
Swarm intelligence

In swarm intelligence, we deal with swarms: large groups of N individuals. (Think of flocks of birds
or schools of fish.) Each individual has its own behavior and goals. And although the behavior of each
individual might be simple, the whole swarm often behaves itself in a complicated yet effective way. This
phenomenon is called emergence.

Using swarm intelligence has several advantages. All the individuals, called agents, can be produced in
series. This saves costs. Also, the swarm is robust: if one agent fails, the swarm still functions. Finally,
the swarm is easily scalable: you simply add more agents.

In this chapter, we’ll examine three methods that use swarm intelligence. Let’s start off by examining
particle swarm optimization.

1 Particle swarm optimization

A particular application of swarm intelligence is particle swarm optimization (PSO). In PSO, we want
to find the value x which minimizes a function f(x). To do this, we create an n-dimensional search space,
with n the size of the vector x. In it, we put N particles. Every particle i has a (randomly initialized)
position θi(k) and a velocity vi(k) at time k. At every time step, the position of each particle is updated
using

θi(k + 1) = θi(k) + vi(k). (1.1)

Also, the velocity is updated. This is done using

vi(k + 1) = w(k)vi(k) + c1r1(k) (θi,pbest(k)− θi(k)) + c2r2(k) (θi,lbest(k)− θ(k)) . (1.2)

Let’s walk through the terms in this equation. The first term is the momentum term. It causes
particles to keep on going in the same direction as they currently are moving. The goal of this is to
prevent particles from converging to a local minimum too quickly. By giving them momentum, they
search the entire search space. Thus, the constant w(k) is initially relatively big. (That is, almost equal
to 1.) But as the algorithm proceeds, the constant is reduced.

The second term in the above equation is the cognitive component. The parameter θi,pbest(k) is the
personal best position: the best position (with lowest f(θ)) which particle i has found so far. This
term thus causes the particle to be pulled back to its personal best. c1 is a constant and r1(k) is a random
variable, often uniformly distributed in the interval [0, 1].

The third term, called the social component, is similar to the cognitive component. However, this time
the particle compares its position to the global best position θi,lbest(k): the best position found by all
particles together so far. The rest of the term works similarly.

When applying PSO, the particles start at random positions. Initially, they all move across the whole
search space. But as time progresses, they should converge to minima of the function. When the algorithm
is stopped, the actual solution is simply equal to θi,lbest(k): the best position found by all particles so
far.

2 Artificial potential fields

Another way to search a space is by using an approach with artificial potential fields. The basic idea
is that we have several particles with position xi. We now want to find the minimum for the function
σ(x). We then simply let each particle ‘flow down’. This is done by applying a force on every particle of

ui = −∇xσ(xi). (2.1)

1

Next to this, we also don’t want particles to come closer together. It’s no use if multiple particles search
exactly the same space. To ensure that they don’t, we use artificial potential fields. Every particle has a
potential field around it, which repels other particles. This gives an additional force

ui,apf =
M∑

j=1,j 6=i

gj(xi − xj). (2.2)

To shorten notation, we usually write yij = xi − xj. Examples of functions gj(yij) are

g(yij) = −yij

(
a− b exp

(
−||yij ||2

c

))
. (2.3)

Next to this, obstacles might also be added. Just like particles, these obstacles do not move. They only
repel other particles. Obstacles are useful if we want to restrict the search parameters to certain values.

3 Ant colony optimization

Ant colony optimization is a method to find the shortest path to a certain destination. Let’s suppose
that we have a graph. On a node i in this graph is an ant. This ant needs to select which arc he is going
to walk on. The chance that he select an arc j at time k is given by

pij(k) =
(τij(k))α (ηij)

β∑
l (τil(k))α (ηil)

β
. (3.1)

In this equation, τij(k) denotes the pheromone level of the arc at time k. ηij is a (constant) heuristic;
for example the inverse of the length of the arc.

But we don’t have one ant. We have Na ants. Every ant chooses its arc at time step k in this way. After
every ant has walked along its arc, the pheromone levels are updated. This is done using

τij(k + 1) = (1− ρ)τij(k) +
Na∑
a=1

∆τij,a(k). (3.2)

Here, ρ is the pheromone decay rate. Also, we have

∆τij,a(k) =

{
F (sa) if arc (i, j) is used by ant a,

0 otherwise.
(3.3)

Here, F (sa) is the fitness function of the node s at which ant a is. It can be seen as the amount of
food at this node. What happens now is that arcs that lead to food sources (i.e. high fitness functions)
get relatively high pheromone levels. So, they will be selected relatively often in the future as well. If,
however, a path to a food source is found that is faster, then the ants will start to travel along that path
more. And because it takes less time to walk along this path, more pheromone can be dropped along it.
This route will thus become more preferable. In this way, the ants will find the fastest routes between
food sources.

Extensions of the ant colony optimization method are also possible. For example, it can be combined
with fuzzy logic. Now, an ant can be for a part in one node, and for another part in another node. And,
although this can be a very interesting method, we won’t go into depth on it here.

2

