
Modeling humans

For normal control systems, we already have good mathematical descriptions. (Think, for example, of
linear control theory.) But when humans are involved, this becomes more complicated. One way to solve
this problem is by trying to model humans as normal control systems. By doing this, we can explain and
predict the behavior of the human and the system. In this chapter, we’ll look at how it works.

1 A human as a linear controller

1.1 The human pilot

The human pilot is a multimode, adaptive and learning controller. It is capable of exhibiting an
enormous variety of behavior, like. . .

• System organization – This means that the human controller can detect coherence between for
example input and output signals. It then uses this coherence to control the system.

• System adjustment – The human controller can adjust the way in which it controls the system
(i.e. its transfer function) such that the system is adequatly controlled.

1.2 Display types

Let’s examine a very basic single-input single-output feedback system. It is the task of the human
controller to minimize the error e = y − yref between the output y and the reference signal yref of the
system. The way in which the pilot can do this strongly depends on how the data is presented to him.

• In a compensatory display, only the error e is shown. The controller simply needs to compensate
for this error.

• In the pursuit display, only the current output y and the reference signal yref are shown. This
time the controller needs to let the output y pursuit the reference output yref .

• In the preview display, the controller doesn’t only see y and yref . It also sees the future values
of yref . In this way, the pilot can already keep in mind future changes of the reference signal.

Soon we will discuss the cross-over model of human behavior. This model only applies to the compensatory
display. So it does not work for the other displays. Keep that in mind.

1.3 Human controllers as linear models

How can we model the human controller in the SISO feedback system with compensatory display? Of
course, the human controller is nonlinear. However, research has shown that it can be modeled using
a quasi-linear describing function. This function Yp (known as the causal model) is basically a linear
differential equation with constant coefficients and a time delay. It accounts for the portion of the
controller’s output c that is linearly related to the input e.

Of course, the describing function doesn’t model the human behavior perfectly. The remaining inaccu-
racies are described by the remnant model n, which is a stationary noise process. Since this remnant
model is not really understood well, we will focus on the describing function Yp.
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1.4 The ideal solution

If we don’t use a human controller, what should our causal model Yp be to ideally control the system?
A good feedback control system provides a good relation between y and yref , it suppresses disturbances,
is robust and provides adequate closed-loop stability margins. If we call the plant transfer function Yc,
then the system closed-loop transfer function is

y

yref
=

YpYc

1 + YpYc
=

YOL

1 + YOL
, (1.1)

with YOL the open loop transfer function. To have y/yref ≈ 1, we can make |YOL| very big for the input
bandwidth and very small for the other frequencies. This normally works well, unless some lag is also
added. In this case, we often wind up with an unstable system.

To solve this problem, we must make sure that the gain crossover frequency ωc exceeds the maximum
input frequency ωi. (Remember that ωc satisfies |YOL(jωc)| = 1.) So within the bandwidth, |YOL| is
roughly constant, and much bigger than 1. Near the crossover frequency, |YOL| will have a slope of
−20dB/decade. Having this kind of open-loop transfer function will result in a stable system with small
tracking errors. The value of YOL near ωc now determines the dominant closed loop modes. In fact, the
system stability strongly depends on the phase at ωc. (That is, the phase margin.)

2 Ways of modeling the pilot

2.1 The crossover model

Previously, we haven’t answered the question what Yp will be if we use a human controller. This is where
the crossover model theorem comes in. The crossover model theorem states that human controllers
adjust their control behavior to the dynamics of the controlled element. They do this such that the open
loop transfer function in the crossover region (i.e. with ω near ωc) can be described by

YOL(jω) = Yp(jω)Yc(jω) =
ωc

jω
e−jωτe . (2.1)

Here, ωc is still the crossover frequency. τe is an effective time delay, which represents the time lags
of the human operator. It is now interesting to note that, if we know the dynamics of the system, then
we can find the transfer function of the human operator near ωc. It is given by

Yp(jω) =
ωc

Yc(jω)jω
e−jωτe . (2.2)

What does this imply for the performance and the stability of the system? Well, the performance is
determined by ωc, while the stability is determined by the phase margin φm. The crossover model now
implies that φm = π

2 − ωcτe. This means that, if the time lag τe is high, we cannot have a high crossover
frequency ωc. (Or instability can occur.) So big time lags lower the performance of the system.

2.2 A pilot describing function

Another way to model the pilot is by using the simplified precision model. In this model, we model
the pilot as

Yp(jω) = Kp
1 + τLjω

1 + τIjω
e−jωτe , (2.3)

where Kp is the pilot gain, τL is the lead time constant, τI is the lag time constant and τe is the
effective time delay. Basically, the pilot gain Kp puts the crossover frequency ωc on the right position.
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The time constants τL and τI are then used to give YOL a slope of −20dB/decade near the crossover
frequency. The question remains how to set these parameters. There are 6 so-called verbal adjustment
rules for that.

1. In equalization selection and adjustment, we want |YOL| to be very big for low frequencies.
For frequencies near the crossover frequency, we want the slope to be −20dB/decade.

2. Within the limitations of the pilot, we should minimize errors. The most important way to do this
is to minimize τe as far as possible. How much this can be done depends on the input frequency ωi.
If ωi → 0, then τe becomes the basic time delay τ0. Also, the corresponding crossover frequency
is denoted by ωc0 .

3. We have to set the right crossover frequency. A good estimate is

ωc0 =
π

2τ0
. (2.4)

4. If ωi < 0.8ωc0 , then changes in the input frequency ωi don’t really influence the crossover frequency
ωc. However, if ωi becomes bigger than 0.8ωc0 , then resonance may occur. To prevent this, the
pilot should choose ωc much lower than ωc0 . This is called regression. It simply means that the
pilot does not try to follow the high-frequency signals. If he does, resonance would occur and the
error would be bigger.

5. Once the parameters have been set, we can approximate the squared error using the one-third
law

e2

y2
ref

=
1
3

(
ωi

ωc

)2

. (2.5)

However, this law is only valid when ωi is much smaller than ωc.

6. The time delay τe and the optimal crossover frequency ωc depend on the bandwidth ωi. If ωi ≈ 0,
then the values mainly depend on the controlled system Yc. However, the changes in τe (if ωi is
different from zero) mainly depend on ωi. So we can write

τe(Yc, ωi) ≈ τ0(Yc)−∆τe(ωi). (2.6)

Furthermore, we have
ωc(Yc, ωi) ≈ ωc0(Yc) + 0.18ωi. (2.7)

With these verbal adjustment rules, we can get a pilot model without doing any experiments. This is
very convenient for initial pilot-in-the-loop experiments.
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