Eigenvalues and Eigenvectors

1 Definitions and Terms

1.1 Introduction to Eigenvectors and Eigenvalues

An **eigenvector** of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ . A scalar λ is called an **eigenvalue** of A if there is a nontrivial solution \mathbf{x} of $A\mathbf{x} = \lambda \mathbf{x}$. Such an \mathbf{x} is called an **eigenvector corresponding to** λ . The set of all eigenvectors corresponding to λ is a subspace of \mathbb{R}^n and is called the **eigenspace of** A **corresponding to** λ .

1.2 The Characteristic Equation

The scalar equation $\det(A - \lambda I) = 0$ is called the **characteristic equation** of A. If A is an $n \times n$ matrix, then $\det(A - \lambda I)$ is a polynomial of degree n called the **characteristic polynomial** of A. A specific eigenvalue λ_s is said to have **multiplicity** r if $(\lambda - \lambda_s)$ occurs r times as a factor of the characteristic polynomial.

If A and B are $n \times n$ matrices, then A and B are similar if there is an invertible matrix P such that $P^{-1}AP = B$. Changing A into $P^{-1}AP$ is called a similarity transformation.

1.3 Diagonalization

A square matrix A is said to be **diagonalizable** if A is similar to a diagonal matrix, that is, if $A = PDP^{-1}$ for some invertible matrix P and some diagonal matrix D. The basis formed by all the eigenvectors of a matrix A is called the **eigenvector basis**.

1.4 Eigenvectors and Linear Transformations

Let V be an n-dimensional vector space, W an m-dimensional vector space, T any linear transformation from V to W, β a basis for V and γ a basis for W. Now the image of any vector $[\mathbf{x}]_{\beta}$ (the vector \mathbf{x} relative to the base β) to $[T(\mathbf{x})]_{\gamma}$ is given by $[T(\mathbf{x})]_{\gamma} = M[\mathbf{x}]_{\beta}$, where $M = [[T(\mathbf{b_1})]_{\gamma} [T(\mathbf{b_2})]_{\gamma} \dots [T(\mathbf{b_n})]_{\gamma}]$. The $m \times n$ matrix M is a matrix representation of T, called the **matrix for T relative to the bases** β and γ .

In the common case when W is the same as V, and the basis γ is the same as β , the matrix M is called the **matrix for** T **relative to** β or simply the β -matrix for T and is denoted by $[T]_{\beta}$. Now $[T(\mathbf{x})]_{\beta} = [T]_{\beta}[\mathbf{x}]_{\beta}$.

1.5 Complex Eigenvalues

A complex scalar λ satisfies det $(A - \lambda I) = 0$ if, and only if there is a nonzero vector \mathbf{x} in \mathbb{C}^n such that $A\mathbf{x} = \lambda \mathbf{x}$. We call λ a (complex) eigenvalue and \mathbf{x} a (complex) eigenvector corresponding to λ .

1.6 Dynamical Systems

Many dynamical systems can be described or approximated by a series of vectors \mathbf{x}_k where $\mathbf{x}_{k+1} = A\mathbf{x}_k$. The variable k often indicates a certain time variable. If A is a diagonal matrix, having n eigenvalues forming a basis for \mathbb{R}^n , any vector \mathbf{x}_k can be described by $\mathbf{x}_k = c_1(\lambda_1)^k \mathbf{v}_1 + \ldots + c_n(\lambda_n)^k \mathbf{v}_n$. This is called the **eigenvector decomposition** of \mathbf{x}_k .

The graph $\mathbf{x_0}, \mathbf{x_1}, \ldots$ is called a **trajectory** of the dynamical system. If, for every $\mathbf{x_0}$, the trajectory goes to the origin $\mathbf{0}$ as k increases, the origin is called an **attractor** (or sometimes **sink**). If, for every $\mathbf{x_0}$, the trajectory goes away from the origin, it is called a **repellor** (or sometimes **source**). If $\mathbf{0}$ attracts for certain $\mathbf{x_0}$ and repels for other $\mathbf{x_0}$, then it is called a **saddle point**. For matrices having complex eigenvalues/eigenvectors, it often occurs that the trajectory spirals inward to the origin (attractor) or outward (repellor) from the origin (the origin is then called a **spiral point**).

1.7 Differential Equations

Linear algebra comes in handy when differential equations take the form $\mathbf{x}' = A\mathbf{x}$. The solution is then a vector-valued function that satisfies $\mathbf{x}' = A\mathbf{x}$ for all t in some interval. There is always a fundamental set of solutions, being a basis for the set of all solutions. If a vector \mathbf{x}_0 is specified, then the initial value problem is to construct the function such that $\mathbf{x}' = A\mathbf{x}$ and $\mathbf{x}(0) = \mathbf{x}_0$.

2 Theorems

- 1. The solution set of $A\mathbf{x} = \lambda \mathbf{x}$ is the null space of $A \lambda I$. This is the eigenspace corresponding to λ .
- 2. The eigenvalues of a triangular matrix are the entries on its main diagonal.
- 3. 0 is an eigenvalue of A if, and only if A is not invertible.
- 4. If $\mathbf{v_1}, \ldots, \mathbf{v_r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v_1}, \ldots, \mathbf{v_r}\}$ is linearly independent.
- 5. A scalar λ is an eigenvalue of an $n \times n$ matrix A if, and only if λ satisfies the characteristic equation $\det(A \lambda I) = 0$.
- 6. If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).
- 7. The Diagonalization Theorem: An $n \times n$ matrix A is diagonalizable if, and only if A has n linearly independent eigenvectors. In fact, $A = PDP^{-1}$, with D a diagonal matrix, if, and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.
- 8. If a $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable. (Note that the opposite is not always true.)
- 9. Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, \ldots, \lambda_p$.
 - (a) For $1 \le k \le p$, the dimension of the eigenspace for λ_k is less than or equal to the multiplicity of the eigenvalue λ_k .
 - (b) The matrix A is diagonalizable if, and only if the sum of the dimensions of the distinct eigenspaces equals n, and this happens if, and only if the dimension of the eigenspace for each λ_k equals the multiplicity of λ_k .

- (c) If A is diagonalizable and β_k is a basis for the eigenspace corresponding to λ_k for each k, then the total collection of vectors in the sets β_1, \ldots, β_p forms an eigenvector basis for \mathbb{R}^n .
- 10. **Diagonal Matrix Representation:** Suppose $A = PDP^{-1}$, where *D* is a diagonal $n \times n$ matrix. If $\beta = {\mathbf{b_1}, \dots, \mathbf{b_n}}$ is the basis for \mathbb{R}^n formed from the columns of *P*, then *D* is the β -matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$.
- 11. If P is the matrix whose columns come from the vectors in β (that is, $P = [\mathbf{b_1} \dots \mathbf{b_n}]$), then $[T]_{\beta} = P^{-1}AP$.
- 12. If λ is an eigenvalue of A and \mathbf{x} is a corresponding eigenvector in \mathbb{C}^n , then the complex conjugate $\bar{\lambda}$ is also an eigenvalue of A, with $\bar{\mathbf{x}}$ as the corresponding eigenvector.
- 13. Let A be a real 2 × 2 matrix with a complex eigenvalue $\lambda = a bi$ ($b \neq 0$) and an associated eigenvector **v** in \mathbb{C}^2 . Then $A = PCP^{-1}$, where $P = [\operatorname{Re} \mathbf{v} \operatorname{Im} \mathbf{v}]$ and $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.
- 14. For discrete dynamical systems, multiple possibilities are present:
 - (a) $|\lambda_i| < 1$ for every *i*. In that case the system is an attractor.
 - (b) $|\lambda_i| > 1$ for every *i*. In that case the system is a repellor.
 - (c) $|\lambda_i| > 1$ for some *i* and $|\lambda_i| < 1$ for all other *i*. In that case the system is a saddle point.
 - (d) $|\lambda_i| = 1$ for some *i*. In that case the trajectory can converge to any vector in the eigenspace corresponding to the eigenvalue 1. However, it can also diverge.
- 15. For linear differential equations, each eigenvalue-eigenvector pair provides a solution of $\mathbf{x}' = A\mathbf{x}$. This solution is $\mathbf{x}(t) = \mathbf{v}e^{\lambda t}$.
- 16. For linear differential equations, any linear combination of solutions is also a solution for the differential equation. So if $\mathbf{u}(t)$ and $\mathbf{v}(t)$ are solutions, then $c\mathbf{u}(t) + d\mathbf{v}(t)$ is also a solution for any scalars c and d.