
Fuzzy clustering

Let’s suppose that we have a lot of object, and we’ve made some measurements of these objects. Can
we now divide these objects into groups called clusters? And if so, how do we do this using fuzzy logic?
That is what this chapter is about.

1 Types of clustering

1.1 The data set

Let’s suppose that we have N objects (e.g. pieces of fruit). Of each of these objects, we make n
measurements (e.g. size, weight, etcetera). These measurements are also called features or attributes.
The set of measurements of one object, zk = [z1k, . . . , znk]T , is called a sample, a pattern or simply an
object. We can also put all measurements in a matrix. We then get the data matrix Z = [z1 . . . zN].

To divide objects into clusters, we often make use of (dis)similarity measures. One well-known example
of a dissimilarity measure is the Euclidian distance ||zj − zi||, but we’ll consider more later. Based on
the similarity measures, objects are divided into clusters. How exactly this can be done will be discussed
later in this chapter.

1.2 Hard clustering

There is an important distinction between hard clustering and fuzzy clustering. In hard clustering we
make a hard partition of the data set Z. In other words, we divide them into c ≥ 2 clusters (with c
assumed known). With a partition, we mean that

c⋃
i=1

Ai = Z and Ai ∩Aj = ∅ for all i 6= j. (1.1)

Also, none of the sets Ai may be empty.

To indicate a partitioning, we make use of membership functions µik. If µik = 1, then object i is in
cluster k. Alternatively, if µik = 0, then object i is not in cluster k. Based on the membership functions,
we can assemble the partition matrix U, of which µik are the elements. Finally, there is the rule that

c∑
i=1

µik = 1. (1.2)

In other words, every object is only part of one cluster. Thus, every column of U has only a single 1.
The set of all hard clusterings U that can be obtained with hard clustering is now denoted as Mhc.

1.3 Fuzzy clustering

Hard clustering has a downside. When an object roughly falls between two clusters Ai and Aj , it has to
be put into one of these clusters. Also, outliers have to be put in some cluster. This is undesirable. But
it can be fixed by fuzzy clustering.

In fuzzy clustering, we make a fuzzy partition of the data. Now, the membership function µik can
be any value between 0 and 1. This means that an object zk can be for 0.2 part in Ai and for 0.8 part
in Aj . However, requirement (1.2) still applies. So, the sum of the membership functions still has to be
1. The set of all fuzzy partitions that can be formed in this way is denoted by Mfc.

1

Fuzzy partitioning again has a downside. When we have an outlier in the data (being an object that
doesn’t really belong to any cluster), we still have to assign it to clusters. That is, the sum of its
membership functions still must equal one. In possibilistic partitioning, this requirement (1.2) is
relaxed. Instead, it is only required that for every object we have µik > 0 for some cluster Ak. The set
of all possibilistic partitions that can be formed in this way is denoted by Mpc.

2 The fuzzy c-means clustering method

2.1 The goal of the fuzzy c-means clustering method

Given a data set Z, how do we find a good fuzzy clustering U ∈ Mfc? For that, we have to use a clustering
algorithm. One of the most-used algorithms is fuzzy c-means clustering which we will examine in this
part. In the fuzzy c-means clustering method, we try to minimize the cost function called the fuzzy
c-means functional, being

J(U,V|Z) =
c∑

i=1

N∑
k=1

(µik)m||zk − vi||2A. (2.1)

In this equation, V = [v1, . . . ,vc] is a vector of cluster prototypes (centers) and m is a constant. Also,
we have

D2
ikA = ||zk − vi||2A = (zk − vi)T A(zk − vi). (2.2)

2.2 The fuzzy c-means clustering algorithm

So how do we minimize the cost function? Well, we start by taking a random partition matrix U(0) ∈ Mfc.
We then continue doing the following steps.

1. We compute the weighted means of the clusters using

vi
(l) =

∑N
k=1

(
µ

(l−1)
ik

)m

zk∑N
k=1

(
µ

(l−1)
ik

)m . (2.3)

2. We compute the distances D2
ikA using D2

ikA = ||zk − vi
(l)||2A.

3. We update the partition matrix U. For all objects k, we define the new measurement functions µ
(l)
ik

as
µ

(l)
ik =

1∑c
j=1

(
DikA

DjkA

) 2
m−1

. (2.4)

However, a problem occurs if D2
ikA = 0. (This can occur if zk = v(l)

i for some k, i or if A is a
singular matrix.) Let’s suppose that there are q clusters Ai for which D2

ikA = 0. We then simply
give all these clusters a membership degree of µ

(l)
ik = 1/q. All the other clusters (with D2

ikA > 0)
get a membership function of µ

(l)
ik = 0.

We repeat the above iteration until the partition matrix U doesn’t really change anymore. That is, until
||U(l) −U(l−1)|| < ε for some norm ||.|| and for some defined ε. (Often ε = 0.01 or ε = 0.001 works well
enough, depending on the trade-off between run-time and accuracy.)

2

2.3 Properties of the fuzzy c-means clustering method

There are several important things to know about fuzzy c-means clustering. First of all, it converges to
a local minimum. (This depends on the initialization of U.) So, to make sure that a good clustering is
obtained, the algorithm needs to be run several times for different initializations U.

It is also important to set the parameters of the algorithm right. The most important one is the number
of clusters c. Sometimes, this is obvious. But often it is not. To test whether a clustering has the right
number of clusters, you can look at a validity measure like the Xie-Beni index

ξ(U,V|Z) =
∑c

i=1

∑N
k=1(µik)m||zk − vi||2

c ·mini 6=j (||vi − vj||)
. (2.5)

The upper side of the fraction can be seen as the ‘average distance within the cluster’, while the bottom
side is an indication of the ‘distance between clusters’. A small index is positive. So, if we simply run
the algorithm for different numbers of clusters c, then we can select the solution with the smallest index.

Another important parameter is the fuzziness parameter m. If m = 1, then we wind up with a hard
clustering. However, if m → ∞, we wind up with a very fuzzy clustering µik = 1

c for all i, k. Usually,
m = 2 offers a good compromise, though this number can be varied during subsequent runs of the
algorithm.

The norm-inducing matrix mainly determines the shapes of the clusters. If A = I, then we are using
a Euclidian norm. The shape of the clusters will be circular. Alternatives are the diagonal norm and
the Mahalanobis norm, which respectively use

A =

1

σ2
1

0 · · · 0

0 1
σ2
2

· · · 0
...

...
. . .

...
0 0 · · · 1

σ2
n

 and A = R−1 =

(
1
N

N∑
k=1

(zk − z̄)(zk − z̄)T

)−1

. (2.6)

Here, the parameters σ2
i are the variances of the matrix Z in direction i. Both the diagonal norm and the

Mahalanobis norm will result in clusters with ellipsoidal shapes. However, the fundamental difference is
that, with the diagonal norm, the axes of the ellipses are aligned with the main axes. When using the
Mahalanobis norm, the axes are arbitrary.

2.4 An extension of the fuzzy c-means method

The downside with using a single matrix A is that all clusters will have the same shape and orienta-
tion. When there are clusters with different shapes, this will be undesirable. The Gustafson-Kessel
algorithm is an extension of the fuzzy c-means method which gets rid of this downside.

The main idea is that, instead of using the same matrix A all the time, we use a different matrix Ai to
calculate the norm D2

ikAi
. Now, also an optimum for the matrix Ai needs to be found. This does give

rise to a problem though. If we minimize the cost function J right away, then the matrices Ai simply
go to zero. We thus need to constrain them in some way. Usually, det(Ai) = |Ai| = ρi is used as a
constraint. Here the choice of values for ρi depends on earlier experience. If this experience is lacking,
ρi = 1 is simply chosen.

So how can this be implemented in the algorithm? Well, we simply replace step 2 by the following. We
first calculate the fuzzy covariance matrix Fi for all clusters i using

Fi =

∑N
k=1

(
µ

(l−1)
ik

)m

(zk − vi)(zk − vi)T∑N
k=1

(
µ

(l−1)
ik

)m . (2.7)

3

Now, the improved value of Ai can be found using

Ai = (ρi det(Fi))
1
n Fi

−1. (2.8)

This matrix Ai is then used to compute the distance norm D2
ikAi

after which the algorithm proceeds as
normal.

The matrices Fi are quite important. In fact, the shapes of the clusters depend on them. The main axes
of the ellipses are denoted by the eigenvectors φij of Fi. The sizes of the ellipses in these directions are
proportional to

√
λij , with λij the eigenvalue corresponding to the eigenvector φij.

4

