
Space Engineering Period 2 Summary

1. Two-Dimensional Orbital Mechanics

1.1 Kepler’s Laws

Kepler came up with three laws (which are in italic). These laws were equivalent with three rules which
we now often use. Kepler’s Laws are:

1. Planets move in ellipses with the Sun at one focus. (Planets/satellites/comets all move along conical
sections.)

2. Planets sweep out equal areas in equal times. (Law of conservation of angular momentum.)
3. The square of the orbital period is proportional to the cube of the length of the (semi-)major axis of

the ellipse. (T 2 ∼ a3)

1.2 Conservation of Angular Momentum (Second Law)

Define the gravitational parameter µ = MG, where M is the mass of the central body (assumed to be
much greater than the masses of the objects orbiting it) and G is a universal constant. The gravitational
acceleration now is:

r̈ = − µ

r2

r
r

(1.2.1)

From this can be derived that angular momentum is conserved (thus there is conservation of angular
momentum. In formula:

r× ṙ = r×V = constant = H (1.2.2)

This implies that the motion is in one plane, and H = r2φ̇ = constant.

1.3 Conservation of Energy

Define the energy E as:

E =
V 2

2
− µ

r
(1.3.1)

It can be shown that the energy stays constant. Thus there is conservation of energy.

1.4 Conical Sections (First Law)

It can also be shown that r̈ − rφ̇2 = − µ
r2 . Combining this with conservation of angular momentum

(r2φ̇ = H), and solving the differential equation, gives the equation for conical sections:

r =
p

1 + e cos θ
(1.4.1)

where r is the distance from the origin, θ is the true anomaly (the angle with the pericenter, being
the point of the orbit closest to the origin), p is the semi-latus rectum (p = H2/µ) and e is the
eccentricity. The eccentricity determines the shape:

• e = 0 ⇒ The orbit has the shape of a circle.
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• 0 < e < 1 ⇒ The orbit has the shape of an ellipse.
• e = 1 ⇒ The orbit has the shape of a parabola.
• e > 1 ⇒ The orbit has the shape of an hyperbola.

1.5 Useful Equations for Elliptical Orbits

Most orbits are elliptical orbits. Suppose a is the semi-major axis (half of the longest diagonal) and b
is the semi-minor axis (half of the shortest diagonal) of the ellipse. Then the following equation holds:

p = a(1− e2) ⇒ r =
a(1− e2)
1 + e cos θ

(1.5.1)

Now if rp is the minimum distance from the origin (pericenter) and ra is the maximum distance from
the origin (apocenter), then also:

rp = a(1− e) ra = a(1 + e) (1.5.2)

a =
ra + rp

2
e =

ra − rp

ra + rp
(1.5.3)

1.6 Velocities

From conservation of angular momentum, conservation of energy, and elliptical properties, it follows that
the velocities in the pericenter and apocenter can be calculated with:

V 2
p =

µ

a

(
1 + e

1− e

)
V 2

a =
µ

a

(
1− e

1 + e

)
(1.6.1)

With some help of these equations, the energy equation for elliptical orbits can be derived:

V 2 = µ

(
2
r
− 1

a

)
(1.6.2)

(Note that inserting ra = a(1+e) and rp = a(1−e) into equation 1.6.2 transforms it back to the equations
in 1.6.1.) For a circle it is clear that r = a. So inserting this in equation 1.6.2 gives us the local circular
velocity:

Vc =
√

µ

r
(1.6.3)

1.7 Orbital Period (Third Law)

From Kepler’s second law, and by using the equation H =
√

µp, the orbital period T can be derived,
which indicates Kepler’s third law was correct:

T = 2π

√
a3

µ
(1.7.1)
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1.8 The Eccentric Anomaly

The eccentric anomaly E is an alternative for the true anomaly θ and often shows up when travel
times in elliptical orbits need to be calculated. First of all, it can be derived that:

r = a(1− e cos E) (1.8.1)

From this the relationship between θ and E can be derived:

tan
θ

2
=

√
1 + e

1− e
tan

E

2
(1.8.2)

where θ/2 and E/2 have to be in the same quadrant. After some derivation, Kepler’s Equation can
be found:

E − e sinE =
√

µ

a3
(t− tp) = n(t− tp) = M (1.8.3)

where tp is the time of the last passage of the pericentre, n is the mean angular velocity (n =
√

µ/a3),
M is the mean anomaly, E is the eccentric anomaly and θ is the true anomaly. Using the past equations,
one can use the following steps to find the time needed, given a certain position: θ → E → M → t− tp.
The other way around is a bit more difficult. Given a certain time span, one can find the change in mean
anomaly M . From this value M , one can approximate E recursively, using En+1 = M + e sinEn (where
E0 = 0 ⇔ E1 = M).

1.9 Parabolic and Hyperbolic Orbits

Parabolic orbits are the orbits at which V → 0 as r → ∞. Using this data and the energy equation,
one finds the local escape velocity:

Vo =

√
2µ

r
=
√

2Vc (1.9.1)

where Vc still is the local circular velocity. While objects in a parabolic orbit lose all their speed as
r →∞, objects in hyperbolic orbits still have a velocity when r →∞. Using the energy equation once
more, one finds for the actual local satellite velocity:

V 2 = V 2
o + V 2

∞ (1.9.2)

where V∞ is the velocity the satellite would have as r →∞.
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2. Three-Dimensional Orbits

2.1 Orbit Descriptions

The projection of the satellite on the Earth’s surface is called the sub-satellite point. The trace of the
sub-satellite point is called the ground track. The ground track is a way to visualize the shape of the
orbit. But to describe an orbit, we want to know the satellite’s position and velocity at a given point,
which can not be derived from a ground track.

2.2 Cartesian Elements

There are multiple ways to fully describe an orbit. One such description (which is not often used) is
in Cartesian Elements: X, Y, Z, Ẋ, Ẏ , Ż. This Cartesian coordinate system has as origin the center
of the earth. The X-axis points in the direction of the vernal equinox, which is the position of the
sun as it cross the equator around March 21st. The Z-axis points to the North Pole and the Y -axis
is perpendicular to the past two (its direction can be found with the right-hand-rule). These 6 orbital
elements fully determine the orbit, orbital plane and satellite position. Note that X, Y and Z describe
the position, while Ẋ and Ẏ and Ż describe the velocity.

2.3 Keplerian Elements

Another description is in Keplerian Elements (see figure 2.1): a, e, i,Ω, ω, θ. a is the semi-major
axis of the ellipse the satellite is traveling on. e is the eccentricity of the ellipse. i is the inclination
of the orbital plane, being the angle between the orbital plane and the equatorial plane. Ω is the right
ascension of the ascending node, being the angle between the X-axis (pointing to the vernal equinox)
and the ascending node. (The ascending node is the point at which the sub-satellite point of the satellite
crosses the equator in a northward direction.) ω is the argument of perigee, being the angle between
the perigee and the ascending node. And finally, θ is the true anomaly, which was discussed in the last
chapter. Note here that i and Ω describe the orbital plane, a and e describe the shape of the ellipse, ω
describes the orientation of the ellipse and θ describes the position of the satellite on the ellipse.

Figure 2.1: Indication of the Keplerian Elements.
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2.4 Orbit Perturbations

Orbits are in reality not exact ellipses in a 2D plane. The real (3D) orbits are influenced by a lot aspects.
For example, irregularities on earth (non-spherical shape, non-homogeneous division of mass), gravity
from moon/sun, atmospheric drag, solar radiation pressure, etcetera.

However, these orbit perturbations do not have to be bad, as they can be used. Due to the non-
spherical shape of the earth, there is extra mass around the equator, effecting the satellite orbit. This
causes precession (rotation of the orbital plane). If the angle of inclination is φ = 97◦, the precession is
about 1◦ per day, which is sufficient to keep the sun always on the same side of the satellite. More about
this will be discussed in chapter 5.10.
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3. Rocket Motion

3.1 Tsoilkowski’s Formula

Suppose we have a rocket with mass M flying at velocity V in some direction, expelling fuel with mass
dM with a velocity w (with respect to the rocket) in the opposite direction. The change in momentum
now is:

dI = Ifinal − Istart = ((M + dM)(V + dV )− (V − w)dM)− (M V ) = M dV + w dM (3.1.1)

where (in the case of rockets, where fuel is exhausted, and thus the mass decreases) dM will be negative.
If we assume no external forces are present (thus dI = 0) and if we assume w is constant, then integrating
the last equation with respect to time results in Tsoilkowski’s formula:

∆V = w ln
M0

Me
= Ispec g0 lnΛ (3.1.2)

where M0 is the initial mass of the rocket, Me is the final mass, Λ = M0/Me is the mass ratio, g0 is
the gravitational acceleration at ground level and Ispec is the specific impulse (per definition equal to
Ispec = w/g0 = T/mg).

3.2 Thrust and Burn Time

The thrust T of a rocket can be calculated as follows:

T = m
dV

dt
= −w

dM

dt
= w m (3.2.1)

where m = −dM/dt is the mass flow. Assuming the mass flow is constant, the burn time tb can be
calculated as follows:

tb =
M0 −Me

m
=

w

T
(M0 −Me) =

w

g0

M0g0

T

(
1− Me

M0

)
=

Ispec

Ψ0

(
1− 1

Λ

)
(3.2.2)

where Ψ0 is the thrust-to-weight-ratio (defined as the thrust per unit of initial weight Ψ0 = T
M0g0

).

3.3 Traveled Distance

To find the distance that a rocket has traveled when the rocket has burned out, we once more use
m = −dM/dt and find the following:

se =
∫ tb

0

V dt =
∫ tb

0

w ln
M0

M
dt = −

∫ tb

0

w (lnM − lnM0) dt =
∫ Me

M0

w

m
(lnM − lnM0) dM (3.3.1)

Let’s also assume that the mass flow is constant. Integrating and working out the result gives the following
equation:

se = w tb

(
1− lnΛ

Λ− 1

)
+ V0 tb (3.3.2)
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3.4 Gravity and Drag

When gravity and drag are included in the calculations, things get more difficult. Using T = m w =
−w dM

dt , it follows that:

M
dV

dt
= T −Mg −D ⇒ ∆V = w lnΛ−

∫ tb

0

g dt−
∫ tb

0

D

M
dt (3.4.1)

This is a complicated integral. When it is used, it is often simplified in several ways. First of all, when a
rocket is launched from earth, the burn times are often short enough to assume the gravity stays constant
(thus g = g0). We also still assume that w is constant. And finally drag is often neglected. This gives
the following two equations:

∆V = w lnΛ− g tb (3.4.2)

se = w tb

(
1− lnΛ

Λ− 1

)
− 1

2
gt2b + V0 tb (3.4.3)

Note that usually V0 = 0 and thus ∆V = Ve.

3.5 Rocket Restrictions

When a rocket is lifting off from earth, there are several restrictions to its parameters. First of all, there
are restrictions on the thrust-to-weight-ratio and to the burn time, if the rocket ever wants to come loose
from the ground:

T > M0g0 ⇒ Ψ0 > 1 ⇒ tb < Ispec

(
1− 1

Λ

)
(3.5.1)

There is also a restriction for the maximum thrust-to-weight-ratio and the maximum burn time. It can
be shown that the acceleration at burn-out (at which it is at a maximum, for constant thrust, since the
mass is at a minimum) is ae = g0(Ψ0Λ− 1). Thus the following restrictions are in order:

Ψ0 <
1
Λ

(
(ae)max

g0
+ 1
)

⇒ tb >
Ispec(Λ− 1)
(ae)max

g0
+ 1

(3.5.2)

where the second part was derived using equation 3.2.2.

3.6 Coasting

After burn-out, the rocket pursues its vertical flight. During this flight, its velocity is V = Ve − gt. This
vertical flight continues for a time of tc = Ve/g0 (where g is approximated as being constant) until it has
reached its highest point. The distance traveled after burn-out of the rocket, can be calculated as follows:

sc =
∫ tc

0

V dt = Ve tc −
1
2
g0t

2
c =

1
2

V 2
e

g0
(3.6.1)

Now the time taken to reach the highest point (the culmination point) and the maximum height
reached can be calculated, simply by adding things up:

ttot = tb + tc htot = hb + hc (3.6.2)
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3.7 Multi-Stage Rockets

Normal rockets usually do not reach the high velocity necessary for low earth orbit. That’s why multi-
stage rockets are used. As the name indicates, a multi-stage rocket consists of multiple stages, each with
its own mass. Usually a division is made as follows:

M0 = Mp + Me = Mp + Mc + Mu (3.7.1)

where M0 is the total mass, Mp is the mass of the fuel of the current stage, Me is the empty rocket,
Mc is the structural weight of that stage and Mu is the payload of that stage. So the rocket burns up
its fuel with mass Mp to give the rocket with mass Me a certain velocity, which can be calculated using
Tsoilkowski’s equation. Then the structure with mass Mc is ejected, and the new stage, consisting of Mu

is activated. This stage can now be seen as a new rocket, so if we call M02 = Mu1 , we can do all the
calculations again for the new stage and calculate the velocity of the rocket at the end of the second stage.
The primary advantage lies in the fact that structural weight is dumped as soon as it’s unnecessary, and
thus does not need to accelerate further.
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4. Satellite Tracking Systems

4.1 Measuring Ways

There are multiple tracking systems, and they sometimes measure different aspects of the satellite tra-
jectory. Some tracking systems measure the range, which is the distance between the ground station
and the satellite. Others measure the range-rate, which is the time derivative of the distance between
the ground station and the satellite.

4.2 Visibility

When a satellite is passing over a ground station, it can be seen. But when it’s on the other side of the
earth it can not. When an observer can see a satellite (indicated by the visibility circle radius s), depends
on the satellite altitude h and the cut-off elevation E. Figure 4.1 shows more details. From this picture
can be derived that:

s = Rα =
h

tan(α + E)
(4.2.1)

The cut-off elevation depends on buildings and trees around the observatory, but it can minimally be
E = 0◦. Then the line PS in figure 4.1 will be tangent to the earth’s surface.

Figure 4.1: Definition of the variables concerning visibility circles.

4.3 Contact Time

If there’s a ground station observing a satellite in a circular orbit, how long would it be able to see it
if the satellite passes directly over it? This is an important aspect, since it’s an indication of how long
data can be transmitted/recieved. This time depends on the height h, the orbit time T and the cut-off
angle E. For simplicity we will assume that the ground station’s view doesn’t get hindered, so E = 0.
The angle α can now be calculated using:

cos α =
R

R + h
⇒ α = arccos

R

R + h
(4.3.1)
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The part of the orbit which the observer can see spans an angle of 2α. So the satellite is visible for a
part (2α)/(2π) = α/π. The total contact time now is:

Tcontact =
T

π
arccos

(
R

R + h

)
(4.3.2)

4.4 Number of Ground Stations

To calculate how many ground stations are necessary to continuously keep track of a satellite, use is made
of a simplification. Simply divide the area of the earth by the area of one visibility circle:

Number of stations =
4πR2

πs2
=
(

2R

s

)2

(4.4.1)
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5. Traveling to Planets

5.1 Minimum Energy Travel

There are many ways to travel to other planets. However, the method that uses minimum energy is the
so-called Hohmann transfer orbit. This orbit is half of an ellipse, with one planet at its apocenter
and the other at its pericenter. Various aspects of this Hohmann orbit can be calculated, but they are
based on a few assumptions. It is assumed that the orbit trajectories of planets are circles, and it is also
assumed that the orbital planes of all planets are in the ecliptic (the orbital plane of the earth). When
calculating these aspects, use is made of the patched conic approach. The entire orbit is split up into
pieces, which all have the shape of a conic section, and those pieces are then ’patched’ together.

5.2 Example Travel to Mars

Suppose we want to travel to Mars. We start in a parking orbit around earth (at height he = 300 km,
and want to wind up in a parking orbit around Mars (at height hm = 200 km). What would our velocity
be at the important parts of our journey? We know the trajectory for the satellite in the sun-centered
part already, so it’s easiest to start calculating there.

5.3 Example Travel - Sun-Centered Part

The circular velocity of the earth with respect to the sun is:

Vce
=
√

µs

re
=

√
132.7 · 109

149.6 · 106
= 29.784 km/s (5.3.1)

where re is the distance between Earth and the sun. The circular velocity of Mars around the sun is now
easily calculated:

Vcm
= Vce

√
re

rm
= 29.784

√
1AU

1.524AU
= 24.126 (5.3.2)

where rm is the distance between Mars and the sun. Also, since the satellite will be traveling in an ellipse
from Earth to Mars, we can calculate the eccentricity of the ellipse:

e =
rm − re

rm + re
=

1.524AU − 1AU

1.524AU + 1AU
= 0.2076 (5.3.3)

Since we’ll travel to Mars (which is further away from the sun than the earth), the earth is the perihelion
(pericenter, but then for the sun) of the elliptical orbit and Mars is the apohelion (note that this is
opposite if we traveled to Venus and Mercury!). Using these three numbers, the velocities at perihelion
and the apohelion (so the velocities at earth and at Mars) can be found:

Vp = Vce

√
1 + e = 29.784

√
1 + 0.2076 = 32.729 km/s (5.3.4)

Va = Vcm

√
1− e = 24.126

√
1− 0.2076 = 21.477 km/s (5.3.5)

These velocities come in very handy during the upcoming calculations. So now we will lift-off at earth,
and see which velocities we will need.
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5.4 Example Travel - Earth-Centered Part

We’re in a parking orbit around earth at height he = 300 km. So our velocity is the circular velocity
around earth at r = Re + he (where Re = 6378 km is the radius of the earth), which is:

Vec
=
√

µe

r
=
√

µe

Re + he
=

√
398.6 · 103

6378 + 300
= 7.726 km/s (5.4.1)

But we want to get away from the earth, so we need to escape. For this, the escape velocity of
√

2Vec

isn’t sufficient. We want to escape, but also want to have sufficient velocity to travel to Mars. We just
found out that we needed a velocity of Vp = 32.729 km/s to travel to Mars. But this velocity is with
respect to the sun. We want to know the velocity with respect to the earth. So we simply subtract the
velocity of the earth with respect to the sun. So the final velocity Vne

(after escape), with respect to the
earth, would be:

V∞e
= Vp − Vce

= 32.729− 29.784 = 2.945 km/s (5.4.2)

(Note that if we wanted to travel to Venus, the velocity at the earth would be the velocity at the apohelion,
so we would have to use V∞e = Vce − Va.) To reach this velocity, we get a velocity increase. Suppose we
have a velocity of Vne

after the increase. This velocity can be calculated (using the energy equation):

V 2
ne

2
− µe

Re + he
=

V 2
∞e

2
− µe

∞
=

V 2
∞e

2
(5.4.3)

Vne
=
√

V 2
∞e

+ 2
µe

Re + he
=
√

V 2
∞e

+ 2V 2
ec

=
√

2.9452 + 2 · 7.7262 = 11.316 km/s (5.4.4)

So the necessary velocity increase at earth is:

∆Ve = Vne − Vec = 11.316− 7.726 = 3.590 km/s (5.4.5)

5.5 Example Travel - Mars-Centered Part

And finally we arrive at Mars with a velocity Va = 21.477 km/s with respect to the sun. This velocity
with respect to Mars is:

V∞m
= Vcm

− Va = 24.126− 21.477 = 2.649 km/s (5.5.1)

We want to get in a parking orbit at hm = 200 km. So first we need to descend, but while doing that,
our velocity increases. And if we do not do anything, then we will just leave Mars again. So we need a
velocity decrease. To be able to stay in orbit at hm = 200 km, we need the following circular velocity:

Vmc
=
√

µm

r
=
√

µm

Rm + hm
=

√
43.01 · 103

3397 + 200
= 3.458 km/s (5.5.2)

Suppose we have a velocity of Vnm when we are hm = 200 km, before the velocity decrease. Then Vnm

can be calculated:
V 2

nm

2
− µm

Rm + hm
=

V 2
∞m

2
− µm

∞
=

V 2
∞m

2
(5.5.3)

Vnm =
√

V 2
∞m

+ 2
µm

Re + hm
=
√

V 2
∞m

+ 2V 2
mc

=
√

2.6492 + 2 · 3.4582 = 5.562 km/s (5.5.4)

So the necessary velocity decrease will be:

∆Vm = Vnm − Vmc = 5.562− 3.458 = 2.104 km/s (5.5.5)
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5.6 Example Travel - Summary

We were in orbit around the earth at he = 300 km with a velocity of Vec = 7.726 km/s. Then we got a
velocity increase of ∆Ve = 3.590 km/s, and thus got a velocity of Vne

= 11.316 km/s. We ascended, and
when we finally left earth, we only had a velocity left of V∞e

= 2.945 km/s with respect to the earth, which
was a velocity of Vp = 32.729 km/s with respect to the sun. We traveled all the way to Mars, and when
we finally got there, our remaining velocity was Va = 21.477 km/s with respect to the sun, which was
V∞m = 2.649 km/s with respect to Mars. We descended, and picked up velocity, until at hm = 200 km
we had a velocity of Vnm

= 5.562 km/s. Then we got a velocity decrease of ∆Vm = 2.104 km/s, such tat
we remained in orbit around Mars with a velocity of Vmc

= 3.458 km/s.

The total velocity change we have had during our trip was ∆Vt = ∆Ve + ∆Vm = 3.590 + 2.104 =
5.694 km/s, which is about the minimum possible for a travel from Earth to Mars.

5.7 Travel Time

When traveling from one planet to another, a certain amount of time is taken. This time depends on
the orbit type. But for a Hohmann transfer orbit, the travel time can be rather easily calculated. If we
travel from planet 1 to planet 2, then suppose those two planets have a distance r1 and r2, respectively,
to the star they orbit. The ellipse with its pericenter at one of the planets and its apocenter at the other
has a semi-major axis of:

a =
r1 + r2

2
(5.7.1)

We only travel half an ellipse, so the travel time is only half of the orbit time, which is:

Ttravel = π

√
a3

µ
= π

√
(r1 + r2)3

8µ
(5.7.2)

And since the orbit times of the two planets, T1 and T2 respectively (which are for the whole orbits), can
also be calculated using T = 2π

√
r3/µ, it can be determined that:

Ttravel =
1
2

√
a3

r3
1

T1 =
1
2

√
a3

r3
2

T2 =
√

2
8

√(
T

2/3
1 + T

2/3
2

)3

(5.7.3)

5.8 Synodic Period

Interplanetary missions can not be started at any time. It takes a time until the planet configuration
is right. If you miss an opportunity to launch, you have to wait until the opportunity occurs again.
This time between two consecutive opportunities (thus the time after which the planets have the same
configuration again) is called the synodic period. With the same configuration is meant that the angle
between the two planets and the sun is equal.

Let’s define an arbitrary axis somewhere, and let’s suppose we have two planets, planet 1 and planet 2,
just like in figure 5.1. The two planets have angles φ1 and φ2, respectively, with the axis. Their relative
angle is defined as φrel = φ2 − φ1. Suppose the relative angle φnes is necessary to start a mission. Also
suppose the last time the relative angle was φnes was on t = t0. We have to wait until φrel once more
becomes φnes.

To calculate the time taken, we first express φ1 and φ2 as a function of the time t:

φ1(t) = φ10 + ω1(t− t0) = φ10 +
2π

T1
(t− t0) and φ2(t) = φ20 + ω2(t− t0) = φ20 +

2π

T2
(t− t0) (5.8.1)
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And now we can express φrel as a function of t:

φrel(t) = φ2(t)− φ1(t) = (φ20 − φ10) +
(

2π

T2
− 2π

T1

)
(t− t0) = φrel0 + 2π

(
T1 − T2

T1T2

)
(t− t0) (5.8.2)

We assumed that at t = t0 also φrel = φnes so φrel0 = φnes. To be able to launch again, we know that
φrel(t) should be φnes plus or minus k · 2π (since if one planet has turned exactly k more rounds than
the other, the configuration would be the same again, but φrel would have increased by k · 2π). So we
need to solve the following equation:

φrel(t) = φnes + 2π

(
T1 − T2

T1T2

)
(t− t0) = φnes + k · 2π ⇒ (t− t0) = k

T1T2

T1 − T2
(5.8.3)

This equation gives, for different k, the occurrences of all launch possibilities (and for k = 0 the launch
possibility we just missed). However, we only want to know when the next launch could take place. This
is for k = ±1 (where the sign depends on whether T1 − T2 > 0). So the synodic period can be calculated
using:

Tsyn = (t− t0) =
∣∣∣∣ T1T2

T1 − T2

∣∣∣∣ (5.8.4)

It is interesting to note that if T1 = T2, the synodic period is infinite.

Figure 5.1: Clarification of the synodic period.

5.9 Lay-Over Time

Suppose we have traveled all the way from planet 1 to planet 2, and are in orbit there, but want to get
back. How much time must there minimally be between arrival and departure? Or in other words, what
is the lay-over time? For that, we once more need to look at angles between the two planets and some
arbitrary axis. Let’s call the lay-over time Tw. The angle which the satellite has at the start and the end
of the mission are:

φsatbegin
= φ0 and φsatend

= φ0 + π + π + Twω2 (5.9.1)

where the first π is for the road to planet 2 and the second π is for the road back. Also note that ω2 = 2π
T2

.
In the meanwhile, the angle which the satellite has at the start and the end of the mission are:

φearthbegin
= φ0 and φearthend

= φ0 + Thω1 + Thω1 + Twω1 (5.9.2)

where Th is the time needed for the trip. Also note that ω1 = 2π
T1

. At the end of the mission, the condition
φearth − φsat = k · 2π must be true, and so:

φ0 + 2Th
2π

T1
+ Tw

2π

T2
− φ0 − 2π − Tw

2π

T2
= k · 2π (5.9.3)

Working this out gives:

k + 1 = 2
Th

T1
+

Tw

T1
− Tw

T2
= 2

Th

T1
± Tw

Tsyn
⇒ Tw = ±Tsyn

(
k + 1− 2

Th

T1

)
(5.9.4)
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The ± is present, because the equation for the synodic period was in absolute value. If T2 > T1 there
should be a plus, and otherwise there should be a minus. To get the minimum lay-over time, we have to
find the k for which Tw is minimal, but not smaller than 0. This is usually a matter of trial and error,
based on the numbers given.

5.10 Swing-By’s

Swing-by’s are very handy for long trips, as they give a (free) velocity increase. This velocity increase
seems to be inconsistent with conservation of energy, but this is not the case. The satellite approaches the
target planet with a certain velocity (with respect to the planet), and it leaves the planet with the same
velocity (still with respect to the planet). With respect to the sun, the velocity vector of the satellite has
changed direction, and thus, seen from the sun, the velocity of the satellite has increased.

The change in angle of the velocity vector can be calculated, based on the (hyperbolic) orbit around the
planet. The deflection angle δ can be calculated using the simple relation δ = 2θ − 180◦, where θ is the
angle such that r →∞. Thus cos θ = −1/e and this make δ:

δ = 2arccos
(
−1

e

)
− 180◦ = 2 arcsin

(
1
e

)
(5.10.1)

The change of velocity of the satellite now depends on the eccentricity, the velocity of the planet and the
way of approaching the planet.
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6. Special Earth Orbits

6.1 Orbital Properties

The orbital plane (dermined by r and ṙ), with the angular momentum vector H perpendicular to it,
always runs through the center of gravity of the earth. The point where the satellite passes the equator
in northward direction is called the ascending node (AN), while the southward crossing is the termde-
scending node. The line between the nodes, called the line of nodes, also goes through the earth’s
center of gravity.

The inclination, as was already discussed, is the angle between the orbital plane and the equatorial
planes, but it’s also the angle between the angular momentum H and the earth’s rotation vector. If
0◦ ≤ i < 90◦, then the rotation is prograde, meaning in the same direction as the rotation of the earth.
If 90◦ < i ≤ 180◦, the rotation is retrograde - against the rotation of the earth. The inclination for
geostationary orbits is always i = 0◦ and for polar orbits it always is i = 90◦.

6.2 Orientation Changes

If a satellite, going in some direction, wants to change its direction by an angle of β, while not changing
the magnitude of the velocity, the necessary velocity change is:

∆V = 2V sin
β

2
(6.2.1)

This is called an out-of-plane manoeuvre, and changes the orientation of the plane. For out-of-plane
manoeuvres executed in the equatorial plane, only the inclination changes. For out-of-plane manoeuvres
in any other point, both the inclination as the line of nodes changes.

When launching from a point on earth with latitude φ, the inclination of the orbit is limited to the range
|φ| ≤ i ≤ 180◦ − |φ|. So if a launch site not on the equator wants to put a satellite in a geostationary
orbit, an additional velocity change is needed when the satellite crosses the equatorial plane. At the
end of its transfer orbit from Low Earth Orbit (LEO) to Geostationary Orbit (GEO), normally a
velocity change of ∆V = Vgeo − Va is needed, where Va is the velocity in the apogee of the transfer orbit
and Vgeo is the velocity for a geostationary orbit. This velocity changes sets the satellite in the right
orbit. However, when also a change in angle, due to the inclination of the orbit, is necessary, the velocity
change, due toe the cosine rule, is the following:

∆V =
√

V 2
geo + V 2

a − 2VgeoVa cos i (6.2.2)

6.3 Orbit Perturbations

As was already discussed earlier, real orbits aren’t perfect unperturbed (Kepler) orbits, but are
influenced by perturbing forces. These forces don’t have to be bad, since they can be used. The largest
perturbation is the so-called J2-effect, caused by the flattening of the earth. The geometric flattening
is f = (Re −Rp)/Re = 1/298.257, where Re is the equatorial radius and Rp the polar radius.

The geometric flattening causes the earth’s gravitational field to be flattened to. This is expressed by the
parameter J2 = 1.082627 · 10−3. J2 causes periodic orbit perturbations which cancel out over an entire
orbit. However, secular effects cause a rotation of the orbital plane around the polar axis, and a slow
precessing of the orientation of the ellipse in the orbital plane. The secular effects thus influence ω and
Ω (remember the Keplerian elements), but do not influence i, a and e.
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6.4 Nodal Regression

The extra mass of the equator causes a torque which changes the angular momentum vector. This
causes the line of nodes to rotate against the rotation of the satellite in its orbit. This is called Nodal
Regression. After one revolution, the line of nodes has rotated by:

∆Ω = −3πJ2

(
Re

p

)2

cos i (6.4.1)

where p is still the Semi-latus Rectum of the orbit (for circles it is just the radius r). Note that this
is maximum when i = 0◦ and minimum when i = 90◦. A special application of nodal regression is the
so-called sun-synchronous orbit. Now the orbit is chosen such that Ω̇ = 360◦ per year. The sun always
makes the same angle with the orbit. This is used because the satellite can continuously see the sun,
the satellite overflies a certain latitude always at the same local solar time (illumination conditions are
the same) and instruments looking outward can cover the entire celestial sphere in half a year, without
disruption by the sun.

When calculating the inclination of a circular, sun-synchronous orbit, you first have to calculate Ω̇ = ∆Ω
∆T .

We know ∆Ω after on revolution. The change in time after one revolution is ∆T = 2π
√

r3/µ. Now Ω̇ is:

Ω̇ =
∆Ω
∆T

=

(
−3πJ2

(
Re

p

)2

cos i

)(
1
2π

√
µ

r3

)
(6.4.2)

For a sun-synchronous orbit, Ω̇ = 360◦/year = (2π)/(365.25 · 24 · 60 · 60) = 1.99102 · 10−7 rad/s. From
this condition the necessary inclination i can be found.

6.5 Precession of Perigee

Also the perigee ’suffers’ from precession. The precession of the perigee per orbital revolution is
expressed by:

∆ω =
3
2
πJ2

(
Re

p

)2

(5 cos2 i− 1) (6.5.1)

When cos i = 1/
√

5, the orientation of the ellipse in the orbital plane is fixed. This is called the critical
inclination and is for earth: i = 63.43◦ and i = (180 − 63.43) = 116.57◦. This principle is used by
the Russian Molnya satellite orbits. To have long contact time, the Molnya satellite orbits are eccentric
orbits with its apogee (where the velocity is low) above Russia. To prevent the position of the apogee
(and thus also the position of the perigee) from changing, these orbits have the critical inclination.
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