
Introduction to fuzzy sets

In this summary, we will examine various knowledge-based control systems. One type of such systems is
based on fuzzy logic. We’ll examine the basics of fuzzy logic in this chapter. We’ll go more into depth
on it in subsequent chapters.

1 Basic properties and representations of fuzzy sets

1.1 Fuzzy sets

Let’s examine ordinary set theory. We have a domain X. Now examine a set A with objects xi ∈ X.
The membership function µA(x) is defined as

µA(x) =

{
1 iff x ∈ A,

0 iff x /∈ A.
(1.1)

So, an object x is either fully part of A or not at all part of A. We call such a set A a crisp set.

However, in fuzzy logic, things are different. Now an object x can also be partially in A. In other words,
µA(x) can take values between 0 and 1 as well. We call such a set A a fuzzy set. Also, the value of
µA(x) is called the membership degree or membership grade.

1.2 Properties of fuzzy sets

We can define various properties for fuzzy sets. The height of a fuzzy set hgt(A) is the supremum
(maximum) of the membership grades of A. So,

hgt(A) = sup
x∈X

µA(x). (1.2)

A fuzzy set A is normal if hgt(A) = 1. In other words, there is an x for which µA(x) = 1. Any set that
is not normal is called subnormal. Such a set A can be normalized using the normalization function
norm(A). It is defined such that, for all x ∈ X, we have

B = norm(A) ⇒ µB(x) =
µA(x)
hgt(A)

. (1.3)

The support of a set A is the crisp subset of A with nonzero membership grades. Similarly, the core of
a set A is the crisp subset of A with membership grade equal to one. So,

supp(A) = {x|µA(x) > 0} and core(A) = {x|µA(x) = 1}. (1.4)

The α-cut Aα of a set A is the crisp subset of A with membership grades of at least α. So,

Aα = α-cut(A) = {x|µA(x) ≥ α}. (1.5)

Note that core(A) = 1-cut(A). However, supp(A) = 0-cut(A) is not always true.

Let’s examine a set A. Its membership function µA(x) is called unimodal if it only has one global/local
maximum. The corresponding set A is then called convex. If however µA(x) is multimodel (has several
local maxima), then A is non-convex. Finally, the cardinality card(A) = |A| of a finite discrete set A
is the sum of the membership grades. Thus,

card(A) = |A| =
n∑

i=1

µA(xi). (1.6)
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1.3 Representations of fuzzy sets

There are several ways to represent fuzzy sets. We will examine a few.

• Similarity-based representation – We use a (dis)similarity measure d(x, v) between two elements
x and v. An example of a membership function is now given by

µ(x) =
1

1 + d(x, v)
. (1.7)

• Trapezoidal membership function – We choose parameters a, b, c and d (a < b, c > d) such
that

µ(x) = max
(

0,min
(

x− a

b− a
, 1,

d− x

d− c

))
. (1.8)

If b = c, we obtain the triangular membership function.

• Piece-wise exponential membership function – We choose the position parameters cl and cr

(cl < cr) and the width parameters wl and wr (wl, wr > 0) such that

µ(x) =


exp

(
−

(
x−cl

2wl

)2
)

if x < cl,

exp
(
−

(
x−cr

2wr

)2
)

if x > cr,

1 otherwise.

(1.9)

• Singleton set – This is a special fuzzy set. For some chosen element x0, we have

µ(x) =

{
1 if x = x0,

0 otherwise.
(1.10)

• Universal set – This is another special fuzzy set. We simply have µ(x) = 1 for all x ∈ X.

• Point-wise representation – For every individual element x, we specify the value of µ(x). Two
different methods of notation are

A = {µA(x1)/x1, µA(x2)/x2, . . . , µA(xn)/xn} = µA(x1)/x1 +µA(x2)/x2 + . . .+µA(xn)/xn. (1.11)

2 Modifying fuzzy sets

2.1 Basic operations on fuzzy sets

Let’s examine a fuzzy set A. In ordinary set theory, we can do several things with sets. (Think of
complements, unions, intersections and such.) We can extend these ideas to fuzzy sets. First, let’s
examine the complement Ā of A. The common definition for Ā is that, for all x ∈ X, we have

µĀ(x) = 1− µA(x). (2.1)

To define the intersection C = A ∩ B between two sets A and B, we need a t-norm T (a, b) such that
µC(x) = T (µA(x), µB(x)) for all x ∈ X. Such a t-norm must satisfy the following conditions.

T (a, 1) = a, (2.2)
b ≤ c ⇒ T (a, b) ≤ T (a, c), (2.3)

T (a, b) = T (b, a), (2.4)
T (a, T (b, c)) = T (T (a, b), c). (2.5)
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The most commonly used t-norms are the standard intersection (also known as the minimum) and
the algebraic product, which are respectively defined as

T (a, b) = min(a, b) and T (a, b) = ab. (2.6)

The minimum is the largest possible t-norm.

To define the union C = A ∪ B between two sets A and B, we need a t-conorm S(a, b) such that
µC(x) = S(µA(x), µB(x)) for all x ∈ X. Such a t-conorm must satisfy the following conditions.

S(a, 0) = a, (2.7)
b ≤ c ⇒ S(a, b) ≤ S(a, c), (2.8)

S(a, b) = S(b, a), (2.9)
S(a, S(b, c)) = S(S(a, b), c). (2.10)

The most commonly used t-conorms are the standard union (also known as the maximum) and the
algebraic sum, which are respectively defined as

S(a, b) = max(a, b) and S(a, b) = 1− (1− a)(1− b) = a + b− ab. (2.11)

The maximum is the smallest possible t-norm.

We can also change fuzzy sets by using hedges. Let’s suppose that the fuzzy set A indicates expensive
cars. If some element x (say, x = 10,000 euros) has a low membership degree, it is not expensive.
But if its membership degree is high, it is expensive. How can we find the set B that indicates very
expensive cars or the set C that indicates mildly expensive cars? There are two methods. We can use
shifted hedges: we shift the membership function along the domain. So, µB(x) = µA(x − 5, 000) and
µC(x) = µA(x + 3000). We can also use powered hedges: µB(x) = µA(x)2 and µC(x) =

√
µA(x).

2.2 Modifications of fuzzy sets

Let’s examine some domain X and another domain Y . We can define a fuzzy set A in X or in Y , but we
can also define it in X × Y . We then have to define µA(x, y) for every combination x ∈ X, y ∈ Y . The
same can be done for higher-dimensional spaces. Such spaces are known as Cartesian product spaces.

Let’s examine some Cartesian product spaces U , U1 and U2 with U1 ⊆ U ⊆ U1 × U2. (In other words,
U1 and U2 together encompass U , which in turn encompasses U1.) We also have some set A defined in
U . We can now find the projection of A onto U1 using

projU1
(A) =

{
sup
U2

µA(u)/u1|u1 ∈ U1

}
. (2.12)

In other words, for each set of parameters of U1, we browse through all combinations of the parameters
of U2 and look for the one with the highest value of µA(u)/u1.

Again, examine Cartesian product spaces U , U1 and U2 with U1 ⊆ U ⊆ U1×U2. But now, we have a set
A defined on U . We can find the cylindrical extension to U1 using

extU (A) = {µA(u1)/u|u ∈ U} . (2.13)

It is important to note that, with a projection, you go to a lower-dimensional space. This generally results
in a loss of data. However, with a cylindrical extension, you go to a higher-dimensional space. You now
do not lose data.

Let’s examine two fuzzy sets A1 and A2, defined on domains X1 and X2, respectively. We would like to
take the intersection between the two sets. But, because the two sets are defined on different domains,
we can’t do this using the normal definition. As a solution, we use cylindrical extensions. So,

A1 ×A2 = extX2(A1) ∩ extX1(A2) ⇒ µA1×A2(x1, x2) = T (µA1(x1), µA2(x2)). (2.14)
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2.3 Fuzzy relations

A fuzzy relation R is a fuzzy set in the Cartesian product space X1 ×X2 × . . . ×Xn. This fuzzy set
has a membership function µR(x1, x2, . . . , xn) which gives a value between 0 and 1 (inclusive) for all
combinations of parameters x1, x2, . . . , xn.

Now let’s examine a fuzzy relation R in X × Y and a fuzzy set A in X. We can find a fuzzy set B in Y
through the composition of A and R:

B = A ◦R = projY (R ∩ extX×Y (A)) . (2.15)

We thus extend A to X × Y , intersect it with R, and then project the result on Y . It can be shown that
the membership function of B now satisfies

µB(y) = max
x

min(µA(x), µR(x, y)). (2.16)
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