
Cruise Flight

1 Equations of Motion

Flying airplanes spend most of the time in cruise flight. It is therefore an important part of the flight. To
learn more about the cruise flight, we look at the forces acting on the aircraft during a steady symmetrical
flight. These forces, the thrust T , the drag D, the weight W and the lift L are shown in figure 1.

Figure 1: Forces acting on the aircraft.

Per definition the weight points downward, the lift is perpendicular to the velocity vector and the drag
is parallel to the velocity vector. We also assume that the thrust points in the direction of the velocity,
so the thrust angle of attack αt = 0. Other angles are the flight path angle γ, the angle of attack
α and the pitch angle θ.

We now use Newton’s second law, F = ma. Looking in the direction parallel to the velocity will give

W

g

dV

dt
= T −D −W sin γ. (1.1)

Looking in the direction perpendicular to the velocity will give

W

g
V

dγ

dt
= L−W cos γ. (1.2)

Furthermore, we have two kinematic equations, being

ds

dt
= V cos γ and

dH

dt
= V sin γ. (1.3)

A cruise flight is a quasi-stationary flight, meaning that at any given point you can assume the flight
is stationary. However, you can not assume that the entire flight is stationary. In fact, the weight of the
aircraft decreases during flight, according to

dW

dt
= −F (V,H, Γ), (1.4)

where F is the fuel flow, which depends on the velocity V , the height H and the engine setting Γ. Cruise
flights are usually steady horizontal flights. Steady flight implies that dV/dt = 0. Horizontal flight
means that γ = 0. Combining this with the equations of motion gives

T = D and L = W. (1.5)
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2 Cruise Flight Strategy

During the cruise flight you want to use as few fuel as possible. If you want to stay as long in the air as
possible, you should maximize the endurance. The endurance E is the time which you can stay in the
air with a given amount of fuel. To maximize E you should minimize the fuel flow F .

If, however, you want to go as far as possible, you should maximize the range. The range R is the
distance you can cover with a given amount of fuel. So the distance ds per weight of fuel used dWf

should be maximized. So we need to maximize

ds

dWf
=

ds/dt

dWf/dt
=

V

F
. (2.1)

For jet engines we can assume that the fuel flow varies linearly with the thrust, so F = cT T = cT D,
where the constant term cT is the specific fuel consumption. Also, from the definition of the lift and
drag coefficient follows that D/CD = L/CL = W/CL. Combining all this gives

V

F
=

V

cT D
=

V

cT W

CL

CD
=

√
1

SWc2
T

2
ρ

CL

C2
D

. (2.2)

So to increase the range we should decrease ρ. That is simple. We should fly as high as possible.

Now let’s consider we’re flying at a given altitude (and thus constant density ρ). We need to maximize
CL/C2

D. Differentiating this fraction by using CD = CD0 + C2
L

πAe will show that CL/C2
D is minimal if

CL =

√
1
3
CD0πAe. (2.3)

So we now have sufficient data to determine our strategy. We should fly as high as possible and choose
our V such that V/F is at a maximum.

But what if the determined velocity V with which we need to fly is beyond a speed limit of our aircraft?
In that case we should fly at the speed limit, so V = Vlim. It now is important to minimize the drag D.
Minimum drag occurs if CL/CD is maximal, resulting in a lift coefficient of CL =

√
CD0πAe. We also

need to choose our height H (and thus the density ρ) such that the drag D is minimal. This occurs if

ρopt =
W

S

2
V 2

lim

1
CL

. (2.4)

3 Finding the Range

Now we are curious, what will the range be if we fly in this optimal condition? To find an equation for
the range, we first express the distance traveled ds as a function of the change in weight dW according
to

F = −dW

dt
= −dW

ds

ds

dt
= −dW

ds
V ⇒ ds = −V

F
dW. (3.1)

The range can now be found by integration. To get a meaningful result, we make a change-of-variable
according to the above relation. So the range is

R =
∫ s1

s0

ds =
∫ W1

W0

−V

F
dW = − V

cT

CL

CD

∫ W1

W0

1
W

dW =
V

cT

CL

CD
ln

(
W0

W1

)
, (3.2)

where W0 is the initial mass of the aircraft and W1 the final mass. The above equation is called the
equation of Breguet. We will examine it more closely at the end of this chapter.
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4 Optimum Cruise Condition

We have determined how to fly as optimal as possible at a given point. But as we continue flying our
weight W decreases and we’re not flying optimal anymore. What should we do? We can consider several
flying strategies and then select the best.

1. Keep constant engine settings Γ and height H. Although the velocity V will increase, the factor
V/F will be far below optimal during the rest of the flight.

2. Keep constant velocity V and height H. This time the factor V/F will be better, but it will still
be below optimal.

3. Keep constant angle of attack α and height H. Doing this will result in the optimal V/F during
flight. However, the velocity V will decrease, which is unwanted if we want to get somewhere fast.

4. Keep constant angle of attack α and velocity V . The value of V/F will still remain optimal. The
height at which we are flying increases during flight. This is usually considered the best strategy.

So the conclusion is that it is best to fly at a constant velocity V and angle of attack α with a slightly
positive flight path angle γ.

5 Propeller Aircrafts

The previous paragraphs were all about jet aircrafts. Now let’s briefly consider propeller aircrafts. There
is a fundamental difference between these two aircrafts. For jet aircrafts the fuel consumption is approxi-
mately proportional to the thrust. For propeller aircrafts the fuel consumption is more or less proportional
to the power Pbr of the engine. So

F = cpPbr =
cp

ηp
Pa =

cp

ηp
TV, (5.1)

where ηp is the propulsive efficiency. The factor V/F , which is so important for the range, now becomes

V

F
=

ηp

cp

CL

CD

1
W

. (5.2)

Deriving the equation of Breguet for propeller aircrafts will then give

R =
ηp

cp

CL

CD
ln

(
W0

W1

)
. (5.3)

This looks rather similar to the equation of the range for jet aircrafts. This can be illustrated further if
we look at the efficiency of both engines. The total efficiency of a propeller aircraft is

ηtot =
Pout

Pin
=

TV

H F
g

=
ηp

cp

g

H
, (5.4)

where H is the specific energy of the fuel in J/kg. The total efficiency of a jet aircraft is

ηtot =
Pout

Pin
=

TV

H F
g

=
V

cT

g

H
, (5.5)

Filling this in in Breguet’s equation will give the same result for both types of aircraft, being

R =
H

g
ηtot

CL

CD
ln

(
W0

W1

)
. (5.6)

The factor H/g is a measure of the fuel quality. The factor ηtot indicates the quality of the propulsion
system. The factor CL/CD shows the aerodynamic quality. And finally the fraction W0/W1 indicates
the quality of the structure of the aircraft. So the conclusion is simple: Well-designed aircrafts fly further
with less fuel.
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