
Building fuzzy systems and controllers

A fuzzy system is a system that makes use of fuzzy logic. In this chapter, we’re going to examine how
to build such a system. We also look at the working principles of fuzzy controllers.

1 Construction of fuzzy systems

1.1 Basic fuzzy system construction

When building a fuzzy system, the first thing that needs to be defined is the structure of the system.
This structure consists of the following parts.

• The number and type of input and output variables.
• The structure of the rules. That is, the kind of fuzzy model that is used.
• The number of linguistic variables and the number and type of membership functions for

each variable. (E.g. whether triangular or trapezoidal membership functions are used.)
• The type of inference mechanism that is used.
• The defuzzification method.

Once the structure has been set up, the available knowledge should be formulated as a set of ‘if-then’
rules. This then results in a fuzzy system. But it’s not done yet. Based on available test data, the
parameters of the system can be fine-tuned. (With parameters, we mainly mean the parameters of the
membership functions, like the position of the top at the triangular membership function and such. But
in some models, the if-then rules also have parameters.) Finally, the system needs to be evaluated. If it
does not meet the expectations, then a new system should be created with a somewhat different structure.

1.2 The least-squares estimation of consequents

Let’s suppose that we are using an affine Takani-Sugeno model. So we have a set of K rules with
consequents of the form y = ai

T x + bi. We need to set these parameters ai and bi. This can be
done by using a set of N input-output data pairs (xi, yi). We can put these pairs into an input matrix
X = [x1, . . . ,xN]T and an output vector y = [y1, . . . , yN ]T . Now, because the models are linear, we can
use the least-squares method to find optimal values for ai and bi.

First, let’s define the matrix Γi as the N×N diagonal matrix having the normalized membership degrees
γi(xj) on its diagonal. We also append the matrix X with a column of ones to get Xe = [X 1]. Now,
define the matrix X′ as

X′ =
[
Γ1Xe Γ2Xe . . . ΓKXe

]
. (1.1)

The consequent parameters, which need to be found, are put into one big vector, being

θ =
[
a1

T b1 a2
T b2 . . . aK

T bK

]
. (1.2)

The least-squares equation which we want to solve is y ≈ X′θ. The solution for θ is thus given by

θ =
(
(X′)T X′)−1

(X′)T y. (1.3)

This trick can also be used for the singleton model. But now we simply omit ai and set Xe = 1.

1



1.3 Defining linguistic terms and membership functions

It is often difficult to choose which linguistic terms to use and which membership functions to give them.
In template-based modeling, we use a simple technique. We simply define a set of K linguistic terms
Ai. The membership functions of Ai are now distributed such that the whole interval of possible inputs
x is covered. Every membership function Ai then gets its own if-then rule.

The question remains how to distribute the membership functions. If no knowledge on the system is
present, the functions are distributed evenly over the interval. The big downside of the template-based
modeling now is that the number K of linguistic terms may grow very fast.

Another way to define rules is by using fuzzy clustering. We simply take N samples of data and divide
them over K fuzzy sets Ai using a fuzzy clustering technique. Now we can define K rules; one for each
fuzzy cluster Ai. When also the Takagi-Sugeno model is applied, we will get rules like

if x is Ai then y = aix + bi. (1.4)

1.4 Applying fuzzy system construction to systems

Let’s suppose that we have some system in which the output y(t + 1) can be modeled as

y(t + 1) = f(y(t), y(t− 1), u(t), u(t− 1)). (1.5)

Such a model is called a second-order NARX model. In the above equation, y(t + 1) is called the
regressand, while y(t), y(t − 1), u(t) and u(t − 1) are the regressors. We can define the regressor
matrix X and the regressand vector y up to time Nd as

X =


y(2) y(1) u(2) u(1)
y(3) y(2) u(3) u(2)

...
...

...
...

y(Nd − 1) y(Nd − 2) u(Nd − 1) u(Nd − 2)

 and y =


y(3)
y(4)

...
y(Nd)

 . (1.6)

Now we can construct our fuzzy system in one of the normal ways. So we see that fuzzy systems can also
be used to approximate system dynamics.

Sometimes we can help the fuzzy system a bit. Let’s suppose that we have some system y = f(x). We
also know, thanks to physical insights, that the output y is roughly proportional to x2. In this case,
it might be better to use x2 as input instead of x. (Fuzzy systems are better at approximating linear
functions than they are at approximating quadratic functions.) So, by simply changing the input of the
system, the performance will most likely increase. This trick of using physical insights to give the system
an easier job is called semi-mechanistic modeling.

2 Construction of fuzzy controllers

2.1 Why use fuzzy controllers?

In convential control theory, we use mathematical models to design a controller. However, if it is hard to
obtain a model, or if the system is highly nonlinear, this approach doesn’t work so well. Luckily, fuzzy
models can be used to approximate nonlinear functions. So, we can make a fuzzy controller! A fuzzy
controller is a controller that contains a mapping that has been defined using if-then rules.

In the world of control systems, a lot of systems are nonlinear. So, the demand for nonlinear control
methods is big. Such methods need to have several properties. First of all, it would be nice if they don’t

2



need too many input variables to obtain good results. Also, the method needs to be able to deal with
nonlinearities well, it should have a good learning/training rate, it should not be too computationally
intensive, and several more criteria need to be met. Fuzzy logic is a method that performs quite well on
these criteria.

2.2 The Mamdani controller

Several types of fuzzy controllers exist. One important example is the Mamdani controller. It is
usually used as a feedback controller.

As input, the Mamdani controller generally receives the error signal e. This error signal is then processed
by dynamic pre-filters. These pre-filters often scale the data, for example to put it on the normalized
interval [−1, 1]. Also, dynamic filtering is often applied, where quantities like ė and

∫
e are derived.

Other pre-filtering methods can be applied as well. The resulting parameters are then fed into the part
of the fuzzy controller known as the static map. The output of the static map is then fed to dynamic
post-filters. These filters can again scale the data and/or apply dynamic filtering.

Let’s take a closer look at the static map. It is important to define it properly. So, we’re going to look
at the individual steps needed to design the static map.

• First, the necessary inputs and outputs need to be selected. For conventional linear controllers, it
can be advantageous to use integral or derivative gains. Similarly, for fuzzy logic, it can sometimes
be advantageous to also use parameters like ė,

∫
e and/or others as inputs. However, things can

get complicated if too many input variables are used. If this is the case, then it may be worthwhile
to split up the system into several subsystems and let the output from one subsystem be the input
to the other.

• Second, the number of linguistic terms for every input variable needs to be set. If too few terms
are used, then the fuzzy system doesn’t have a lot of flexibility – it can’t approximate all kinds of
functions. However, if too many linguistic terms are used, the rule base will become rather big.

• For every linguistic term, a membership function needs to be selected. For computational
reasons, triangular and trapezoidal functions are usually preferred to bell-shaped functions.

• A very important step is to design the rule-base. This is generally done based on the knowledge
of an expert. Also, a model of the system may be used.

• Finally, the fuzzy controller needs to be tuned. This step is just as important as the tuning of the
gains in a conventional PID controller. The tuning of a fuzzy controller can be difficult because
sometimes, by changing only one variable, the whole system changes. But luckily, the effects of
changing parameters in a fuzzy controller are usually quite localized.

2.3 The Takagi-Sugeno controller and supervisory control

The Takagi-Sugeno fuzzy controller is somewhat similar to gain scheduling. Rules now take the form

if e is Low then u = aie + bi (2.1)

or something similar. Each rule is valid for only a small region of the controller’s input space. So, every
region of the controller’s input space more or less has its own control law. The general controller then
simply interpolates between these control laws.

Something entirely different is the supervisory controller: it is a secondary controller. It augments an
existing (conventional) controller. To do this, the supervisory controller usually defines certain parameters
of the existing controller. For example, it may define the proportional and derivative gains Kp and Kd of
a conventional PID controller, based on the current state of the system. Rules can thus take the form of

if process output is High then reduce Kp Slightly and increase Kd Moderately. (2.2)

3


