
Flight Mechanics

1 Two-Dimensional Airfoils

The Reynolds number is defined as:

Re =
ρV c

µ
(1)

where c [m] is the chord length and µ [Pa s] is the viscosity of the air. The lift L [N ] and drag D [N ]
can be calculated using:

L = cl
1
2
ρV 2S D = cd

1
2
ρV 2S (2)

where the lift coefficient cl and the drag coefficient cd depend on the angle of attack α [rad] (being
the angle between the longitudinal axis of the aircraft and the direction of flight), the shape of the wing,
the Mach number and the Reynolds number. Also S [m2] is the wing surface. It is possible to plot the
lift and drag coefficients with respect to the angle of attack. However, it is also possible to plot the lift
coefficient with respect to the drag coefficient. The diagram that results is called a lift-drag polar.

2 Three-Dimensional Airfoils

In reality wings aren’t two-dimensional but three-dimensional. And in three dimensions also wing vortices
occur, causing induced drag. The drag coefficient now consists of two parts. The part being present when
there is zero lift CD0 , which is thus called the zero lift drag coefficient, and the part belonging to the
induced drag CDi

. (Note that since we’re talking about three-dimensional airfoils, we use capital letters
to denote the coefficients.) The induced drag coefficient is:

CDi =
C2

L

πAe
(3)

where A is the aspect ratio of the wing, defined as b2/S (with b [m] the wing span), and e is Oswald’s
factor, depending on the lift distribution of the wing. The drag coefficient now is:

CD = CD0 + CDi
= CD0 +

C2
L

πAe
(4)

3 Flight Types

There are multiple ways of flying. Some of them have gotten a specific name. These are their definitions:

• Gliding Flight - Flight in which the thrust is 0: T = 0.
• Steady Flight - Flight in which the forces and moments do not vary in time, neither in magnitude

nor direction.
• Straight Flight - Flight in which the center of gravity of the aircraft travels along a straight line.
• Symmetric Flight - Flight in which both the angle of sideslip (angle between the direction of

motion and the longitudinal axis of the airplane) is zero, and the plane of symmetry of the airplane
is perpendicular to the normal plane of the earth.

Let’s look at a steady horizontal flight. The lift is equal to the weight: L = W . It follows that:

V =

√
W

S

2
ρ

1
CL

(5)

with Vmin as CLmax
. The factor W/S is called the wing loading. So the minimum velocity is low when

there is a low wing loading, or when the lift coefficient is high. The latter is often achieved by using slats.
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4 Straight Symmetric Flight

Now let’s look at a straight symmetric flight in which the aircraft is climbing. The angle between
the direction of flight and the ground plane is the flight path angle γ [rad]. The angle between the
longitudinal axis of the aircraft and the direction of flight is the angle of attack. The angle between the
longitudinal axis of the aircraft and the ground plane is the pitch angle θ [rad]. Note that θ = γ + α.
Figure 1 visualizes the definitions of these angles.

Figure 1: Visualization of angles in symmetric flight.

By drawing a free body diagram of the aircraft, the sum of the forces in multiple directions can be
calculated. If we assume that the thrust vector is in the direction of flight, we get:

T −D −W sin γ =
W

g

dV

dt
L−W cos γ = 0 (6)

Now let’s define the power required Pr [J/s] as follows:

Pr = DV = CD
1
2
ρV 3S =

CD

CL
LV =

CD

CL
WV (7)

In the last part of this equation the assumption cos γ = 1 was used, which is accurate for normal
climb angles. Multiplying the first part of equation 6 by V , and by using the relation V (dV/dt) =
(1/2) (d(V 2)/dt), it can be rewritten as:

1
2

W

g

dV 2

dt
= TV −DV −WV sin γ = Pa − Pr − Pc (8)

where Pc [J/s] is the climb power. (Note that Pc = WV sin γ = W dh/dt, with h [m] as the height.) So
the quantity Pa−Pr can be seen as the power left to climb and accelerate - to increase the potential/kinetic
energy of the aircraft.

5 Steady Gliding

When the engines of an airplane aren’t active (or if the airplane doesn’t have any engines), the airplane
is gliding. So T = 0 and Pa = 0 and thus:

−Pr = W
dh

dt
+

W

g

dV 2

dt
(9)

If the airplane still follows a horizontal path (dh/dt = 0), the velocity decreases. In most situations this
isn’t favorable, so pilots usually try to keep a constant velocity, at the cost of height. Thus the aircraft
descends. The descend angle γ̄ [rad] is defined as γ̄ = −γ. Now the following applies:

CD
1
2
ρV 2S = W sin γ̄ and CL

1
2
ρV 2S = W cos γ̄ ⇒ tan γ̄ =

CD

CL
(10)
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Suppose we want to travel as much distance as possible. To accomplish this, we should minimize sin γ̄.
It can be shown that sin γ̄ = D/W , so sin γ̄ ↓ as D ↓. So we want to chose our V and CL such that the
drag D is minimal. The drag can be calculated with equation 2. However, this equation still has the
velocity V in it, which is a function of the lift coefficient CL . To solve this problem, we use equation
5. From this follows that the drag is D = CD

CL
W . Since the weight W is constant, the drag is minimal if

CD/CL is minimal. This is the case if:

d
(

CD

CL

)
dCL

= 0 ⇒
CL

(
dCD

dCL

)
− CD

C2
L

= 0 ⇒ dCD

dCL
=

CD

CL
(11)

This can be solved using equation 4:

CD

CL
=

dCD

dCL
=

d
(
CD0 + C2

L

πAe

)
dCL

= 0 +
2CL

πAe
⇒ CD0

CL
+

CL

πAe
= 2

CL

πAe
⇒ CL =

√
CD0πAe (12)

Using equation 5 the corresponding velocity can be found. So if we know our zero lift drag coefficient,
we know how to fly to get as far as possible.

But now suppose we do not want to go as far as possible, but just want to stay in the air as long as
possible. For that, we first introduce the rate of descent RD [m/s], which is defined as:

RD = −dh

dt
= −V sin γ = V sin γ̄ (13)

The aircraft stays as long as possible in the air if RD is minimal. We know that:

RD = −dh

dt
= V sin γ̄ = V

CD

CL
cos γ̄ =

√
W

S

2
ρ

C2
D

C3
L

cos3 γ̄ (14)

Since W , S and ρ are constants, the rate of descend is minimal if C2
D/C3

L is minimal. Using a method
analogue to what we just did, we find that:

0 =
d

(
C2

D

C3
L

)
dCL

=
C3

L · 2CD · 2 CL

πAe − 3C2
L · C2

D

C6
L

⇒ 4
C2

L

πAe
= 3CD ⇒ CL =

√
3CD0πAe (15)

The time until we reach the ground (the endurance) t [s] and the traveled distance (the range) s [m]
can then be calculated using:

t =
h

RD
s =

h

tan γ̄
(16)

6 Propeller Aircraft Range and Endurance

The jet engine and the propeller are very different. So their thrust develops differently. In a propeller
aircraft the thrust T decreases as the velocity increases. This happens in such a way that the power
available Pa is (approximately) constant. In a jet aircraft the thrust T simply stays constant for any
velocity.

Suppose we have a propeller aircraft that wants to fly as far as possible with the fuel it has. Let’s assume
that the velocity and height stay constant, and thus Pa = Pr. The distance per amount of fuel should
be maximized. If Wf is the weight of the fuel that is left, the following quantity should be maximized:

s

Wf
=

ds

dWf
=

ds/dt

dWf/dt
=

V

F
(17)
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So the quantity V/F should be maximized. If we define the power coefficient CP [N/J ] (which can
assumed to be constant for propeller aircrafts) such that F = CP Pbr, we can find that:

V

F
=

V

CP Pbr
=

V ηj

CP Pa
=

V ηj

CP Pr
=

V ηj

CP DV
=

ηj

CP

1
D

(18)

Since ηj and CP are constants for the aircraft, the quantity V/F is at a maximum if the drag is at a
minimum. In the last paragraph we already found out when this was the case. So the aircraft has a
maximum range if CL =

√
CD0πAe.

But what if we want to stay in the air as long as possible with the amount of fuel we have? Then we
ought to minimize the fuel flow F . We can find that:

F = V D
CP

ηj
=

CP

ηj
W

√
W

S

2
ρ

C2
D

C3
L

(19)

Since CP , ηj , W , S and ρ are all constants, this is minimal if C2
D/C3

L is minimal. So the aircraft has
maximum endurance if CL =

√
3CD0πAe.

7 Jet Aircraft Range and Endurance

Suppose we have a jet aircraft that wants to fly as far as possible with the fuel it has. Once more
we assume Pa = Pr and thus T = D. We should once more maximize V/F . If we define the thrust
coefficient CT (which can assumed to be constant for jet aircrafts) such that F = CT T , we can find
that:

V

F
=

V

CT T
=

V

CT D
=

1
CT W

√
W

S

2
ρ

CL

C2
D

(20)

So the aircraft has maximum range if CL/C2
D is minimal. It can be derived that this is the case if

CD = 4CDi and thus CL =
√

1
3CD0πAe.

If the jet aircraft wants to stay in the air as long as possible, the quantity F should be minimized.
This is the case if CD/CL is minimal. Now it’s easy to see that the aircraft has maximum endurance if
CL =

√
CD0πAe.
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