
Helicopters

1 Actuator Disk Theory

In a helicopter, lift isn’t created by the wings, but by rotating blades. This enables helicopters to hover.
In case of hovering flight, the thrust produced by the rotor blades T must be equal to the weight W .

But how can we calculate this thrust? One way to do this is by using the actuator disk theory, which
has already been treated in the Aerodynamics A course. We will briefly repeat that theory here. Suppose
we have a set of rotating blades, called the actuator disk. We can consider 4 points now. Point 0 is
infinitely far to the left of the disk, while point 1 is just a little bit to the left of the disk. Identically,
point 2 is just to the right of the disk and point 3 is infinitely far to the right.

If we assume the velocity is evenly distributed over the actuator disk, and that the flow is incompressible
and irrotational, we can derive a few simple relations. Let’s define the induced velocity Vi as Vi =
V1 − V0. We can now show that V2 = V1 and also V3 − V2 = Vi. So therefore the total velocity increment
of the air is V3 − V0 = 2Vi. We can also show that the thrust now is

T = 2mVi = 2ρπr2Vi, (1.1)

where m is the mass flow of air that goes through the disk and r is the actuator disk radius.

2 Helicopter Power

How much power would the engine need to provide to hover? In an ideal situation the power would be
the difference between the rate of power that comes out of the system, and the rate of power that goes
in. This would make the so-called ideal power

Pid = eout − ein =
1
2
m (V0 + 2Vi)

2 − 1
2
mV 2

0 = 2mVi (V0 + Vi) = T (V0 + Vi) . (2.1)

In a hovering flight, the initial velocity V0, being the velocity far away from the disk, is 0. So we also
know that Pid = TVi = WVi. If we apply T = W to the last equation of the previous paragraph, we can
also find that

Vi =

√
W

2ρπr2
. (2.2)

The ideal power of the helicopter now becomes

Pid = WVi = W

√
W

2ρπr2
. (2.3)

So to reduce the ideal power, we need to decrease our weight, increase the rotor blade size or simply fly at
a lower altitude. However, the ideal power isn’t the actual power that is needed from the engine. There
are always losses. These losses are all combined in one sign. This is the so-called figure of merit M ,
defined as

M =
Pid

Phov
, (2.4)

where Phov is the actual power that is necessary to hover. For most modern helicopters the figure of
merit is about M = 0.7.
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3 Blade Element Theory

In the blade element theory we look at an infinitely small piece of a rotor blade and derive the lift dL
and drag dD acting on that piece. Using those forces we can integrate to find the thrust and drag of the
full rotor blades.

Figure 1: Motions and forces in the blade element theory.

So let’s look at an infinitely small piece of a rotor blade, at a distance r from the center. Such a piece is
shown in figure 1. Since the rotor rotates with an angular velocity of Ω, the small piece of rotor blade
has a velocity component to the left of Ωr. Due to the induced velocity, there is a downward pointing
velocity component of Vi. Together they form the resultant velocity Vr. Since this velocity is not directed
horizontally, the air has a certain inflow angle φ. Also a pitch angle θ and an angle of attack α can
be distinguished.

The small bit of thrust dT acting on the rotor blade part now is

dT = dL cosφ− dD sinφ ≈ dL, (3.1)

where we have approximated cosφ ≈ 1 and sinφ ≈ 0. The power that is needed to keep the rotor rotating
is

dP = dDΩr = (dL sinφ+ dD cosφ) Ωr ≈ dT Vi + dDΩr, (3.2)

where we this time have approximated cosφ ≈ 1 and sinφ ≈ tanφ = Vi/Ωr. To find the total power that
is needed for all the rotor blades, we integrate over one entire rotor blade and multiply by the number of
blades n. The power then becomes

P = n

∫ R

0

Vi dT + n

∫ R

0

Ωr dD = TVi + Pp = Pi + Pp, (3.3)

where Pi is the induced component of the power and Pp is the power necessary to compensate for the
profile drag of the blades. Also R is the length of the entire rotor blade. The variable Pi is usually
approximated using Pi = kPid, where the correction factor k is often about 1.2. The power component
Pp is a bit more difficult to determine. If cdp

is the profile drag component of the rotor blade piece, we
can write

Pp = n

∫ R

0

Ωr dD = n

∫ R

0

cdp

1
2
ρ (Ωr)3 cdr =

c̄dp
σ

8
(
ΩR2

)3
πR2. (3.4)

Here the sign c̄dp
indicates the mean drag coefficient for the entire rotor. The factor σ is called the rotor

solidity, defined as

σ =
nRc

πR2
. (3.5)

There is a simple physical meaning behind this rotor solidity. It’s the part of the rotor disk that is filled
with blades. The surface area of the rotor disk is simply πR2, while the surface area of the blades is nRc.
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4 Forward Flight

Helicopters would tend to get boring if they can only hover. They can also fly forward. To let helicopters
fly forward, you first have to rotate the rotor disk. When doing this, you have to keep in mind the
gyroscopic effect, as the rotor disk is rotating quite rapidly.

The angle with which the rotor disk is tilted forward is called the disk angle of attack αd. Since we’re
flying forward now, we experience drag. First of all a drag force H0 acts on the rotor disk. But the rest
of the helicopter (the so-called bus) is also suspect to drag. This is the so-called parasite drag Dpar.
The total power that the engine now needs to provide is

kTVi + Pp +H0V +DparV = Pi + Pp + Pdrag + Ppar. (4.1)

Let’s look at the individual power components now. To find an expression for the profile drag Pp we can
once more use the blade element theory. But it’s a bit more complicated this time. The velocity of a
small blade element depends not only on the distance r from the rotor disk center. It also depends on
the angle ψ it makes with respect to the direction of the velocity. If a small piece of rotor moves in the
same direction as the velocity of the helicopter, than the two velocities need to be added up. So then
Vr = ΩR+ V cosαd. In the opposite case they need to be subtracted. In general we can say that

Vr = ΩR+ V cosαd sinµ. (4.2)

What we do now is simply integrate over the entire rotor disk, as if there was a rotor blade at every small
angle dψ. We then divide by 2π to get the average profile power for a certain rotor blade. Of course we
also multiply by the number of rotor blades n. The profile power then becomes

Pp =
n

2π

∫ 2π

0

(∫ R

0

cdp

1
2
ρ (Ωr + V cosαd sinµ)2 cΩr dr

)
dψ =

¯cdpσ

8
ρ (ΩR)3 πR2

(
1 + µ2

)
. (4.3)

Note that the profile power can also be written as Pp = Phov

(
1 + µ2

)
, where the hover power is equal to

Phov =
¯cdp
σ

8
ρ (ΩR)3 πR2. (4.4)

The sign µ indicates the so-called advance ratio and is defined as

µ =
V cosαd

ΩR
. (4.5)

In practice µmax ≈ 0.3. If the helicopter goes any faster, two things can occur. It may occur that
the blade facing headwind (the so-called advancing blade with velocity ΩR + V cosαd) experiences
a supersonic flow. It is also possible that the so-called retreating blade with velocity ΩR − V cosαd

actually moves backward. Both situations are not really positive.

The drag power due to H0 is rather difficult to determine. That’s why it is simply approximated by

Pdrag = H0V cosαd = Phov4.65µ2. (4.6)

The most important contribution to the drag is the parasite drag. Especially for high velocities this drag
dominates. The power necessary to counteract this drag is

Ppar = DbusV = CDbus

1
2
ρV 3Aref , (4.7)

where CDbus
is the drag coefficient of the bus and Aref is a certain reference area.

Now we can draw our conclusions. The values of Pp and Pdrag are fairly constant with increasing V . The
induced power Pp even decreases if we fly forward. The parasite drag, however, strongly increases. To
reduce drag it’s therefore best to make the helicopter bus as aerodynamic as possible.
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5 Autorotation

What happens if the engine of the helicopter fails? It turns out that the helicopter will not fall to the
ground. Instead, a phenomenon called autorotation occurs. The rotor disk starts rotating itself.

Figure 2: Forces acting on an autorotating rotorblade.

To explain why autorotation occurs, we examine the forces acting on the rotor blades. These forces are
shown in figure 2. When the engine fails, the helicopter will start to lose height. It will get a certain
descend speed c̄. Due to this descend speed, it will seem like the induced velocity now has magnitude
c̄ − Vi and is pointed upward. Since the induced velocity points upward, the resultant velocity will also
be tilted upward. Therefore the lift vector will be tilted in the forward direction. The vertical component
of the lift vector still provides thrust, but now the horizontal component powers the rotor blades. The
rotor disk rotates on its own.

This however only happens if the pilot takes action. If the engine fails, the descend speed will increase.
This means that the resultant velocity vector will start to tilt upward, increasing the angle of attack. If
the pilot doesn’t do anything, stall will occur and almost all lift will be gone. Therefore the pilot needs
to decrease the pitch angle of the rotor blade as soon as engine failure occurs.

But what if the pilot forgets to reduce the pitch? In this case the helicopter is in serious trouble. Since
there is stall, the rotor blade hardly has any lift and can’t power itself. The only chance the pilot has is to
start performing a forward flight with the helicopter, converting potential energy to kinetic energy. When
sufficient velocity has been gathered, the pilot can change that kinetic energy into rotational velocity of
the rotor blade. If, however, there isn’t enough height (and thus not enough potential energy) to reach
the right velocity, the pilot will probably not live to learn from his mistake.
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