
Fuzzy models

We can use fuzzy logic to build fuzzy models. In this chapter, we examine how this works.

1 Types of fuzzy models

A static/dynamic systems which makes use of fuzzy sets is called a fuzzy system. Most common are
fuzzy systems defined by if-then rules. These are called rule-based systems, also known as fuzzy
models. An if-then rule generally takes the form of

If antecedent proposition then consequent proposition. (1.1)

The antecedent proposition is always a fuzzy proposition of the type ‘x is A’, where x is a linguistic
variable and A is a linguistic constant. (For example, it can be ‘if Temperature is high then . . ..) The
structure of the consequent proposition, however, depends on the model we use.

• In a linguistic fuzzy model, both the antecedent and the consequent are fuzzy propositions.
• The fuzzy relational model is an extension of the linguistic fuzzy model. Now, a fuzzy antecedent

can be coupled to multiple fuzzy propositions at the same time.
• In the Takagi-Sugeno (TS) fuzzy model, the consequent is a crisp function of the antecedent

variables.

2 The linguistic fuzzy model

2.1 Properties of the linguistic model

As we just saw, in a linguistic fuzzy model, relations take the form of

Ri : if x is Ai then y is Bi. (2.1)

A linguistic variable L (for example ‘Temperature’) is defined as a set L = (x,A, X, g,m). Here, x is
the base variable, having the same name as the linguistic variable. A is the set of linguistic terms
(for example ‘cold’, ’normal’ and ‘warm’). X is the domain of x (for example, [−273,∞)). Finally, g is a
syntactic rule for generating linguistic terms and m is a semantic rule that assigns to each linguistic
term its meaning. The latter two are in a way just formalities: we won’t consider them here.

It is often required that a linguistic term satisfies properties of coverage and semantic soundness. Cov-
erage means that each domain element x ∈ X is assigned to at least one fuzzy set Ai. (For example,
there isn’t a single temperature which is not either ‘cold’, ‘normal’ or ‘warm’.) A stronger requirement is
ε-coverage. This demands that each domain element x ∈ X is at least assigned to one fuzzy set Ai with
µAi(x) > ε. Next to this, semantic soundness relates to how well a system can distinguish between
different variables x. (For example, if a system can’t find the difference between a low temperature of 0◦

C and a low temperature of 5◦ C, then it is doesn’t have a lot of semantic soundness.)

2.2 Inference in the linguistic model

Inference in fuzzy rule-based systems is the process of deriving a fuzzy output set given the rules and
the inputs. Each rule Ri can be seen as a fuzzy relation R : (X × Y ) → [0, 1] such that

µr(x,y) = I(µA(x), µB(y)). (2.2)

1



The I operator can be either a fuzzy implication or a conjuction operator (t-norm). Fuzzy implication
is used when the rule has the form ‘A implies B’. Examples of fuzzy implications are the Lukasiewicz
implication and the Kleene-Diene implication, respectively defined as

I(µA(x), µB(y)) = min(1, 1−µA(x)+µB(y)) and I(µA(x), µB(y)) = max(1−µA(x), µB(y)). (2.3)

Alternatively, conjunction is used is when A∧B. That is, when A and B simultaneously hold. Examples
of t-norms are the minimum (also often referred to as the Mamdani ‘implication’ and the Larsen
‘implication’, respectively defined as

I(µA(x), µB(y)) = min(µA(x), µB(y)) and I(µA(x), µB(y)) = µA(x) · µB(y). (2.4)

So how do we use this? Well, let’s suppose we have a rule if x is Ai then y is Bi and we also know that
x is A′, then we can find the set B′ satisfying y is B′ using

B′ = A′ ◦R. (2.5)

The question remains, what do we do if we have multiple rules/relations Ri? In that case we have to
join them somehow to some joined relation R. When dealing with implications, we do this using an
intersection, like

R =
K⋂

i=1

Ri meaning that µR(x,y) = min
1≤i≤K

µRi
(x,y). (2.6)

If, however, we are dealing with conjunction, then the aggregated relation R is the union of the individual
relations Ri. So,

R =
K⋃

i=1

Ri meaning that µR(x,y) = max
1≤i≤K

µRi
(x,y). (2.7)

Again, the output set B′ is found in the same way, by using B′ = A′ ◦R.

2.3 Max-min Mamdani inference

In the previous method of inference, we had to use relations R. When the domains X and Y get very
big, this will become rather complicated. But luckily, the relational calculus can be bypassed by using
max-min (Mamdani) inference. In Mamdany inference, we can find the output using

µB′(y) = max
1≤i≤K

(
max

X
(µA′(x) ∧ µAi(x)) ∧ µBi(y)

)
= max

1≤i≤K
(βi ∧ µBi(y)) . (2.8)

In this equation, we have defined the degree of fulfillment βi as

βi = max
X

(µA′(x) ∧ µAi(x)) . (2.9)

Basically, this number is an indication of how much A′ and Ai are alike. A big advantage of the Mamdani
method is that it does not require discretization of the domain. It can thus work with analytically defined
membership functions.

2.4 Defuzzification

We now know how to find an output fuzzy set B′, based on fuzzy rules. But usually, we don’t want to
know that some parameter y belongs to a fuzzy set B′. Instead, we want to know a value y′. The process
of finding a value y′ from the knowledge that y is B′ is called defuzzification.

2



There are two commonly used defuzzification methods: the center of gravity method and the mean of
maxima method. In the center of gravity (COG) method, we calculate the y-coordinate of the center
of gravity of the fuzzy set B′. This is done according to

y′ = cog(B′) =

∑F
j=1 µB′(yj)yj∑F
j=1 µB′(yj)

=

∫
Y

µB′(y)y dy∫
Y

µB′(y)
. (2.10)

The first part of the above equation is used for discretized domains Y , whereas the second part is used
for continuous domains Y .

In the mean of maxima (MOM) method, we find all points where µB′(y) is at its maximum. We
then take the mean of all these points. In mathematical notation, we then have

y′ = mom(B′) = cog
({

y|µB′(y) = max
y∈Y

µB′(y)
})

. (2.11)

In a way, the MOM method selects the ‘most probable’ output. It is often used with inference based
on fuzzy implications. On the other hand, the COG method is usually used together with Mamdani
inference.

Finally, there is also a third defuzzification, called fuzzy-mean defuzzification. It is often used after
Mamdani inference, to avoid the integration step from the COG method. When applying this method,
first the consequent fuzzy sets Bj are found, using

µBj
(y) = (βi ∧ µBi

(y)) . (2.12)

Instead of first using µB′(y) = max µBj
(y) and then applying defuzzification, we now first apply defuzzi-

fication using bj = mom(Bj). Now, a crisp output y′ is obtained by taking the weighted average of bj .
So,

y′ =

∑M
j=1 ωjbj∑M
j=1 ωj

, where ωj = µB′(bj). (2.13)

The weight ωj is thus the maximum of the degrees of fulfilment βi over all rules Ri with consequent Bj .
In this way, an integration over the domain is avoided.

2.5 Rules with several inputs

Previously, we have considered multivariate membership functions µA(x). Sometimes, it may be conve-
nient to use univariante membership functions µA(x). But what do we do then if we still have multiple
variables x1, . . . , xn? In this case, we simply add them together in the antecedent. This gives us the
conjunctive form of the antecedant:

Ri : if x1 is Ai1 and . . . and xin is Ain then y is Bi. (2.14)

This is, in fact, a special case of our previous multivariate rules. In fact, if we use Ai = Ai1 × . . .×Ain,
and insert this into the normal multivariate rule, then we get exactly the same result. As such, the
possibilities of the conjunctive form are limited. Also, it is often necessary to define a lot of rules. For
every combination of x1, . . . , xn, a rule is necessary.

One way in which the number of rules can be reduced, is by using additional logical connectives, like
‘or’ and ‘not’. In this way, a rule can be defined like

Ri : if x1 is not Ai1 or xi2 is Ai2 then y is Bi. (2.15)

In this way, less rules are required than in the conjunctive form. Yet still, this method allows for fewer
possibilities than the multivariate rule form. So, the multivariate rule form is the most general form you
can use.
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3 Other kinds of fuzzy models

3.1 The singleton model

A special case of the linguistic fuzzy model is the singleton model. It is obtained when the consequence
fuzzy sets Bi are singleton sets. In this case, we can write the rules as

Ri : if x is Ai then y is bi. (3.1)

For the singleton method, defuzzification simply means applying the fuzzy-mean method. So we have

y =
∑K

i=1 βibi∑K
i=1 βi

. (3.2)

We can also generalize the singleton model to a class of functions called the basis functions expansion.
We now have

y =
K∑

i=1

φi(x)bi. (3.3)

So, for the singleton model, φi(x) is simply the normalized degree of fulfillment of the rule antecedents.

3.2 The fuzzy relational model

The fuzzy relational model is an expansion of the linguistic model. In the linguistic model, y always
belonged to a certain linguistic term. (e.g. we had y is Fast.) In the relational model, y can also partly
belong to multiple linguistic terms. So, an example of a rule might be

if x1 is Low and x2 is High then y is Cold (0.9), y is Normal (0.2), y is Warm (0.0). (3.4)

Let’s denote the set of linguistic terms of antecedent variable xj by Aj . The set of all combinations of
linguistic variables x1, . . . , xn is now denoted by A = A1 × . . .×An. Similarly, we can denote the set of
linguistic terms of consequent variable y by B. The fuzzy relational model can now be seen as a fuzzy
relation

R : A× B → [0, 1]. (3.5)

The relation R can be represented by a matrix. The elements rij of this matrix now equal the numbers
denoted in parantheses in the rules.

It is important to note the difference between the matrix R for the linguistic model and the matrix R for
the relational model. In the linguistic model, R denoted the degree of association between elements from
X and Y (that is, from the input and the output space). However, in the relational model R denotes the
association between the linguistic terms of the input and the output.

So how does inference work in the relational model? Well, we first compute the degree of fulfillment of
the rules. This still goes according to

βi = µAi1(x1) ∧ . . . ∧ µAin(xn). (3.6)

Now, we can find the degree ωj to which y belongs to class Bj . This is done using ω = β ◦ R or,
equivalently,

ωj = max
1≤i≤K

(βi ∧ rij) . (3.7)

Finally, we need to find the defuzzified output y. For that, we simply take the weighted mean of the
classes Bj . So,

y =

∑M
j=1 ωjbj∑M
j=1 ωj

. (3.8)
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Here, bj = cog(Bj) is the centroid of Bj .

The main advantage of the relational model is that the input-output model can be fine-tuned without
changing the consequent fuzzy sets. Instead, you can simply adjust the values of rij in the rules of the
fuzzy system.

3.3 The Takagi-Sugeno model

The Takagi-Sugeno (TS) model uses crisp functions as consequents. Basically, a rule has the form

Ri : if x is Ai then y = fi(x). (3.9)

If the function fi(x) has an affine form (so fi(x) = ai
T x + bi), then the model is called an affine TS

model. To apply inference with the Takagi-Sugeno model, we simply use the fulfillment degrees. So,

y =
∑K

i=1 βiyi∑K
i=1 βi

=
∑K

i=1 βifi(x)∑K
i=1 βi

=
∑K

i=1 βi

(
ai

T x + bi

)∑K
i=1 βi

. (3.10)

3.4 Dynamic fuzzy systems

Let’s examine a time-invariant system. We can model such a system using

x(k + 1) = f(x(k),u(k)), (3.11)

where x(k) is the state, u(k) is the input and f is the state transition function. We can use a fuzzy
model to approximate f . However, it is usually hard to do this, since we can’t always measure the state x.
So instead, we usually use a fuzzy model to approximate the output y of the system. In the dynamic
TS model this is done according to rules of the form

if y(k) is Ai1 and y(k − 1) is Ai2 and . . . and y(k − ny + 1) is Ainy
(3.12)

and u(k) is Bi1 and u(k − 1) is Bi2 and . . . and u(k − nu + 1) is Binu
(3.13)

then y(k + 1) =
ny∑
j=1

aijy(k − j + 1) +
nu∑
j=1

biju(k − j + 1) + ci. (3.14)

The values of nu and ny (i.e. how far we look back in time for the input/output) depend on the order of
the dynamic system.
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