2 Of particular interest is that the exit velocity is increased by a very small

amount, namely by only 61 m/sec, although the exit Mach number has been
doubled The higher Mach number of 20 is achieved not by a large increase in exit
velocity by rather by a large decrease in the speed of sound at the exit. This is
characteristic of most conventional hypersonic wind tunnels -- the higher Mach
numbers are not associated with corresponding increaseé in the test section flow

velocities

5.1 Assume the moment is governed by
M =f{(Va, P, S, Hay 20)
More specifically:
M=ZV, p.,’ $¢a, u.
Equating the dimensions of mass, m, length, ¢, and time t, and considering Z

dimensionless,

e CINGIEI)

l=b+{f (Formass)

2=a-3b+2d+e-f (Forlength)
-2 =-a-e-f (for time)

Solving a, b, and d in terms of e and f,
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and. 2=2-e-f-3+3f+2d+e-f

k)

or 0=3+f+2d

d:ﬁ

Hence,

M=Z V2 p, 82 a_° u.f

e f
=7 VwZ - Sslfz [:a;@_) ( Heo )
b Vo) \Vop8"

Note that S'? is a characteristic length; denote it by the chord, ¢

e f
M=, V2ScZ [_] [L_]
V. V.PC

o0 w.

However, a/V, = 1/M.,,

1
VoPot Re

_He

and
Let
[ f
z [_,}._] (L) -2
M,/ \Re 2
where ¢, is the moment coefficient Then, as was to be derived, we have
M= l V. ce
5 Po Ve m

or, M=q,SccCp

5.2  Fiom Appendix D, at 5° angle of attack,
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c, =067

C =-0025

(Note: Two sets of lift and moment coefficient data are given for the NACA 1412 airfoil -
- with and without flap deflection. Make certain to read the code propetly, and use only

the unflapped data, as given above Also, note that the scale for C,,, 18 different than that

for ¢, -- be careful in reading the data )

With regard to cy, first check the Reynolds number,

PoVaC _ (0002377)(100)(3)

Re= Z
He (37373 x 107")

Re=19x10°

In the airfoil data, the closest Re is 3 x 10° Use cq4 for this value.
¢y =0007 (for c, =067)

The dynamic pressure is

Q. = % PV, = % (0.002377)(100)2 = 11.9 Ib/f? ’

The area per unit spanis S = 1(c) = (1)(3) =3 ft*

Hence, per unit span,

L=qsS ¢, = (11.9)(3)(0.67)=|23.9 1

D =q., S ca= (11 9}3)(0.007) ={0.25 Ib

Mys=quSc ¢, =(11.9)3)3)-0025) = -2.68 fr.Ib
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33 PeT ;{, - (25;7)}23225)) = 161 kg/m’
From Appendix D,

c, =098

Cro,y = -0 012

Checking the Reynolds number, using the viscosity coefficient from the curve given in
Chapter 4,

i, = 182x10° kg/msec at T =303K,

PVl _ (1157)(42)(03) _

8 x 10°
i 182 x 107

Re=

This Reynolds number is considerably less than the lowest value of 3 x 10® for which data
is given for the NACA 23012 aiifoil in Appendix D. Hence, we can use this data only to
give an educated guess; use

ca ~ 0 01, which is about 10 percent higher than the value of 0 009 given for Re =3 x 10
The dynamic pressure is

4, =P,V =5 (1161)42)= 1024 N/

The area per unit span is $ = (1)(0.3) = 0.3 m” Hence,

L=q.$ c, = (1024)(0 3)(0 98) =[301N]

D =q. § ca = (1024)(0.3)(0 01) =[3.07N |

Mus = Qo S € Cu = (1024)(0 3)(0.3)(-0.012) ={ -1.1Nm

5.4  From the previous problem, q,= 1020 N/m’
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L=qgsS ¢,

Hence,

e = L
*q.8

The wing area S = (2)(0.3) = 0 6 m®
Hence,

c, = __200 =033
{1024)(0.6)

From Appendix D, the angle of attack which cotresponds to this lift coefficient is

o=2°

5.5  From Appendix D, at o = 4°,

¢, =04

88

Also, V_=120 (—J =176 fi/sec
60

0 =3P, V." = (0.002377)(176 =36 8 o/

L=q.S8 ¢,

gL __25 T3
Q.0 (368)(04)

560 L=q.Sc¢,

D=qnScy
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Hence,

L_9-5¢ _¢
D q.S¢ ¢

We must tabulate the values of ¢,/cq for various angles of attack,

maximum occurs. For example, from Appendix D, at oo = 0°,

and find where the

c, =0.25
cy = 0.006
Hence
-]I;- = z—: = %5-6- =417
A tabulation follows
o Q° 1° 2° 3° 4° 5° 6° 7° 8° 9°
C, 025 035 045 055 065 075 085 095 105 115

Cy 0006 0.006 0006 00065 0.0072 00075 0.008 00085 0.0095 0 0105

S 417 583 75 846 903 100 106 112
Cy

111 110

From the above tabulation,

(—-L—l) =112
D

max

5.7 At sea level

P = 1 225 kg/m®
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Hence,

Po =101 x 10° N/m?

4o =3PV, = % (1225)(50)* = 1531 Nim?

‘From the definition of pressure coefficient,

P—p, _ (095-101) x 10° _
€ 1531

-3.91

C =

5.8

The speed is low enough that incompressible flow can be assumed From

Bernoulli’s equation,

Since

1 1
p+_p Vw —p“o+_mpcovco _p‘x’+q°°
2 2
1 1
_ V2 - V2
p-p,_J= 2PV 3P
C,= =1-2—
qow qoo _pwvz

2 2
Cpo=1- (i) :1—(9-%j =1-127={-027
V. 55

3.9 The flow is low speed, hence assumed to be incompressible From problem 5 8,
2 2
C]) - ]. - [’LJ = ] e (E) =] '0.485
v, 160
5.10  The speed of sound is
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8 = RT, = /(14)(1716)(510) =1107 ft/sec

Hence,

vV, 700

= 0= =063
M. 1107

a

oy

In problem 59, the pressure coefficient at the given point was calculated as -0.485.
However, the conditions of problem 5.9 were low speed, hence we identify

C, =-0485

Po
At the new, higher free stream velocity, the pressure coefficient must be corrected for

compressibility Using the Prandtl-Glauert Rule, the high speed pressure coefficient is

C _
O . ..+ B wyY
JI-M_7 {1-(063)°

5.11 The formula derived in problem 5 8, namely

V 2
szl-(v—w] .

utilized Bernoulli’s equation in the derivation Hence, it is not valid for compressible flow

In the present problem, check the Mach number.

a,= IRT, =/(14)(1716)(505) = 1101 fi /sec

M= 180 = 0708
1101

The flow is clearly compressible! To obtain the pressure coefficient, first calculate p.

from the equation of state.
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P, _ 2116
RT, (1716)(505)

o

= 0.00244 slug/f’

P =

To find the pressure at the point on the wing where V = 850 fifsec, first find the

temperature from the energy equation

2 2
T+ Xv—chTw+V;

2 _ 2
T=Tm+—--v“’ v
2c

P

The specific heat at constant pressure for air is

R__ (4716 _ o filb
y—1 (14-1) slug R

G =

Hence,

780° — 8502
2(6006)

T =505+

= 505 -9 5=495 SR

Assuming isentropic flow

.

(L)
p \T,

35
p=(2116) (igé‘g) = 1980 Ib/R?
505
From the definition of G,
C=P~Po_ PP, _  1980-2116
p_ — ==
e %pwvj %(000244)(780)2
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5.12 A velocity of 100 fi/sec is low speed. Hence, the desired pressure coefficient is a

low speed value, C, .

C
C,,= ____P_z
1-M,,

From problem 5 11,

C
C,=-0183 and M, = 0708 Thus, 0.183 = 2o

J1-(0708)2

C,. = (-0.183)(0 706) =[-0.129

5.13  Recall that the airfoil data in Appendix D is for low speeds. Hence, at o = 4°, ¢,

=0.58

Thus, from the Prandtl-Glauert rule,

C
¢, = I3 _ 058 To097
J1-M.? {1-(08)?

5.14  The lift coefficient measured is the high speed value, c,. Its low speed counterpart

is ¢, , where

Hence,

¢, =(085) JI=(07)* =0607
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For this value, the low speed data in Appendix D yield

o

a=2

S.15  First, obtain a curve of C,, versus M,, from

2 (240 -DM)""
Cp,cr = -1
y+1

Some values are tabulated below fory=14
M, 04 05 06 0.7 0.3 09 10
Coer -366 -213 -129 -0779 -0435 -0188 0

Now, obtain the variation of the minimum pressure coefficient, C,, with M, where C,.=-

0.90 From the Prandtl-Glauert rule,

C
Cp___ Po -
1-M

w0

—-0.90

J1-M,?

Some tabulated values are;

C =

M, 04 05 06 07 08 09
Co -098 -104 -1125 -126 -15 -206

A plot of the two curves is given on the next page.

48



A
Ly
|

..Zo...—

o -/ - - y \ i
0% 05 o6 o7 08 07 LO g

From the intersection point,

M, =} 0.62

5.16 The curve of C,; versus M, has already been obtained in the previous problem; it
is a universal curve, and hence can be used for this and all other problems. We simply

have to obtain the variation of C, with M,, from the Prandtl-Glauert rule, as follows:

c C. _ -065

M oMy

M, 04 05 06 07 08 09
G, -071 075 -081 -091 -108 -149

The results are plotted below.
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_2‘0..

_-/;oq.-

o =\ ™ t t t + t +
. 0¢ as oe o7 o8 a? Lo
From the point of intersection,

M., =10.68

Please note that, comparing problems 5.15 and 5 .16, the critical Mach number for a given
airfoil is somewhaj dependent on angle of attack for the simple reason that the value of the
minimum pressure coefficient is a function of angle of attack When a critical Mach
number is stated for a given airfoil in the literature, it is usually for a small (cruising) angle

of attack

5.17 Mach angle = 11 = arc sin (1/M)

p=arc sin (1/2)=|30°
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5.18

LN A A A A A A i S A

it = Sin’! [ij = Sin™ (i) =23 6"
M 25

d=N/Tanp = 10km | 22.9km
0436

5.19 At 36,000 ft, fiom Appendix B,
T =390 5°R
Po=T71x 10™ slug/f®

Hence,

a0 = IRT, =J(14)(1716)(3905) = 969 ft/sec

Vo = 8, M,, = (969)(2 2) = 2132 fi/sec

Q. =~ p. V. :% (7.1 x 10%)(2132)* = 1614 Ib/fi?

5 P

In level flight, the airplane’s lift must balance its weight, hence
L=W=16,000I1b

From the definition of lift coefficient,

CL = L/g. S = 16,000/(1614)(210) = 0 047
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Assume that all the lift is derived from the wings (this is not really true because the
fuselage and horizontal tail also contribute to the airplane lift) Moreover, assume the

wings can be approximated by a thin flat plate. Hence, the lift coefficient is given

approximately by
¢, = 4o
M, -1

Solve for a,

o= i—cl M o1= %(o 047)22)" -1

o = 0 023 radians (or 1 2 degrees)
The wave drag coefficient is approximated by

4o 4(0.023)°

Cp, = = = 000108
D, \/sz _1 \/(2 2)2 -1

Hence,

Dy =g, S Cp_=(1614)(210)(0 00108)

D, =366 1b

520 (a) At 50,000 ft, p, =3 6391 x 10™ slug/f® and T,, = 390°R  Hence,

s = \JRT, =J(14)(1716)(390) = 968 ft/sec
and V= a, M, =(968)(22)=2130 fi/sec
The viscosity coefficient at T, = 390°R = 216.7K can be estimated from an extrapolation

of the straight line given in Fig 4 30. The slope of this line is
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-5
du _ (212-154) x 10 —58 x 10°° kg
dT (350-250) (m)(sec)(K)

Extrapolating from the sea level value of g = 1 7894 x 107 kg/(m)(sec), we have at T, =
216 7K

1,=17894x10°-(58%x10%) (288-2167)

o= 137 x 10”° kg/(m)(sec)
Converting to english engineering units, using the information in Chapter 4, we have

_5 ]
o= ﬁ_ﬁjlx—m_s.(37373 X 10_7__Slll_g)=2‘86 x 107 218
17894 x 10 ft sec ft sec

Finally, we can calculate the Reynolds number for the flat plate:

-4
Re, = LaYak _ 36391 x 10 (21_?;0)(202) 5475108
Heo 286 x 10
Thus, from Eq (4 .100) reduced by 20 percent
C=08) 27 _ (08— 29 ____ 000106
(Re, ) (574 x 10%)

The wave drag coefficient is estimated from

where a = i =0035 rad
573

Thus,

4(0.035)°

Caw ™= W

Total drag coefficient = 0 0025 + (2){(0.00106) =| 0.00462

= 00025
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Note: In the above, Cy is multiplied by two, because Eq. (4 100) applied to only one side
of the flat plate. In flight, both the top and bottom of the plate will experience skin
friction, hence that total skin friction coefficient is 2(0 00106) = 0 00212,

(b) If o is increased to 5 degrees, where o = 5/57.3 - 0.00873 rad, then

_ 4(0.0873)°

T 2y o1

Total drag coefficient = 0 01556 + 2(0.00106) ={0.0177

=001556

(¢) In case (a) where the angle of attack is 2 degrees, the wave drag coefficient
(0.0025) and the skin friction drag coefﬁciént acting on both sides of the plate (2 x
0 00106 = 0 00212) are about the same However, in case (b) where the angle of attack is
higher, the wave drag coefficient (0 0177) is about eight times the total skin fiiction
coefficient.  This is because, as o increases, the strength of the leading edge shock

increases rapidly In this case, wave drag dominates the overall drag for the plate.

521 V.=251 km/h= (251]‘—“‘]( th )(IOOOm) = 69.7 m/sec
h /\3600sec 1km

P =1 225 kg/m’

o = %pw V2= %(1 225)(69 7)* = 2976 N/m®
oL 9800 oo
1.S  (2976)(162)
2 2
Cp, =t =020 _ 607804

' eAR  m(062)(731)
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Di=q.$ Cp, = (2976)(16.2)(0 002894) = ]139.5 N

522 V.=855 km/h=2375 m/sec

o= %pm V2= %(1 225)(23 75)* = 345 N/m’
L 9800
CL-: = =1
1.8 (345)(162)
c,’ 5)°
S )

T RAR  m(062)(731)

Di=q. S Cp, = (345)(16.2)(0 215) 5| 1202 N

Note: The induced drag at low speeds, such as near stalling velocity, is considerably
~ larger than at high speeds, near maximum velocity Compare the results of problems 5 20

and 521

5.23  First, obtain the infinite wing lift slope. From Appendix D for a NACA 65-210

airfoil,
C,=105ato=8°
C,=0atog-=-15°

Hence,
A, = Elg% = 0 11 per degree

The lift slope for the finite wing is
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a, 0.11

2T T3 ., L5701 0076 per degree

7 ¢,AR 7 {9)(5)

1+

Ato =6

Cr. = a(a - ag-0) = (0 076) [6 - (-1 5)] ={ 0.57

The total drag coefficient is

2

2
o _ (0004y+ O3
AR

o=t 7 (09)0)

Cp=0004+0023={0.027

524 q,= %pw V' = —;-(o 002377)(100)* = 11 9 Ib/fY®

ata=10°,L=1791b Hence

L 179
9.8 (11915

C=

ata=-2",L=0 Hencegy-p=-2°

a= ¢, __10-0 _ 0083 per degree
da [10-(-2)]

This is the finite wing lift slope

= __%__.ao—
573 a,
1+
T eAR
Solve for 'ao
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_a___ 0083
& 573a | 573(0083)

TTeAR 7 (095)(6)

a, = 0.11 per degree

525 Atoa=-1° thelift is zero Hence, the total drag is simply the profile drag

2

Co=cq+t =¢a+0=cy

e
1

Qw—z

P Vied = % (0 002377)(130)* = 20.1 Ib/R?

Thus, at & = cip-0 = -1°

_ D _ 0181 _
q.S (2015

Cd

At o = 2°, assume that ¢q has not materially changed, i.e, the “drag bucket” of the profile
drag curve (see Appendix D) extends at least from -1° to 2°, where c4 is essentially

constant. Thus, at o = 2°,

Ci= = -0166

1.8 (201)15)
o= 2= 2 000763

1.8 (201)(19)

However:
C 2
C = + L
P meAR
2
000763 = 0 006 + 0168 _ o6 4+ 200146
7 e(6) e
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e=[0.90

To obtain the lift slope of the airfoil (infinite wing), first calculate the finite wing lift slope.

0166-0
__ (0166-0)

= 0 055 per degree
[2-(-2)]

a _ 0.055
573 a 1 37.3(0055)

7 eAR 7z (09)(6)

Qo =

a, =] 0.068 per degree

526 Vo= |2V _ 2(7780)
p.SC._ \(1225(166)(21)

Vaan =] 19.1 m/sec = 68.7 km/hl

527 (@) a= S = 0087 radians
573

¢, =2rma=2n(0087)=10.548

(b) Using the Prandtl-Glauert rule,

C
6p = e =28 T5767
JI-M2 1= (07)?
(c) FromEq (5 50)
da___ 4(0087) ==

o WM -1 @ -

5.28 For V,, =21 8 fi/sec at sea level
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4o = P V= (0 002377)(21 87 = 0.565 b/

1 ounce= 1/16 1b = 0.0625 Ib.

L _ 00625 To—

C= = S
1.8 (0565)(1)

For a flat plate airfoil

c,=2na=2mn(3/57.3)={0.329

The difference between the higher value predicted by thin airfoil theory and the lower
value measured by Cayley is due to the low aspect ratio of Cayley’s test wing, and viscous

effects at low Reynolds number

5.29 From Eqs. (5.1) and (5 2), writtten in coefficient form
CL=Cyncosa~Cysina
Cp=Cysina+Cacosa

Hence:

€1 =0.8 cos 6° - 0.06 sin 6° = 07956 - 0 00627 =]0.789

Cp=0.8 sin & + 0.06 cos o = 0.0836 +0.0597 =[0.1433

Note: At the relatively small angles of attack associated with normal airplane flight, Gy

and Cy are essentially the same value, as shown in this example.

5.30 First solve for the angle of attack and the profile drag coefficient, which stay the

same in this problem.
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a, a

gr=ad=
1+573 a_/(x €,AR)

o, o= L[1+573a/me AR)]

o

- %% (14573 (0 11)/[x (0 9)(7)]} =4 2°

'The profile drag can be obtained as follows

= C, _ 0.35 = 0012
(C,/Cy) 29
2
Co=cg+ CL
e
2 2
o1, Cd=CD- CL =0012- ﬂ""200062
meAR 7 (9X7)

Increasing the aspect ratio at the same angle of attack increases C; and reduces Cp For
AR = 10, we have

a, a

CL.Z o=
1+573 a_ /(7 e,AR)

(0.11)(4.2)

= = 03778
1+573 (011)/ [z (09)(10)]

-

2 2
Co=cg+ CL =0.062_w
meAR 7 (9)(10)

=00062 +0.005048 =0 112

Hence, the new value of L/D is

— = — 5337
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