˚ 10˚

1 2

4 3

(b) Section 1.1(a)  

  For Fig. (a), the equations are: 

   

1 2 4

2 1 3

3 4 2

4 1 3

4 0 20
4 20 0
4 0 20
4 0 20

T T T
T T T
T T T
T T T

= + + +
= + + +
= + + +
= + + +

 

  To solve the system, rearrange the equations and row reduce the augmented matrix. Interchanging rows 1 
and 4 speeds up the calculations. The first five steps are shown in detail. 

  

4 1 0 1 20 1 0 1 4 20 1 0 1 4 20 1 0 1 4 20

1 4 1 0 20 1 4 1 0 20 0 4 0 4 0 0 1 0 1 0
~ ~ ~

0 1 4 1 20 0 1 4 1 20 0 1 4 1 20 0 1 4 1 20

1 0 1 4 20 4 1 0 1 20 0 1 4 15 100 0 1 4 15 100

− − − − − − − −

− − − − − −

− − − − − − − −

− − − − − − − −

       
       
       
       
              

 

  

1 0 1 4 20 1 0 1 4 20 1 0 0 0 10

0 1 0 1 0 0 1 0 1 0 0 1 0 0 10
~ ~ ~

0 0 4 2 20 0 0 4 2 20 0 0 1 0 10

0 0 4 14 100 0 0 0 12 120 0 0 0 1 10

~

− − − −

− −
⋅ ⋅ ⋅

− −

−

     
     
     
     
          
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  For Fig (b), the equations are 

  

1 2 4

2 1 3

3 4 2

4 1 3

4 10 0
4 0 40
4 40 10
4 10 10

T T T
T T T
T T T
T T T

= + + +
= + + +
= + + +
= + + +

 

  Rearrange the equations and row reduce the augmented matrix: 

  

4 1 0 1 10 1 0 0 0 10

1 4 1 0 40 0 1 0 0 17.5

0 1 4 1 50 0 0 1 0 20

1 0 1 4 20 0 0 0 1 12.5

~ ~

− −

− −

− −

− −

   
   
   ⋅ ⋅ ⋅
   
   
   

 

a. Here are the solution temperatures for the three problems studied: 
   Fig. (a) in Exercise 14 of Section 1.10: (10,  10,  10,  10) 
   Fig. (b) in Exercise 14 of Section 1.10: (10, 17.5, 20, 12.5) 
   Figure for Exercises 34 in Section 1.1 (20, 27.5, 30, 22.5) 
  When the solutions are arranged this way, it is evident that the third solution is the sum of the first 

two solutions. What might not be so evident is that list of boundary temperatures of the third problem 
is the sum of the lists of boundary temperatures of the first two problems. (The temperatures are listed 
clockwise, starting at the left of T1.) 

   Fig. (a):   (  0, 20, 20,   0,   0, 20, 20,   0) 
   Fig. (b):  (10,   0,   0, 40, 40, 10, 10, 10) 
   Fig. from Section 1.1: (10, 20, 20, 40, 40, 30, 30, 10) 
b. When the boundary temperatures in Fig. (a) are multiplied by 3, the new interior temperatures are 

also multiplied by 3. 
c. The correspondence from the list of eight boundary temperatures to the list of four interior temper-

atures is a linear transformation. A verification of this statement is not expected. However, it can be 
shown that the solutions of the steady-state temperature problem here satisfy a superposition 
principle. The system of equations that approximate the interior temperatures can be written in the 
form Ax = b, where A is determined by the arrangement of the four interior points on the plate and b 
is a vector in R4 determined by the boundary temperatures.  

Note: The MATLAB box in the Study Guide for Section 1.10 discusses scientific notation and shows how 
to generate a matrix whose columns list the vectors x0, x1, x2, …, determined by an equation xk+1 = Mxk for 
k = 0 , 1, ….   

Chapter 1 SUPPLEMENTARY EXERCISES 

 1. a. False. (The word “reduced” is missing.) Counterexample: 

  
1 2 1 2 1 2

, ,
3 4 0 2 0 1

A B C
     

= = =     −     
 

  The matrix A is row equivalent to matrices B and C, both in echelon form. 
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b. False. Counterexample: Let A be any n×n matrix with fewer than n pivot columns. Then the equation 
Ax = 0 has infinitely many solutions. (Theorem 2 in Section 1.2 says that a system has either zero, 
one, or infinitely many solutions, but it does not say that a system with infinitely many solutions 
exists. Some counterexample is needed.) 

c. True. If a linear system has more than one solution, it is a consistent system and has a free variable. 
By the Existence and Uniqueness Theorem in Section 1.2, the system has infinitely many solutions. 

d. False. Counterexample: The following system has no free variables and no solution: 

  
1 2

2

1 2

1
5
2

x x
x

x x

+ =
=

+ =
 

e. True. See the box after the definition of elementary row operations, in Section 1.1. If [A   b] is 
transformed into [C   d] by elementary row operations, then the two augmented matrices are row 
equivalent. 

f. True. Theorem 6 in Section 1.5 essentially says that when Ax = b is consistent, the solution sets of the 
nonhomogeneous equation and the homogeneous equation are translates of each other. In this case, 
the two equations have the same number of solutions. 

g. False. For the columns of A to span Rm, the equation Ax = b must be consistent for all b in Rm, not for 
just one vector b in Rm. 

h. False. Any matrix can be transformed by elementary row operations into reduced echelon form, but 
not every matrix equation Ax = b is consistent. 

i. True. If A is row equivalent to B, then A can be transformed by elementary row operations first into B 
and then further transformed into the reduced echelon form U of B. Since the reduced echelon form of 
A is unique, it must be U. 

j. False. Every equation Ax = 0 has the trivial solution whether or not some variables are free. 
k. True, by Theorem 4 in Section 1.4. If the equation Ax = b is consistent for every b in Rm, then A must 

have a position in every one of its m rows. If A has m pivot positions, then A has m pivot columns, 
each containing one pivot position. 

l. False. The word “unique” should be deleted. Let A be any matrix with m pivot columns but more than 
m columns altogether. Then the equation Ax = b is consistent and has m basic variables and at least 
one free variable. Thus the equation does not does not have a unique solution. 

m. True. If A has n pivot positions, it has a pivot in each of its n columns and in each of its n rows. The 
reduced echelon form has a 1 in each pivot position, so the reduced echelon form is the n×n identity 
matrix.  

n. True. Both matrices A and B can be row reduced to the 3×3 identity matrix, as discussed in the 
previous question. Since the row operations that transform B into I3 are reversible, A can be 
transformed first into I3 and then into B. 

o. True. The reason is essentially the same as that given for question f. 
p. True. If the columns of A span Rm, then the reduced echelon form of A is a matrix U with a pivot in 

each row, by Theorem 4 in Section 1.4. Since B is row equivalent to A, B can be transformed by row 
operations first into A and then further transformed into U. Since U has a pivot in each row, so does 
B. By Theorem 4, the columns of B span Rm. 

q. False. See Example 5 in Section 1.6. 
r. True. Any set of three vectors in R2 would have to be linearly dependent, by Theorem 8 in 

Section 1.6. 
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s. False. If a set {v1, v2, v3, v4} were to span R5, then the matrix A = [v1   v2   v3   v4] would have 
a pivot position in each of its five rows, which is impossible since A has only four columns. 

t. True. The vector –u is a linear combination of u and v, namely, –u = (–1)u + 0v. 
u. False. If u and v are multiples, then Span{u, v} is a line, and w need not be on that line. 
v. False. Let u and v be any linearly independent pair of vectors and let w = 2v. Then w = 0u + 2v, so w 

is a linear combination of u and v. However, u cannot be a linear combination of v and w because if it 
were, u would be a multiple of v. That is not possible since {u, v} is linearly independent. 

w. False. The statement would be true if the condition v1 is not zero were present. See Theorem 7 in 
Section 1.7. However, if v1 = 0, then {v1, v2, v3} is linearly dependent, no matter what else might be 
true about v2 and v3. 

x. True. “Function” is another word used for “transformation” (as mentioned in the definition of 
“transformation” in Section 1.8), and a linear transformation is a special type of transformation. 

y. True. For the transformation x  Ax to map R5 onto R6, the matrix A would have to have a pivot in 
every row and hence have six pivot columns. This is impossible because A has only five columns. 

z. False. For the transformation x  Ax to be one-to-one, A must have a pivot in each column. Since 
A has n columns and m pivots, m might be less than n.  

 2. If a ≠ 0, then x = b/a; the solution is unique. If a = 0, and b ≠ 0, the solution set is empty, because  
0x = 0 ≠ b. If a = 0 and b = 0, the equation 0x = 0 has infinitely many solutions. 

 3. a. Any consistent linear system whose echelon form is 

   
* * * * * * 0 * *

0 * *  or 0 0 *  or 0 0 *
0 0 0 0 0 0 0 0 0 0 0 0

     
     
     
          

 

b. Any consistent linear system whose coefficient matrix has reduced echelon form I3. 
c. Any inconsistent linear system of three equations in three variables. 

 4. Since there are three pivots (one in each row), the augmented matrix must reduce to the form 

  
* * *

0 * *
0 0 *

 
 
 
  

. A solution of Ax = b exists for all b because there is a pivot in each row of A. Each 

solution is unique because there are no free variables. 

 5. a. 
1 3 1 3

~
4 8 0 12 8 4

k k
h h k

   
   − −   

. If h = 12 and k ≠ 2, the second row of the augmented matrix 

indicates an inconsistent system of the form 0x2 = b, with b nonzero. If h = 12, and k = 2, there is only 
one nonzero equation, and the system has infinitely many solutions. Finally, if h ≠ 12, the coefficient 
matrix has two pivots and the system has a unique solution. 

b. 
2 1 2 1

~
6 2 0 3 1

h h
k k h

− −   
   − +   

. If k + 3h = 0, the system is inconsistent. Otherwise, the 

coefficient matrix has two pivots and the system has a unique solution. 
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 6. a. Set 1 2 3
4 2 7

, ,
8 3 10

−     
= = =     −     

v v v , and 
5
3

− 
=  − 

b . “Determine if b is a linear combination of v1, v2, 

v3.” Or, “Determine if b is in Span{v1, v2, v3}.” To do this, compute 
4 2 7 5 4 2 7 5

~
8 3 10 3 0 1 4 7

− − − −   
   − − −   

. The system is consistent, so b is in Span{v1, v2, v3}. 

b. Set A = 
4 2 7 5

,
8 3 10 3

− −   
=   − −   

b . “Determine if b is a linear combination of the columns of A.” 

c. Define T(x) = Ax. “Determine if b is in the range of T.”  

 7. a. Set 1 2 3

2 4 2
5 , 1 , 1
7 5 3

− −     
     = − = =     
     − −     

v v v  and 
1

2

3

b
b
b

 
 =  
  

b . “Determine if v1, v2, v3 span R3.” To do this, row 

reduce [v1   v2   v3]: 

  
2 4 2 2 4 2 2 4 2
5 1 1 ~ 0 9 4 ~ 0 9 4
7 5 3 0 9 4 0 0 0

− − − − − −     
     − − − − −     
     − −     

. The matrix does not have a pivot in each row, so 

its columns do not span R3, by Theorem 4 in Section 1.4. 

b. Set A = 
2 4 2
5 1 1
7 5 3

− − 
 − 
 − − 

. “Determine if the columns of A span R3.” 

c. Define T(x) = Ax. “Determine if T maps R3 onto R3.” 

 8. a. 
* * * * 0 *

, ,
0 * 0 0 0 0
     
     
     

 b. 
* *

0 *
0 0

 
 
 
  

 

 9. The first line is the line spanned by 
1
2
 
 
 

. The second line is spanned by 
2
1
 
 
 

. So the problem is to write 

5
6
 
 
 

 as the sum of a multiple of 
1
2
 
 
 

 and a multiple of 
2
1
 
 
 

. That is, find x1 and x2 such that 

1 2
2 1 5
1 2 6

x x
     

+ =     
     

. Reduce the augmented matrix for this equation: 

  
2 1 5 1 2 6 1 2 6 1 2 6 1 0 4 / 3

~ ~ ~ ~
1 2 6 2 1 5 0 3 7 0 1 7 / 3 0 1 7 / 3
         
         − −         

 

  Thus, 4 7
3 3

5 2 1
6 1 2
     

= +     
     

  or  
5 8/ 3 7 / 3
6 4 / 3 14 / 3
     

= +     
     

. 

 10. The line through a1 and the origin and the line through a2 and the origin determine a “grid” on the  
x1x2-plane as shown below. Every point in R2 can be described uniquely in terms of this grid. Thus, b can 
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be reached from the origin by traveling a certain number of units in the a1-direction and a certain number 
of units in the a2-direction. 

    

x1

x2

a2

a1

b

 

 11. A solution set is a line when the system has one free variable. If the coefficient matrix is 2×3, then two of 

the columns should be pivot columns. For instance, take 
1 2 *
0 3 *
 
 
 

. Put anything in column 3. The 

resulting matrix will be in echelon form. Make one row replacement operation on the second row to 

create a matrix not in echelon form, such as 
1 2 1 1 2 1

~
0 3 1 1 5 2
   
   
   

 

 12. A solution set is a plane where there are two free variables. If the coefficient matrix is 2×3, then only one 
column can be a pivot column. The echelon form will have all zeros in the second row. Use a row 

replacement to create a matrix not in echelon form. For instance, let A =
1 2 3
1 2 3
 
 
 

. 

 13. The reduced echelon form of A looks like 
1 0 *
0 1 *
0 0 0

E
 
 =  
  

. Since E is row equivalent to A, the equation 

Ex = 0 has the same solutions as Ax = 0. Thus 
1 0 * 3 0
0 1 * 2 0
0 0 0 1 0

     
     − =     
          

.  

  By inspection, 
1 0 3
0 1 2
0 0 0

E
− 

 =  
  

. 

 14. Row reduce the augmented matrix for 1 2
1 0

2 0
a

x x
a a
     

+ =     +     
 (*). 

   2

1 01 0 1 0
~

2 0 0 (2 )(1 ) 00 2 0

aa a
a a a aa a

    
=    + − ++ −    

 

  The equation (*) has a nontrivial solution only when (2 – a)(1 + a) = 0. So the vectors are linearly 
independent for all a except a = 2 and a = –1. 

 15. a. If the three vectors are linearly independent, then a, c, and f must all be nonzero. (The converse is 
true, too.) Let A be the matrix whose columns are the three linearly independent vectors. Then 
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A must have three pivot columns. (See Exercise 30 in Section 1.7, or realize that the equation Ax = 0 
has only the trivial solution and so there can be no free variables in the system of equations.) Since 
A is 3×3, the pivot positions are exactly where a, c, and f are located. 

b. The numbers a, …, f can have any values. Here's why. Denote the columns by v1, v2, and v3. Observe 
that v1 is not the zero vector. Next, v2 is not a multiple of v1 because the third entry of v2 is nonzero. 
Finally, v3 is not a linear combination of v1 and v2 because the fourth entry of v3 is nonzero. By 
Theorem 7 in Section 1.7, {v1, v2, v3} is linearly independent. 

 16. Denote the columns from right to left by v1, …, v4. The “first” vector v1 is nonzero, v2 is not a multiple of 
v1 (because the third entry of v2 is nonzero), and v3 is not a linear combination of v1 and v2 (because the 
second entry of v3 is nonzero). Finally, by looking at first entries in the vectors, v4 cannot be a linear 
combination of v1, v2, and v3. By Theorem 7 in Section 1.7, the columns are linearly independent. 

 17. Here are two arguments. The first is a “direct” proof. The second is called a “proof by contradiction.” 
i. Since {v1, v2, v3} is a linearly independent set, v1 ≠ 0. Also, Theorem 7 shows that v2 cannot be a 

multiple of v1, and v3 cannot be a linear combination of v1 and v2. By hypothesis, v4 is not a linear 
combination of v1, v2, and v3. Thus, by Theorem 7, {v1, v2, v3, v4} cannot be a linearly dependent set 
and so must be linearly independent. 

ii. Suppose that {v1, v2, v3, v4} is linearly dependent. Then by Theorem 7, one of the vectors in the set is 
a linear combination of the preceding vectors. This vector cannot be v4 because v4 is not in Span{v1, 
v2, v3}. Also, none of the vectors in {v1, v2, v3} is a linear combinations of the preceding vectors, by 
Theorem 7. So the linear dependence of {v1, v2, v3, v4} is impossible. Thus {v1, v2, v3, v4} is linearly 
independent. 

 18. Suppose that c1 and c2 are constants such that  
   c1v1 + c2(v1 + v2) = 0      (*) 
  Then (c1 + c2)v1 + c2v2 = 0. Since v1 and v2 are linearly independent, both c1 + c2 = 0 and c2 = 0. It 

follows that both c1 and c2 in (*) must be zero, which shows that {v1, v1 + v2} is linearly independent. 

 19. Let M be the line through the origin that is parallel to the line through v1, v2, and v3. Then v2 – v1 and  
v3 – v1 are both on M. So one of these two vectors is a multiple of the other, say v2 – v1 = k(v3 – v1). This 
equation produces a linear dependence relation (k – 1)v1 + v2 – kv3 = 0. 

  A second solution: A parametric equation of the line is x = v1 + t(v2 – v1). Since v3 is on the line, there is 
some t0 such that v3 = v1 + t0(v2 – v1) = (1 – t0)v1 + t0v2. So v3 is a linear combination of v1 and v2, and 
{v1, v2, v3} is linearly dependent. 

 20. If T(u) = v, then since T is linear, 
   T(–u) = T((–1)u) = (–1)T(u) = –v. 

 21. Either compute T(e1), T(e2), and T(e3) to make the columns of A, or write the vectors vertically in the 
definition of T and fill in the entries of A by inspection: 

  
1 1

2 2

3 3

? ? ? 1 0 0
? ? , 0 1 0
? ? ? 0 0 1

x x
A A x x A

x x

       
       = = − = −       
              

x  

 22. By Theorem 12 in Section 1.9, the columns of A span R3. By Theorem 4 in Section 1.4, A has a pivot in 
each of its three rows. Since A has three columns, each column must be a pivot column. So the equation 
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Ax = 0 has no free variables, and the columns of A are linearly independent. By Theorem 12 in Section 
1.9, the transformation x  Ax is one-to-one. 

 23. 
4 5 4 3 5

 implies that  
3 0 3 4 0

a b a b
b a a b

=
− − =     

      + =     
. Solve:  

  
4 3 5 4 3 5 4 3 5 4 0 16 / 5 1 0 4 / 5

~ ~ ~ ~
3 4 0 0 25/ 4 15/ 4 0 1 3/ 5 0 1 3/ 5 0 1 3/ 5

− − −         
         − − − −         

 

  Thus a = 4/5 and b = –3/5. 

 24. The matrix equation displayed gives the information 2 4 2 5a b− =  and 4 2 0.a b+ =  Solve for a and b: 
2 4 2 5 1 2 5 1 0 1/ 52 4 2 5 ~ ~ ~

4 2 0 0 10 4 5 0 1 2 / 5 0 1 2 / 5

       − −−
      

− − −            
 

  So 1/ 5, 2 / 5.a b= = −  

 25. a. The vector lists the number of three-, two-, and one-bedroom apartments provided when x1 floors of 
plan A are constructed. 

b. 1 2 3

3 4 5
7 4 3
8 8 9

x x x
     
     + +     
          

 

c. [M]  Solve 1 2 3

3 4 5 66
7 4 3 74
8 8 9 136

x x x
       
       + + =       
              

 

  
1 3

2 3

3 4 5 66 1 0 1/ 2 2 (1/ 2) 2
7 4 3 74 ~ 0 1 13/8 15    (13/8) 15
8 8 9 136 0 0 0 0 0 0

x x
x x

− − =   
   ⋅ ⋅ ⋅ + =   
    =   

 

  The general solution is 

  
1 3

2 3 3

3 3

2 (1/ 2) 2 1/ 2
15 (13/8) 15 13/8

0 1

x x
x x x
x x

+       
       = = − = + −       
              

x  

  However, the only feasible solutions must have whole numbers of floors for each plan. Thus, x3 must 
be a multiple of 8, to avoid fractions. One solution, for x3 = 0, is to use 2 floors of plan A and 15 
floors of plan B. Another solution, for x3 = 8, is to use 6 floors of plan A , 2 floors of plan B, and 8 
floors of plan C. These are the only feasible solutions. A larger positive multiple of 8 for x3 makes x2 
negative. A negative value for x3, of course, is not feasible either. 


