
Take-Off

1 The Procedure

Aircrafts usually fly. But before they can fly, they first have to take off from the ground. There are
several moments during the take-off run that deserve some special attention. We now take a close look at
the lift-off procedure of a multi-engined jet aircraft. The take-off procedure for other airplanes is similar.

Before take-off, the airplane taxis to the start of the runway. At that moment its velocity is V0 = 0.
When clearance is given by the control tower, the pilot gives the engines maximum power. At a certain
velocity Vdec, called the decision speed, the pilot needs to make a decision. It is the last moment at
which the airplane can still stop its take-off. In case of an engine failure it might be worth staying on
ground.

If the pilot decides to continue the take-off, the airplane will soon reach the rotation speed Vr. At this
point the pilot pulls the nose of the aircraft up, while the rear wheels still stay on the ground. For a brief
moment the aircraft will have a certain constant rotational speed qrot, until the desired pitch angle
θreq is reached.

A short moment later the lift-off speed Vlof is reached. This is the speed at which the wheels no longer
touch the ground. However, the take-off has not yet been completed. The aircraft still needs to reach the
screen height Hscr. At this height, which is usually 35 or 50 feet, the aircraft is safe from obstacles like
trees or buildings. The speed of the aircraft at the screen height must be at least a certain climb-out
speed (sometimes called safety speed) Vscr to ensure a safe climb.

2 Decision Speed

All the velocities that were mentioned in the previous paragraph are given to the pilot by the aircraft
manual. However, some one needs to write the manual, so there must be a way to determine these
velocities. We primarily examine the decision speed.

Figure 1: Clarification of decision speed.

Let’s take a look at figure 1. Two graphs are displayed. Graph 1 is the distance you need to stop if you
apply full brakes at the given velocity. Graph 2 is the distance you need to take off if one engine fails. If
engine failure occurs at low velocities, the distance to stop is small. So it is preferable to stop. For high
velocities stopping requires to much runway space. It’s wiser to take off with the remaining engines.

The intermediate point, where stopping requires as much distance as taking off, is of special interest to
us. The velocity at which this occurs is the decision speed. At this speed you can still stop the aircraft,
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but if you continue accelerating, you have to lift off. The distance you need to either stop or to take off
is called the balanced field length.

Now let’s look at the other velocities. The screen height is usually equal to the minimum velocity plus a
safety factor. So Vscr = jVmin, where for most aircrafts j = 1.2. The rotation speed Vr is then set at the
velocity such that Vscr is still reached at the screen height if engine failure occurs.

You may also be wondering what the procedure is if you only have one engine on your aircraft. If that
engine fails, you should brake if you’re able to. If you are not, you should still take off and hope there is
an empty field ahead of you in which you can make an emergency landing.

3 Equations of Motion for Ground Phase

To learn more about the ground phase, we look at the forces acting on the aircraft. These forces are
shown in figure 2.

Figure 2: Forces acting on the aircraft during ground run.

We have seen all forces already in the chapter about cruise, except the normal force N and the gear
drag Dg. But what can we say about this gear drag? We can assume that it is proportional to the
normal force N , so

Dg = µN = µ(W − L), (3.1)

where µ is the friction coefficient. This coefficient depends on the wheels of the aircraft, as well as the
environment. If we now look at the forces acting on the aircraft in horizontal direction, we will find

W

g

dV

dt
= T −D −Dg = T −D − µ(W − L). (3.2)

It is important to note the other assumptions we have made. We assume that the runway is horizontal,
that there is no wind and once more that the thrust is in the direction of the velocity.

When you apply normal aerodynamics equations to calculate the aerodynamic forces L and D, you should
be careful. Since the aircraft is still on the ground, there is the so-called ground effect. The air which
our wings push down is pushed back up by the ground. This causes the effective angle of attack to
increase. The lift therefore goes up. The ground also reflects the vortices our wing creates, partially
canceling them. This causes the induced drag to decrease. The ground effect is therefore considered to
be a positive effect for airplanes.
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4 Take-Off Distance

Now we are curious about the amount of runway the aircraft needs for the entire take-off procedure. We
first look at the ground phase. From dynamics we know that a ds = V dV . Rewriting gives

sground =
∫ Vlof

0

V dV

a
=

1
ā

∫ Vlof

0

V dV =
1
2ā

V 2
lof . (4.1)

Here the quantity ā is the mean acceleration, which is equal to

ā =
g

W

(
T̄ − D̄ − D̄g

)
, (4.2)

where T̄ , D̄ and D̄g are the mean thrust, drag and gear drag, respectively. We use this mean acceleration
because it is very hard to express the thrust, drag and gear drag as a function of the velocity during a
ground run. In practice, however, the mean acceleration ā is approximately equal to the acceleration at
1
2

√
2Vlof . So the thrust, drag and gear drag only have to be calculated at one given velocity to find the

take-off distance corresponding to the ground phase.

Now let’s consider the airborne part of the take-off. To find this, we first have to rewrite the equation of
motion to

T −D −W sin γ =
W

g

dV

dt
=

W

g

dV

ds

ds

dt
=

W

g

dV

ds
V =

W

2g

d(V 2)
ds

. (4.3)

Rewriting again will now give the so-called equation of energy, being

(T −D)ds =
W

2g
d(V 2) + W sin γ ds =

W

2g
d(V 2) + WdH, (4.4)

where the variable H indicates the height. The left side of this equation indicates the power that is
put into the system, while the right side shows the change in kinetic and potential energy. To find the
distance needed to reach the screen height, we once more integrate. We will find∫ sair

0

(T −D)ds =
∫ Vscr

Vlof

W

2g
d(V 2) +

∫ Hscr

0

WdH, (4.5)

(T̄ − D̄)sair =
W

2g
(Vscr − Vlof ) + WHscr. (4.6)

At the screen height we should have reached a steady climb. We therefore may assume that (T̄ − D̄) =
(T−D)scr. Since the speed is constant in a steady climb, we know that dVscr = 0 and thus also dV 2

scr = 0.
This implies that (T −D)scr −W sin γscr = 0, or equivalently Wγscr = (T −D)scr = (T̄ − D̄), where we
have used sin γscr ≈ γscr. Now we find that

γscrsair =
V 2

scr − V 2
lof

2g
+ Hscr. (4.7)

To find the total take-off distance, simply add up the airborne distance sair to the ground run distance
sground.
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