
Non-ideal gas turbines

Previously, we have considered an ideal gas turbine. But we don’t live in an ideal world. So now it’s time
to get rid of most of the simplifying assumptions.

1 Adjustments for the real world

In a non-ideal world, things are often slightly different than in an ideal world. How do we take those
differences into account? That’s what we’ll examine now.

1.1 Specific heat

Previously, we have assumed that the specific heat cp and the specific heat ratio k were constant. However,
they are not. They vary because of three reasons. The temperature changes, the pressure changes and
the composition of the gas changes. The latter is caused by adding fuel. The change in cp and k due
to pressure changes is usually negligible. However, temperature and composition change do have an
important effect.

How do we cope with this? Well, when performing computer calculations, we can simply make several
iterations. But, for hand calculations, this is too much work. Instead, we can take mean values for cp

and k, for every step. Often used values are cp,air = 1000J/kg K and kair = 1.4 for the compression
stage. Similarly, cp,gas = 1150J/kg K and kgas = 1.33 for the expansion stage in the turbine. By doing
this, our calculations are quite accurate. But deviations from the real world of up to 5% may still occur.

1.2 Kinetic energy

Previously, we have neglected the kinetic energy of the gas. But the gas often has a non-negligible velocity
c. To solve this problem, we use a nice trick. We define the total enthalpy h0, the total temperature
T0 and the total pressure p0. The total enthalpy is defined as

h0 = h +
1
2
c2, (1.1)

where h is the static enthalpy. With static enthalpy, we mean the enthalpy when not taking into account
the velocity. We can derive the total temperature, by using

h0 = cpT0 = cpT +
1
2
c2, which gives T0 = T +

c2

2cp
. (1.2)

We can find the total pressure p0 from the isentropic flow relations. The result will be

p0 = p

(
T0

T

) k
k−1

. (1.3)

When using these total values, we don’t have to take into account the kinetic energy anymore. That
makes life just a bit easier.

2 The isentropic and the polytropic efficiency

There are two very important parameters, that strongly influence the gas turbine properties. They are
the isentropic and the polytropic efficiency. Let’s examine them.
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2.1 Isentropic efficiency

Let’s examine the compressor and the turbine. In reality, they don’t perform their work isentropically.
To see what does happen, we examine the compressor. In the compressor, the gas is compressed. In an
ideal (isentropic) case, the enthalpy would rise from h02 to h03s. However, in reality, it rises from h02 to
h03, which is a bigger increase. Similarly, in an ideal (isentropic) turbine, the enthalpy would decrease
from h04 to h0gs. However, in reality, it decreases from h04 to h0g, which is a smaller decrease. Both
these changes are visualized in figure 1.

Figure 1: The enthalpy-entropy diagram for a non-ideal cycle.

This effect can be expressed in the isentropic efficiency. The efficiencies for compression and expansion
are, respectively, given by

ηis,c =
h03s − h02

h03 − h02
=

T03s − T02

T03 − T02
and ηis,t =

h04 − h0g

h04 − h0gs
=

T04s − T0g

T04 − T0gs
. (2.1)

You may have trouble remembering which difference goes on top of the fraction, and which one goes
below. In that case, just remember that we always have ηis ≤ 1.

By using the isentropic relations, we can rewrite the above equations. We then find that

ηis,c =

(
p03
p02

) kair−1
kair − 1

T03
T02−1

and ηis,t =
T0g

T04−1(
p0g

p04

) kgas−1
kgas − 1

. (2.2)

The specific work received by the compressor, and delivered by the turbine, is now given by

Ẇs,c =
cpair

T02

ηis,c

(
p03

p02

) kair−1
kair

− 1

 and Ẇs,t = cpgasT04ηis,t

(
p0g

p04

) kgas−1
kgas

− 1

 . (2.3)

Note that, through the definition of p0g, these two quantities must be equal to each other. (That is, as
long as the mass flow doesn’t change, and there are no additional losses when transmitting the work.)

2.2 Polytropic efficiency

Let’s examine a compressor with a varying pressure ratio. In this case, it turns out that also the isentropic
efficiency varies. That makes it difficult to work with.

To solve this problem, we divide the compression into an infinite number of small steps. All these infinitely
small steps have the same isentropic efficiency. This efficiency is known as the polytropic efficiency.
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The resulting process is also known as a polytropic process. This means that there is a polytropic
exponent n, satisfying

T0

T0initial

=
(

p0

p0initial

) nair
nair−1

. (2.4)

The polytropic efficiencies for compression η∞c and expansion η∞t are now given by, respectively,

η∞c =
kair − 1

kair

nair

nair − 1
=

ln
(

p03
p02

) kair−1
kair

ln
(

T03
T02

) and η∞t =
kgas

kgas − 1
ngas − 1

ngas
=

ln
(

T0g

T04

)
ln

(
p0g

p04

) kgas−1
kgas

. (2.5)

The full compression/expansion process also has an isentropic efficiency. It is different from the polytropic
efficiency. In fact, the relation between the two is given by

ηis,c =

(
p03
p02

) kair−1
kair − 1(

p03
p02

) kair−1
η∞ckair − 1

and ηis,t =

(
p0g

p04

)η∞t
kgas−1

kgas − 1(
p0g

p04

) kgas−1
kgas − 1

. (2.6)

There are a few important rules to remember. For compression, the polytropic efficiency is higher than
the isentropic efficiency. (So, η∞c > ηis,c.) For expansion, the polytropic efficiency is lower than the
isentropic efficiency. (So, η∞t < ηis,t.) Finally, if the pressure ratio increases, then the difference between
the two efficiencies increases.

3 Losses occurring in the gas turbine

In a non-ideal world, losses occur at several places in the gas turbine. There are also several types of
losses. We will examine a few.

3.1 Pressure losses

Previously, we have assumed that no pressure losses occurred. This is, of course, not true. Pressure losses
occur at several places. First of all, in the combustor. The combustion chamber pressure loss is
given by ∆pcc = p03 − p04. The combustor pressure loss factor is now defined as

εcc =
p04

p03
=

p03 −∆pcc

p03
. (3.1)

Pressure losses also occur at the inlet and at the exhaust duct. For industrial gas turbines, these pressure
losses are defined as

∆p0inlet
= pamb − p01 and ∆p0exhaust

= p05 − pamb. (3.2)

We will examine these pressure differences for jet engines in a later chapter.

3.2 Mechanical losses

Losses also occur due to internal friction in the system. These mechanical losses are joined together
in one term, being the transmission efficiency ηm. It is given by

ηm =
turbine power−mechanical losses

turbine power
. (3.3)
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3.3 Combustor efficiency

Ideally, we will have a full combustion of the fuel in the combustion chamber. In this case, we would
get the maximum heat out of it. This maximum heat is called the lower heating value LHV of
the fuel, also known as the lower calorific value LCV . However, in reality, we have an incomplete
combustion. This results in combustion products like carbon monoxide (CO) and unburned fuel.

Next to this, heat may also escape. To take this into account, the combustor efficiency ηcc is used. It
is defined as

ηcc =
ṁaircpgas

(T04 − T03)
ṁfuelLHV

. (3.4)

3.4 Heat exchange

Let’s reconsider the heat exchanger. In the previous chapter, we have assumed that, after heat exchange,
we had T03.5 = T05. In other words, the heat of the gas entering the combustor equals the heat of the
gas leaving the turbine. In reality, this is of course not the case. We thus have T03.5 < T05.

To take this effect into account, we use the heat exchanger effectiveness E. First, we define the
coefficients Ccold and Chot as

Ccold = cpin,cold
ṁin,cold and Chot = cpin,hot

ṁin,hot. (3.5)

The subscript cold stands for the cold flow: the flow leaving the compressor. Similarly, hot stands for
the flow leaving the turbine. We also define Cmin as the lowest of the coefficients Ccold and Chot. Now,
the heat exchanger effectiveness E is given by

E =
Ccold

Cmin

T0out,cold
− T0in,cold

T0in,hot
− T0out,cold

=
Chot

Cmin

T0in,hot
− T0out,hot

T0out,hot
− T0in,cold

. (3.6)

The term in the top of the fraction indicates the amount of heat exchanged. The term in the bottom is
a measure of the amount heat that can be exchanged.

We can try to simplify the above relation. If the mass flow and the specific heat are constant (ṁcold = ṁhot

and cpcold
= cphot

), then the effectiveness is given by

E =
T03.5 − T03

T05 − T03
. (3.7)
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