
Artificial neural networks

Artificial neural networks (ANNs) are imitations of biological neural networks, like our brains. They
can be very adept at approximating nonlinear functions, even when only few training data is available.
How they do this, and how they can be trained, will be examined in this chapter.

1 The structure of a neural network

1.1 The neuron

The basic building block of an ANN is a neuron. A neuron has several inputs xi. Each of these inputs is
multiplied by a weight wi and then added up. Often, a bias b is added as well. The result is the neuron’s
activation z. So,

z =
p∑

i=1

wixi = wT x or z =
p∑

i=1

wixi + b =
[
wT b

] [
x
1

]
. (1.1)

From the above equation, it can be seen that adding a bias b works the same as adding an additional
input with weight b and value 1. So, we will simply use z = wT x in the remainer of this chapter.

Once the neuron’s activation z has been obtained, it is fed into the activation function σ(z). This
function returns a value on the interval [−1, 1] (or alternatively sometimes on the interval [0, 1]). Which
activation function is used depends on the ANN designer’s choice. Common activation functions are the
threshold function and the sigmoidal function, respectively defined as

σ(z) =

{
0 for z < 0
1 for z ≥ 0

and σ(z) =
1

1 + exp(−sz)
. (1.2)

The parameter s determines how ‘steep’ the sigmoid function is. If s → ∞, then the threshold function
is again obtained. But often s = 1 is simply chosen. The output of the activation is then the output of
the neuron.

1.2 Neural network architecture

An artificial neural network consists of interconnected neurons. (That is, the output of one neuron is fed
as input to the next neuron.) The neurons are usually assembled in layers. In a feedforward network,
the neurons of every layer are connected to the next layers. On the other hand, in recurrent networks,
neurons are also connected to previous layers as some sort of ‘feedback mechanism’. We will mainly
consider feedforward networks though, because they are relatively simple.

ANNs always have an input layer (at the start) and an output layer (at the end). Often, there are
also hidden layers in between. Most of the times, only one hidden layer is used. The reason is that
multiple hidden layers make the neural network computationally quite complex. Also, one hidden layer
is already capable of approximating any continuous function. That is, as long as there is a sufficient
number of hidden neurons in it.

Choosing the right number of hidden neurons in the hidden layer is very important, but also very difficult.
If you use too few neurons, then the neural network can’t approximate the desired output function well
enough. If, however, you use too many neurons, then overtraining can occur: the system only works on
the few test samples that have been provided, but is useless for any other input. Generally, the number of
hidden neurons primarily depends on the number of training samples (more training samples implies that
more neurons can be used) and the complexity of the output function (more complex output functions
often require more neurons).
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1.3 Finding the output of a neural network

Let’s suppose that we have an ANN with 1 hidden layer. Given an input xi, how do we find the output
yi of this network?.

Well, we start with the input xi. The input layer doesn’t really do anything with this input. It only
passes it on to every neuron of the hidden layer. The activation of one hidden neuron j can then be found
using zj = wh

j

T
x. But we usually have multiple (N) input samples xi and multiple (p) hidden neurons

j. So, we can define

X =


x1

T

x2
T

...
xN

T

 , Wh =


wh

1
T

wh
2

T

...
wh

p
T

 and Z =


z11 z12 · · · z1p

z21 z22 · · · z2p

...
...

. . .
...

zN1 zN2 · · · zNp

 . (1.3)

The element zij of Z thus denotes the activation of hidden neuron j to input sample xi. Now we can
simply find the hidden layer activation Z, the hidden layer output V and the system output Y using

Z = XWh, V = σ(Z) and Y = σ(VWo). (1.4)

Here, we have Y =
[
y1 y2 · · · yN

]T

. Also, the output layer weights Wo are defined similarly as

the hidden layer weights Wh.

2 Training neural networks

Before ANNs work, they need to be trained. That is, their weights (and biases) need to be set such
that certain inputs give certain outputs. So, let’s suppose that we have a set of inputs X with desired
outputs D. How do we find the right weights? Several techniques exist. One of the simplest is the
backpropagation technique. Let’s examine it.

2.1 Backpropagation – the output layer

First, we randomly initialize the neural network. We then take an input x and find the resulting output
y. We compare this with the desired output d and calculate the error e = d − y. Our goal now is to
minimize the cost function

J =
1
2

∑
l

e2
l . (2.1)

First, let’s focus on minimizing the contribution of the output layer. For simplicity, we assume that the
output layer has no activation function. So, we simply have yl =

∑
j wo

jlvj . We now adjust the weights
of the output layer using the update rule

wo
jl(n + 1) = wo

jl(n)− α(n)
∂J

∂wo
jl

. (2.2)

Here, α(n) is the learning rate. To find the Jacobian ∂J/∂wo
jl, we can use the chain rule. So,

∂J

∂wo
jl

=
∂J

∂el

∂el

∂yl

∂yl

∂wo
jl

. (2.3)
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These three partial derivatives are all relatively easy to find. We have

∂J

∂el
= el,

∂el

∂yl
= −1 and

∂yl

∂wo
jl

= vj . (2.4)

Thus, the update rule for the output layer weights becomes

wo
jl(n + 1) = wo

jl(n) + α(n)vjel. (2.5)

2.2 Backpropagation – the hidden layer

A similar principle is applied when adjusting the weights for the hidden layer. But now the Jacobian is
given by

∂J

∂wh
ij

=
∂J

∂vj

∂vj

∂zj

∂zj

∂wh
ij

. (2.6)

Finding the partial derivatives now is a bit more difficult. But, after some computation, we can find that

∂J

∂vj
=

∑
l

(
∂J

∂el

∂el

∂yl

∂yl

∂vj

)
=

∑
l

−elw
o
jl,

∂vj

∂zj
= σ′j(zj) and

∂zj

∂wh
ij

= xi. (2.7)

These data result in the update law for hidden neuron weights, being

wh
ij(n + 1) = wh

ij(n) + α(n)xiσ
′
j(zj)

∑
l

elw
o
jl. (2.8)

By using this equation, the weights of the hidden layer are adjusted.

When using the backpropagation technique, you usually use a set of N test samples (xi,di) to adjust
the weights. The presentation of the whole training set to the system is called an epoch. Multiple
epochs are necessary before the backpropagation algorithm converges to a minimum. However, since
backpropagation is a gradient descent method, it is quite likely that the resulting minimum is a local
minimum. This is a significant downside of the backpropagation method.

2.3 The radial basis function network

An other type of neural network is the radial basis function network (RBFN). This network has
a hidden layer. However, the neurons in this hidden layer don’t have weights. Also, there is no real
activation function. Instead, a radial basis function (RBF) φi(r) is used. A common RBF is the
Gaussian function

φi(r) = exp
(
− r2

ρ2
i

)
, where r = ||x− ci||. (2.9)

The output layer does have weights, but it does not have an activation function. The output of an output
node is thus given by

yj =
n∑

i=1

wijφi (||x− ci||) . (2.10)

If we put the outputs of the RBFs in a row vector V = [φ1(r) . . . φn(r)], then the output equation
reduces to y = Vw. This is a linear equation. So, if we have a set of known inputs x with desired
outputs d, then we can use the least-squares theorem to find w. To do this, we simply have to find V
and apply

w =
(
VT V

)−1
VT d. (2.11)

In this way, the weights of the network can be trained. However, training the values of ci and ρi is
not possible in this way, since the output y doesn’t linearly depend on these parameters. Instead, more
complicated nonlinear optimization methods need to be applied.
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