
Reinforcement learning

In this chapter, we discuss the technique called reinforcement learning. First, we examine the basic
principles. Then we look at how it is applied when a model of the environment is present. Next, we
examine what to do when a model of the environment is missing. Finally, we look at how we can apply
reinforcement learning to control problems.

1 Basics of reinforcement learning

1.1 Definitions in reinforcement learning

In reinforcement learning (RL), there is an agent and an environment. The agent has a certain
state sk ∈ S. During every step, the agent needs to choose one of the possible actions ak ∈ A. He then
reaches a new state sk+1. By doing this, he gets an immediate reward rk ∈ R from the environment.

The goal of the agent now is to maximize the total reward Rk. This total reward is a function of all
future rewards. Often, the sum is used. So, Rk = rk+1 + rk+2 + . . .. Another often-used function is

Rk = rk+1 + γrk+2 + γ2rk+3 + . . . =
∞∑

n=0

γnrk+n+1. (1.1)

The parameter γ, which satisfies 0 ≤ γ ≤ 1, is called the discount rate. We will use the latter total
reward function in the remainder of this chapter.

The whole point of reinforcement learning is to find the optimal policy. A policy is a mapping: for
every state s, it maps which action a is chosen by the agent in that state. If we can write a = π(s), then
we deal with a deterministic policy: for every state s, always the same action a is chosen. However,
we can also deal with a stochastic policy. In this case, Π(s, a) denotes the probability that in state s
action a is chosen by the agent.

1.2 The environment

Let’s suppose that the agent is in some state sk and chooses action ak. Also, all the previous states and
actions sk−1, ak−1, sk−2, ak−2, . . . are known. In a stochastic environment, it is uncertain in which
state sk+1 the agent winds up in. The probability that the agent reaches state sk+1 with reward rk+1 is
denoted by

P (sk+1, rk+1|sk, ak, sk−1, ak−1, sk−2, ak−2, . . .) . (1.2)

However, usually we assume that the system has the Markov property. This means that the state
and reward at time k + 1 only depends on the state and action at time k. Thus, the above probability
is simply written as P (sk+1, rk+1|sk, ak). An RL task which satisfies this property is called a Markov
decision process (MDP).

Let’s discuss some more notations. We denote the chance that the agent winds up in state s′, given that
he now is in state s and chooses action a, by

Pa
ss′ = P (sk+1 = s′|sk = s, ak = a) . (1.3)

This function is called the state transition probability function. Similarly, we can define the ex-
pected reward as

Ra
ss′ = E {rk+1|sk = s, ak = a, sk+1 = s′} . (1.4)

Here, we do have assumed that the agent always knows the state which he is in. If the agent can’t always
observe the state which he is in, then we are dealing with a partially observable MDP (POMDP).
We won’t deal with POMDP problems though.

1



1.3 The value function

Let’s suppose that we have an agent that is in some state s. This agent also has a policy π. The value
function V π(s) now is the expected total reward Rk when the policy π is used. So,

V π(s) = Eπ {Rk|sk = s} = Eπ

{ ∞∑
n=0

γnrk+n+1|sk = s

}
. (1.5)

By the way, Eπ is the expectation operator, given that the agent follows the policy π. In a similar way, we
can define the action-value function Qπ(s, a) as the expected total reward Rk when an agent chooses
action a in state s and follows policy π afterwards. So,

Qπ(s, a) = Eπ {Rk|sk = s, ak = a} = Eπ

{ ∞∑
n=0

γnrk+n+1|sk = s, ak = a

}
. (1.6)

When applying RL, we always use either V or Q, never both. However, sometimes V is convenient to
use and sometimes Q. So, in this summary, we will treat them both.

The goal of reinforcement learning is to find an optimal policy π∗. This optimal policy π∗ is the policy
π which maximizes the value function V π or, alternatively, Qπ. How this policy can be found depends
on the type of problem.

2 Model based RL

2.1 The Bellman optimality equation

Sometimes we have an exact model of the environment. Solution techniques to find the optimal policy
are now known as dynamic programming.

Let’s suppose that we are in a state s and choose an action a. If we do this, then there is a chance Pa
ss′

that we wind up in state s′. In this state, our expected reward will be the sum of our immediate reward
Ra

ss′ , and of the expected total reward of future states γV ∗(s′). (Note that a discount rate has to be
added.) Based on this, we can find the expected total reward of choosing action a. Of course, we want
to choose the action a which maximizes the expected total reward. This logic results in the recursively
defined Bellman optimality equation

V ∗(s) = max
a

∑
s′

Pa
ss′ (Ra

ss′ + γV ∗(s′)) . (2.1)

A similar equation can be derived for Q. We then get

Q∗(s, a) =
∑
s′

Pa
ss′

(
Ra

ss′ + γ max
a′

Q∗(s′, a′)
)

. (2.2)

Solving for the value function can be quite difficult though. So we’ll treat that in the next paragraph
separately.

You may wonder, when we have the value function V ∗ (or Q∗), how do we find the optimal policy?
Well, in this case the optimal policy is the so-called greedy policy. We simply take the action a which
maximizes the value function. So,

π(s) = arg max
a∈A

∑
s′

Pa
ss′ (Ra

ss′ + γV π(s)) or π(s) = arg max
a∈A

Q∗(s, a). (2.3)

2



2.2 Finding the optimal value function

There are two often-used methods to find the optimal value function. One of them is policy iteration.
We start with a certain initialization V0(s) of the value function and with a certain policy π. We then
simply iterate.

During every step, there is a policy evaluation and a policy improvement step. In the policy
evaluation step, we use the policy to update the value function. This is done according to

Vn+1(s) = Eπ {rk+1 + γVn(sk+1)} =
∑
s′

Pa
ss′ (Ra

ss′ + γVn(s′)) , with a = π(s). (2.4)

In the policy improvement step, we improve our policy. In fact, as policy the greedy policy π is used,
corresponding to the value function Vn+1(s). These steps are then iterated until a stopping criterion is
met. For example, the policy π hasn’t changed for several consecutive iterations, or the difference in the
value function V (s) is below a certain threshold ε.

A similar method is the value iteration method. In this method, no policy is computed anymore.
Instead, the value function is updated directly using

Vn+1(s) = max
a

E {rk+1 + γVn(sk+1)|sk = s, ak = a} = max
a

∑
s′

Pa
ss′ (Ra

ss′ + γVn(s′)) . (2.5)

3 Model free RL

3.1 Temporal difference methods

It may occur that we don’t have any model of our environment. In this case, the agent simply needs to
explore it. There are several ways to do this. But most of the methods do use a value function. Among
these methods are the temporal difference (TD) methods.

Let’s suppose that we are in some state sk. We then go to a state sk+1 in which we receive a reward
rk+1. We use this reward to update V (sk). This kind of makes sense: if rk+1 is big, then V (sk) should
have been big as well, while if rk+1 is small, then V (sk) should have been small as well. The equation
that is used is

V (sk)← (1−αk)V (sk)+αk (rk+1 + γV (sk+1)) = V (sk)+αk (rk+1 + γV (sk+1)− V (sk)) = V (sk)+αkδk.
(3.1)

In the above equation, αk is the learning rate at time k. Also, δk = rk+1 + γV (sk+1) − V (sk) is the
TD-error.

You might be wondering, why do we use rk+1 to only update sk. Can’t we use rk+1 to update
sk−1, sk−2, . . . as well? Well, we can. The question just is: how much should we update them? For
this, we define the eligibility trace ek(s). This eligibility trace can be seen as the ‘strength’ of the
relation between the reward rk+1 and the state s. If, for example, s = sk−1, then there is a relatively
strong relation between s and rk+1. So, ek(s) should be big. On the other hand, if s = sk−20, then ek(s)
should be small. So, we can define ek(s) as

ek(s) =

{
γλek−1(s) if s 6= sk,

1 if s = sk.
(3.2)

The parameter λ is called the trace-decay parameter. (γ is still the discount rate.) Based on this
eligibility trace, we can update V (s). The change in V (s) (denoted as ∆V (s)) is now given by

∆V (s) = αδkek(s). (3.3)

3



3.2 Q-learning and SARSA

Another model free RL method is Q-learning. It is a so-called off-policy method: it doesn’t use a policy
while learning. Instead, it simply uses the action-value function Q(s, a) to learn. To start, we give the
function Q(s, a) initial values. We then update it using

Q(sk, ak)→ Q(sk, ak) + α
(
rk+1 + γ max

a
Q(sk+1, a)−Q(sk, ak)

)
. (3.4)

How does this work? Well, let’s suppose that we want to update Q(sk, ak). We then start in state sk,
choose action ak, which brings us in state sk+1 with immediate reward rk+1. The new value Q(sk, ak)
then depends on the old value, the immediate reward rk+1 which we received and the maximum expected
future reward Q(sk+1, a) which we expect to be able to get. However, to make sure that the algorithm
converges, we do have to visit all state-action pairs (sk, ak) continually.

If also eligibility traces are used, then the above equation turns into

Q(s, a)← Q(s, a) + αδkek(s, a), where δk = rk+1 + γ max
a′

Q(sk+1, a
′)−Q(sk, ak). (3.5)

Another method, which is somewhat similar to Q-learning, is the SARSA method. But contrary to
Q-learning, SARSA is an on-policy method. That is, it does require a policy π or Π. This time, we
update Q(sk, ak) using

Q(sk, ak)→ Q(sk, ak) + α (rk+1 + γQ(sk+1, ak+1)−Q(sk, ak)) . (3.6)

The action ak+1 follows from the policy. So, ak+1 = π(sk+1) or, alternatively, the chance that an action
a is chosen to be ak+1 is Π(s, a).

3.3 Exploration

Previously, we saw that, to apply Q-learning, we need to examine all possible state-action combinations
(sk, ak). But what do we do if the agent can’t choose which state he is in? (That is, if he can only
just ‘walk’ around?) In this case, it would be bad to stick to our policy. Instead, we need to explore.
And although most of the times an explorative action gives a lower reward than the action we would
otherwise choose, sometimes it may give a higher reward. And this will result in a better eventual
outcome.

There are several ways to explore. However, we will only consider one group of methods, called undi-
rected exploration. It simply means that there is a chance that you select a random action. For
example, when following an ε-greedy policy, there is a chance ε that you select a random action. In
the other cases, you simply follow a normal greedy policy and thus choose the action with the highest
Q(s, a) value.

Another type of undirected exploration is Max-Boltzmann exploration (also called soft-max explo-
ration). Now, the chance that we choose an action a is given by

P (a|s) =
eQ(s,a)/τ∑
a′ eQ(s,a′)/τ

. (3.7)

The parameter τ is a variable that determines how much you explore. If τ =∞, you select actions fully
randomly (as if ε = 1). But if τ = 0, you are back to the greedy policy.

We could also use optimistic initial values. What this means is that we initialize Q(s, a) (or alter-
natively, V (s)) with very high values. We then follow a greedy policy with a normal updating method
for Q. So, when you try an action a, the Q(s, a) value will very likely decrease. So the next time you
arrive at state s, you will choose a different action. Only when a Q(s, a) value stops to decrease, will you

4



continue to follow the same action. And of course, the first action a for which Q(s, a) stops to decrease
is quite likely the best action.

A very interesting question to ask is: how much should you explore? This is called the exploration vs.
exploitation dilemma. Initially, you should explore quite a bit. But as time progresses, and you are
bound to have found some good sets of actions, you should exploit. Thus, when applying an ε-greedy
policy or a Max-Boltzmann policy, the value of ε or τ should decrease over time.

4 Application of RL to control systems

Let’s suppose that we have some system which we want to control. How can we use RL for this? The
first problem which we run into is that in RL, all states and actions are discrete. But in most control
problems, the states x are continuous. The first step in applying RL is thus the quantization of state
variables.

The second step which you need to do is define the action set A. (That is, the set of all possible
actions.) An example of an action might be ‘a1 = apply maximum negative input’ and ‘a2 = apply
maximum positive input’. But more difficult control laws can also be used, like ‘a1 = use fuzzy controller
number 1’ and ‘a2 = use fuzzy controller number 2’ or something similar.

The third step is to define the reward function. What states do we want to reach? (Give these a
high reward.) And what states do we definitely want to avoid? (Give those a low reward.) Important
when defining the reward function is the rule: ‘you should only tell the agent what it should do, and not
how.’ If you do this, then the RL algorithm might just come up with a very surprising but very effective
solution.

Finally, the results of the algorithm should be examined. Does the resulted policy control the system
sufficiently? If not, what went wrong? Can you fix it by doing the previous steps in a different way?

5


