
Rewriting the equations of motion

The equations of motion are quite difficult to deal with. To get some useful data out of them, we need
to make them a bit simpler. For that, we first linearize them. We then simplify them. And after that,
we set them in a non-dimensional form.

1 Linearization

1.1 The idea behind linearization

Let’s suppose we have some non-linear function f(X). Here, X is the state of the system. It contains
several state variables. To linearize f(X), we should use a multi-dimensional Taylor expansion. We
then get

f(X) ≈ f(X0) + fX1(X0)∆X1 + fX2(X0)∆X2 + . . . . . .+ fXn
(X0)∆Xn + higher order terms. (1.1)

Here, X0 is the initial point about which we linearize the system. The linearization will only be valid
close to this point. Also, the term ∆Xi indicates the deviation of variable Xi from the initial point X0.

When applying linearization, we always neglect higher order terms. This significantly simplifies the
equation. (Although it’s still quite big.)

1.2 Linearizing the states

Now let’s apply linearization to the force and moment equations. We start at the right side: the states.
We know from the previous chapter that

Fx = m(u̇+ qw − rv), (1.2)
Fy = m(v̇ + ru− pw), (1.3)
Fz = m(ẇ + pv − qu). (1.4)

So we see that Fx = f(u̇, q, w, r, v). The state vector now consists of five states. By applying linearization,
we find that

Fx = m(u̇0 + q0w0 − r0v0) +m(∆u̇+ q0∆w + w0∆q − r0∆v − v0∆r), (1.5)
Fy = m(v̇0 + r0u0 − p0w0) +m(∆v̇ + r0∆u+ u0∆r − p0∆w − w0∆p), (1.6)
Fz = m(ẇ0 + p0v0 − q0u0) +m(∆ẇ + p0∆v + v0∆p− q0∆u− u0∆q). (1.7)

We can apply a similar trick for the moments. This would, however, give us quite big expressions. And
since we don’t want to spoil too much paper (safe the rainforests!), we will not derive those here. Instead,
we will only examine the final result in the end.

1.3 Linearizing the forces

Now let’s try to linearize the forces. Again, we know from the previous chapter that

Fx = −W sin θ +X, (1.8)
Fy = W sinψ cos θ + Y, (1.9)
Fz = W cosψ cos θ + Z, (1.10)
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where the weight W = mg. We see that this time Fx = f(θ,X). Also, Fy = f(ψ, θ, Y ) and FZ =
f(ψ, θ, Z). It may seem that linearization is easy this time. However, there are some problems.

The problems are the forces X, Y and Z. They are not part of the state of the aircraft. Instead they
also depend on the state of the aircraft. And they don’t only depend on the current state, but on the
entire history of states! (For example, a change in angle of attack could create disturbances at the wing.
These disturbances will later result in forces acting on the tail of the aircraft.)

How do we put this into equations? Well, we say that X is not only a function of the velocity u, but
also of all its derivatives u̇, ü, . . .. And the same goes for v, w, p, q and r. This gives us an infinitely
big equation. (Great. . . .) But luckily, experience has shown that we can neglect most of these time
derivatives, as they aren’t very important. There are only four exceptions. v̇ strongly influences the
variables Y and N . Also, ẇ strongly influences Z and M . We therefore say that

Fx = f(θ,X) with X = f(u, v, w, p, q, r, δa, δe, δr, δt), (1.11)
Fy = f(ψ, θ, Y ) with Y = f(u, v, w, v̇, p, q, r, δa, δe, δr), (1.12)
Fz = f(ψ, θ, Z) with Z = f(u, v, w, ẇ, p, q, r, δa, δe, δr, δt). (1.13)

When creating the Taylor expansion, we have to apply the chain rule. We then find that

Fx(X) ≈ Fx(X0)−W cos θ0∆θ +Xu∆u+Xv∆v +Xw∆w +Xp∆p+ . . .+Xδt
∆δt, (1.14)

Fy(X) ≈ Fy(X0)−W sinψ0 sin θ0∆θ +W cosψ0 cos θ0∆ψ + Yv̇∆v̇ + . . .+ Yδr
∆δr, (1.15)

Fz(X) ≈ Fz(X0)−W cosψ0 sin θ0∆θ −W sinψ0 cos θ0∆ψ + Zẇ∆ẇ + . . .+ Zδt
∆δt. (1.16)

Now that’s one big Taylor expansion. And we haven’t even written down all terms of the equation.
(Note the dots in the equation.) By the way, the term Xu indicates the derivative ∂X/∂u. Similarly,
Xv = ∂X/∂v, and so on.

You may wonder what δa, δe, δr and δt are. Those are the settings of the aileron, elevator, rudder
and thrust. These settings of course influence the forces acting on the aircraft. We will examine those
coefficients later in more detail. (You may also wonder, why doesn’t Y depend on the thrust setting δt?
This is because we assume that the direction of the thrust vector lies in the plane of symmetry.)

2 Simplification

2.1 Symmetry and asymmetry

Let’s try to simplify that monstrocity of an equation of the previous part. To do that, we have to apply
several tricks. The most important one, is that of symmetry and asymmetry.

We can make a distinction between symmetric and asymmetric forces/deviations. The symmetric devia-
tions (the deviations which don’t break the symmetry) are u, w and q. The symmetric forces/moments
are X, Z and M . Similarly, the asymmetric deviations are v, p and r. The asymmetric forces/moments
are Y , L and N .

It can now be shown that there is no coupling between the symmetric and the asymmetric properties.
(That is, as long as the deviations are small.) In other words, X is uneffected by v, p and r. Thus
Xv = Xp = Xr = 0. The same trick works for the other forces and moments as well. This causes a lot
of terms to disappear in the force equations.
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2.2 Simplifying the force equations

There is also another important trick we use, when simplifying the force equations. We assume that the
aircraft is flying in a steady symmetric flight. This means that

u0 6= 0 u̇0 = 0 p0 = 0 ṗ0 = 0 ϕ0 = 0 ϕ̇0 = 0 X0 6= 0 Ẋ0 = 0,
v0 = 0 v̇0 = 0 q0 = 0 q̇0 = 0 θ0 6= 0 θ̇0 = 0 Y0 = 0 Ẏ0 = 0,
w0 6= 0 ẇ0 = 0 r0 = 0 ṙ0 = 0 ψ0 6= 0 ψ̇0 = 0 Z0 6= 0 Ż0 = 0.

(2.1)

This greatly simplifies the Fx(X0), Fy(X0) and Fz(X0) terms.

Now it is finally time to apply all these simplifications and tricks. It will give us the force equations for
small deviations from a steady symmetric flight. These equations are

−W cos θ0θ +Xuu+Xww +Xqq +Xδe
δe +Xδt

δt = m(u̇+ w0q), (2.2)
W cos θ0ψ + Yvv + Yv̇ v̇ + Ypp+ Yrr + Yδa

δa + Yδr
δr = m(v̇ + u0r − w0p), (2.3)

−W sin θ0θ + Zuu+ Zww + Zẇẇ + Zqq + Zδe
δe + Zδt

δt = m(ẇ − u0q). (2.4)

Of these three equations, the first and the third correspond to symmetric motion. The second equation
corresponds to asymmetric motion.

You may wonder, where did all the ∆’s go to? Well, to simplify our notation, we omitted them. So in
the above equation, all variables indicate the displacement from the initial position X0.

Finally, there is one more small simplification we could do. We haven’t fully defined our reference system
yet. (We haven’t specified where the X axis is in the symmetry plane.) Now let’s choose our reference
system. The most convenient choice is in this case the stability reference frame FS . By choosing this
frame, we have u0 = V and w0 = 0. (V is the velocity.) This eliminates one more term.

2.3 The moment equations

In a similar way, we can linearize and simplify the moment equations. We won’t go through that tedious
process. By now you should more or less know how linearization is done. We’ll just mention the results.
They are

Lvv + Lpp+ Lrr + Lδa
δa + Lδr

δr = Ixṗ− Jxz ṙ, (2.5)
Muu+Mww +Mẇẇ +Mqq +Mδe

δe +Mδt
δt = Iy q̇, (2.6)

Nvv +Nv̇ v̇ +Npp+Nrr +Nδa
δa +Nδr

δr = Iz ṙ − Jxz ṗ. (2.7)

Of these three equations, only the second one corresponds to symmetric motion. The other two correspond
to asymmetric motion.

2.4 The kinematic relations

The kinematic relations can also be linearized. (This is, in fact, not that difficult.) After we apply the
simplifications, we wind up with

ϕ̇ = p+ r tan θ0, (2.8)
θ̇ = q, (2.9)

ψ̇ =
r

cos θ0
. (2.10)

Of these three equations, only the second one corresponds to symmetric motion. The other two correspond
to asymmetric motion.
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3 Setting the equations in a non-dimensional form

3.1 The dividing term

Aerospace engineers often like to work with non-dimensional coefficients. By doing this, they can easily
compare aircraft of different size and weight. So, we will also try to make our equations non-dimensional.
But how do we do that? We simply divide the equations by a certain value, making them non-dimensional.

The question remains, by what do we divide them? Well, we divide the force equations by 1
2ρV

2S, the
symmetric moment equation by 1

2ρV
2Sc̄, the asymmetric moment equations by 1

2ρV
2Sb, the symmetric

kinematic equation by V/c̄ and the asymmetric kinematic equations by V/b. Here, S is the wing surface
area, c̄ is the mean chord length, and b is the wing span. (Note that we use c̄ for symmetric equations,
while we use b for asymmetric equations.)

3.2 Defining coefficients

Dividing our equations by a big term won’t make them look prettier. To make them still readable, we
need to define some coefficients. To see how we do that, we consider the term Xuu. We have divided this
term by 1

2ρV
2S. We can now rewrite this term to

Xuu
1
2ρV

2S
=

Xu
1
2ρV S

u

V
= CXu

û. (3.1)

In this equation, we have defined the non-dimensional velocity û. There is also the coefficient CXu =
Xu/( 1

2ρV S). This coefficient is called a stability derivative.

We can apply the same trick to other terms as well. For example, we can rewrite the term Xww to
Xww

1
2ρV

2S
=

Xw
1
2ρV S

w

V
= CXαα, (3.2)

where the angle of attack α is approximated by α = w/V . We can also rewrite the term Xqq to

Xqq
1
2ρV

2S
=

Xq
1
2ρV

2Sc̄

c̄

V

dθ

dt
= CXq

Dcθ. (3.3)

This time we don’t only see a new coefficient. There is also the differential operator Dc. Another
differential operator is Db. Dc and Db are defined as

Dc =
c̄

V

d

dt
and Db =

b

V

d

dt
. (3.4)

In this way, a lot of coefficients can be defined. We won’t state the definitions of all the coefficients here.
(There are simply too many for a summary.) But you probably can guess the meaning of most of them
by now. And you simply have to look up the others.

3.3 The equations of motion in matrix form

So, we could now write down a new set of equations, with a lot of coefficients. However, we know that
these equations are linear. So, we can put them in a matrix form. If we do that, we will find two
interesting matrix equations. The equations for the symmetric motion are given by
CXu − 2µcDc CXα CZ0 CXq

CZu
CZα

+ (CZα̇
− 2µc)Dc −CX0 2µc + CZq

0 0 −Dc 1
Cmu

Cmα
+ Cmα̇

Dc 0 Cmq
− 2µcK

2
Y Dc



û

α

θ
qc̄
V

 =


−CXδe

−CXδt

−CZδe
−CZδt

0 0
−Cmδe

−Cmδt


[
δe

δt

]
.

(3.5)
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You may note that, instead of using the subscript M , we use the subscript m. This is just a writing
convention. You also haven’t seen the variable K2

Y yet. It is defined as K2
Y = Iy

mc̄2 . Also, µc = m
ρSc̄ .

The equations for the asymmetric motion are given by
CYβ

+ (CYβ̇
− 2µb)Db CL CYp CYr − 4µb

0 − 1
2Db 1 0

Clβ 0 Clp − 4µbK
2
XDb Clr + 4µbKXZDb

Cnβ
+ Cnβ̇

Db 0 Cnp + 4µbKXZDb Cnr − 4µbK
2
ZDb



β

ϕ
pb
2V
rb
2V

 =


−CYδa

−CYδr

0 0
−Clδa

−Clδr

−Cnδa
−Cnδr


[
δa

δr

]
.

(3.6)
Again, note that, instead of using the subscripts L and N , we have used l and n. Also, the slip angle β
is defined as β = v/V .

3.4 Equations of motion in state-space form

We can also put our equation in state-space form, being

ẋ = Ax +Bu and y = Cx +Du. (3.7)

Here, A is the state matrix, B is the input matrix, C is the output matrix and D is the direct
matrix. Since the system is time-invariant, all these matrices are constant. Also, x is the state vector,
u is the input vector and y is the output vector.

The state-space form has several advantages. First of all, the parameters can be solved for at every
time t. (The complicated equations for this are known.) Second, computers are very good at performing
simulations, once a situation has been described in state-space form.

After some interesting matrix manipulation, the state-space form of the symmetric motions can be derived.
The result is 

˙̂u
α̇

θ̇
q̇c̄
V

 =


xu xα xθ 0
zu zα zθ zq

0 0 0 V
c̄

mu mα mθ mq



û

α

θ
qc̄
V

 +


xδe

xδt

zδe
zδt

0 0
mδe

mδt


[
δe

δt

]
. (3.8)

There are quite some strange new coefficients in this equation. The equations, with which these coefficients
are calculated, can be looked up. However, we will not mention those here.

You may notice that, in the above equation, we only have the state matrix A and the input matrix B.
The matrices C and D are not present. That is because they depend on what output you want to get
out of your system. So we can’t generally give them here. They are often quite trivial though.

Similarly, the state-space form of the asymmetric motions can be found. This time we have
β̇

ϕ̇
ṗb
2V
ṙb
2V

 =


yβ yϕ yp yr

0 0 2V
b 0

lβ 0 lp lr

nβ 0 np nr



β

ϕ
pb
2V
rb
2V

 +


0 yδr

0 0
lδa

lδr

nδa
nδr


[
δa

δr

]
. (3.9)

And that concludes this collection of oversized equations.
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