Determinants

1 Definitions and Terms

1.1 Determinants

For any square matrix, let A_{ij} denote the submatrix formed by deleting the *i*th row and the *j*th column of A. For $n \ge 2$, the **determinant** of an $n \times n$ matrix $A = [a_{ij}]$ is the sum of n terms of the form $\pm a_{1j}$ det A_{1j} , with plus and minus signs alternating, where the entries $a_{11}, a_{12}, \ldots, a_{1n}$ are from the first row of A. In symbols:

det
$$A = a_{11}$$
det $A_{11} - a_{12}$ det $A_{12} + \ldots + (-1)^{n+1} a_{1n}$ det $A_{1n} = \sum_{j=1}^{n} (-1)^{1+j} a_{1j}$ det A_{1j}

Next to writing det A to indicate a determinant, it is also often used to write |A|.

1.2 Cofactors

Given $A = [a_{ij}]$, the (i, j)-cofactor of A is the number C_{ij} given by $C_{ij} = (-1)^{i+j} \det A_{ij}$. The determinant of A can be determined using a cofactor expansion. The formula det $A = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$ is called a cofactor expansion across the first row of A.

A matrix $B = [b_{ij}]$ of cofactors of A, where $b_{ij} = C_{ij}$, is called the **adjugate** (or **classical adjoint**) of A. This is denoted by adjA.

2 Theorems

- 1. The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion. The expansion across the *i*th row is: det $A = a_{i1}C_{i1} + a_{i2}C_{i2} + \ldots + a_{in}C_{in}$. The expansion down the *j*th column is: det $A = a_{1j}C_{1j} + a_{2j}C_{2j} + \ldots + a_{nj}C_{nj}$.
- 2. If A is a triangular matrix, then det A is the product of the entries on the main diagonal of A.
- 3. Row Operations: Let A be a square matrix.
 - If a multiple of one row of A is added to another row to produce a matrix B, then det $A = \det B$.
 - If two rows of A are interchanged to produce B, then detA = -detB.
 - If one row of A is multiplied by k to produce B, then det $B = k \cdot \det A$.
- 4. A square matrix A is invertible if, and only if det $A \neq 0$.
- 5. If A is an $n \times n$ matrix, then det $A^T = \det A$.
- 6. If A and B are $n \times n$ matrices, then det $AB = (\det A)(\det B)$.
- 7. Cramer's Rule: Let A be an invertible $n \times n$ matrix. For any **b** in \mathbb{R}^n , the unique solution **x** of $A\mathbf{x} = \mathbf{b}$ has entries given by $x_i = \frac{\det A_i(\mathbf{b})}{\det A}$, where i = 1, 2, ..., n and $A_i\mathbf{b}$ is the matrix obtained from A by replacing column *i* for the vector **b**.

- 8. Let A be an invertible $n \times n$ matrix. Then: $A^{-1} = \frac{1}{\det A} \operatorname{adj} A$.
- 9. If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\det A|$. If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $|\det A|$.
- 10. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation determined by a 2×2 matrix A. If S is any region in \mathbb{R}^2 with finite area, then {area of T(S)} = $|\det A| \cdot \{\text{area of } S\}$. Also, if T is determined by a 3×3 matrix A, and if S is any region in \mathbb{R}^3 with finite volume, then {volume of T(S)} = $|\det A| \cdot \{\text{volume of } S\}$.