
Longitudinal stability derivatives

We have seen a lot of stability derivatives in previous chapters. However, it would be nice to know
their values. We’re therefore going to derive some relations for them. In this chapter, we will look at
longitudinal stability derivatives. In the next chapter, we’ll examine lateral stability derivatives.

1 Nominal stability derivatives

1.1 Methods of finding the stability derivatives

There are three methods to find the stability derivatives. The first one is of course by performing
flight tests or wind tunnel tests. These tests are, however, quite expensive. An alternative is using
computational fluid dynamics (CDF). This is usually less expensive, but it still requires a lot of work.

Finally, simple analytic expressions can be used. They are usually not very accurate. (Especially not
for strange aircraft configurations.) However, they don’t require a lot of work. In this chapter, we’re
going to examine these analytic expressions.

1.2 Equations of motion

Before we will find stability derivatives, we first need to re-examine the equations of motion. The
symmetric equations of motion, for an airplane in a steady flight, are

X =−D cos α + L sinα + Tp cos(α0 + ip) = W sin γ0, (1.1)
Z =− L cos α−D sinα− Tp sin(α0 + ip) = −W cos γ0. (1.2)

Here, α0 is the initial angle of attack. (It is now not the zero-lift angle of attack.) Also, α now denotes
the deviation from this flight condition. We assume α0 + ip is small, so we can use the small angle
approximation. If we also non-dimensionalize the above relations, we find that

CX =− CD cos α + CL sinα + T ′
c =

W
1
2ρV 2S

sin γ0, (1.3)

CZ =− CL cos α− CD sinα− T ′
c(α0 + ip) = − W

1
2ρV 2S

cos γ0, (1.4)

where we have defined
T ′

c =
Tp

1
2ρV 2S

. (1.5)

1.3 Nominal flight conditions

Let’s examine an aircraft flying a steady horizontal flight. We will now try to find the nominal stability
derivatives CX0 , CZ0 and Cm0 . Since the aircraft is flying horizontally, we have α = γ0 = 0. (Remember
that α is the deviation from the steady flight.) The relations of the previous paragraph now turn into

CX0 = −CD + T ′
c = 0 and CZ0 = −CL − T ′

c(α0 + ip) =
W

1
2ρV 2S

. (1.6)

Finally, from moment equilibrium follows that Cm0 = 0.
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2 Velocity stability derivatives

2.1 The basic relations

Now let’s find the stability derivatives with respect to the velocity. They are CXu , CZu and Cmu . They
are very hard to determine experimentally. This is because wind tunnels and flying aircraft can’t change
their velocity in a very accurate way. Luckily, we can find expressions for them.

Let’s start to examine CXu
. We can recall that

CXu
=

1
1
2ρV S

∂X

∂V
and X = CX

1
2
ρV 2S. (2.1)

(We have used the fact that ∂V/∂u ≈ 1.) Taking the derivative of the second relation, with respect to
V , gives

∂X

∂V
= CXρV S +

∂CX

∂V

1
2
ρV 2S. (2.2)

Inserting this into the first relation will give

CXu
= 2CX +

∂CX

∂V
V. (2.3)

In a similar way, we can find the expressions for CZu
and Cmu

. They are

CZu
= 2CZ +

∂CZ

∂V
V and Cmu

= 2Cm +
∂Cm

∂V
V. (2.4)

2.2 Rewriting the relations

There are still some terms we don’t know in the relations of the previous paragraph. They are CX , CZ ,
Cm, ∂CX/∂V , ∂CZ/∂V and ∂Cm/∂V . How can we rewrite them?

We are considering deviations from the steady horizontal flight. So we can replace CX by CX0 = −CD+T ′
c.

Similarly, CZ is replaced by CZ0 = −CL−T ′
c(α0 + ip) and Cm by Cm0 = 0. That simplifies the equations

quite a bit.

The derivatives are a bit harder to rewrite. At a steady horizontal flight, we have CX = −CD + T ′
c and

CZ = −CL − T ′
c(α0 + ip). Differentiating this gives

∂CX

∂V
= −∂CD

∂V
+

∂T ′
c

∂V
and

∂CZ

∂V
= −∂CL

∂V
− ∂T ′

c

∂V
(α0 + ip). (2.5)

That leaves us with some more derivatives. First, let’s examine ∂CD/∂V , ∂CL/∂V and ∂Cm/∂V . To
find them, we have to know why the coefficients CD, CL and Cm vary with airspeed. These variations
are partly caused by changes in Mach number M , changes in thrust T ′

c and changes in Reynolds number
Re. Although changes in the Reynolds number may be neglected, we do have to consider M and T ′

c.
This implies that

∂CD

∂V
=

∂CD

∂M

∂M

∂V
+

∂CD

∂T ′
c

∂T ′
c

∂V
, (2.6)

∂CL

∂V
=

∂CL

∂M

∂M

∂V
+

∂CL

∂T ′
c

∂T ′
c

∂V
, (2.7)

∂Cm

∂V
=

∂Cm

∂M

∂M

∂V
+

∂Cm

∂T ′
c

∂T ′
c

∂V
. (2.8)
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If we use this, in combination with earlier equations, we will find that

CXu
=− 2CD + 2T ′

c +
(

1− ∂CD

∂T ′
c

)
dT ′

c

dV
V − ∂CD

∂M
M, (2.9)

CZu
=− 2CL − 2T ′

c(α0 + ip)−
(

(α0 + ip) +
∂CL

∂T ′
c

)
dT ′

c

dV
V − ∂CL

∂M
M, (2.10)

Cmu =
∂Cm

∂T ′
c

dT ′
c

dV
V +

∂Cm

∂M
M. (2.11)

2.3 The thrust derivative

The equations of the previous paragraph still have a lot of derivatives. We won’t go into detail on
derivatives with respect T ′

c or M . However, we will consider dT ′
c/dV . It turns out that we can write this

derivative as
dT ′

c

dV
= −k

T ′
c

V
, (2.12)

where the constant k depends on the flight type. If we have a gliding flight, then T ′
c = 0. Thus also

dT ′
c/dV = 0 and therefore k = 0. If we have a jet-powered aircraft, then Tp = T ′

c
1
2ρV 2S = constant.

From this follows that k = 2. Finally, for propeller-powered aircraft, we have TpV = T ′
c

1
2ρV 3S =

constant. This implies that k = 3.

Let’s use the above relation to simplify our equations. The equations for CXu
, CZu

and Cmu
now become

CXu
=− 2CD +

(
2− k

(
1− ∂CD

∂T ′
c

))
T ′

c −
∂CD

∂M
M, (2.13)

CZu
=− 2CL +

(
(k − 2)(α0 + ip) + k

∂CL

∂T ′
c

)
T ′

c −
∂CL

∂M
M, (2.14)

Cmu
=− k

∂Cm

∂T ′
c

T ′
c +

∂Cm

∂M
M. (2.15)

When specific data about the type of flight is known, the above equations can be simplified even further.
For example, when the flight is at low subsonic velocities, then Mach effects may be neglected. Thus
∂CD/∂M = ∂CL/∂M = ∂Cm/∂M = 0. In other cases, there are often other simplifications that can be
performed.

3 Angle of attack stability derivatives

3.1 The basic relations for CXα and CZα

We will now try to find relations for CXα
, CZα

and Cmα
. First we examine CXα

and CZα
. They are

defined as
CXα =

1
1
2ρV S

∂X

∂w
=

∂CX

∂α
and CZα =

1
1
2ρV S

∂Z

∂w
=

∂CZ

∂α
. (3.1)

If we take the derivative of equations (1.3) and (1.4), we find that

CXα =− CDα cos α + CD sinα + CLα sinα + CL cos α, (3.2)
CZα =− CLα cos α + CL sinα− CDα sinα− CD cos α. (3.3)

We are examining an aircraft performing a steady horizontal flight. Thus α = 0. This simplifies the
above equations to

CXα = CL − CDα and CZα = −CLα − CD ≈ −CLα ≈ −CNα . (3.4)

In the last part of the above equation, we have used the fact that CD is much smaller than CLα
.
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3.2 Rewriting the relation for CXα

We can try to rewrite the relation for CXα
. To do this, we examine CDα

. Let’s assume that the aircraft
has a parabolic drag curve. This implies that

CD = CD0 +
C2

L

πAe
, which, in turn, implies that CDα = 2

CLα

πAe
CL. (3.5)

If we combine this with the former expression for CXα , we wind up with

CXα
= CL

(
1− 2

CLα

πAe

)
. (3.6)

3.3 The relation for Cmα

In a previous chapter, we have already considered Cmα
. After neglecting the effects of many parts of the

aircraft, we wound up with

Cmα = CNwα

xcg − xw

c̄
− CNhα

(
1− dε

dα

) (
Vh

V

)2
Shlh
Sc̄

. (3.7)

4 Pitch rate stability derivatives

4.1 The reasons behind the changing coefficients

We will now try to find CXq
, CZq

and Cmq
. Luckily, CX doesn’t get influenced a lot by q. So it is usually

assumed that CXq
= 0. That saves us some work. We now only need to find CZq

and Cmq
. They are

defined as
CZq

=
1

1
2ρV Sc̄

∂Z

∂q
=

∂CZ

∂ qc̄
V

and Cmq
=

1
1
2ρV Sc̄2

∂M

∂q
=

∂Cm

∂ qc̄
V

. (4.1)

To find CZq and Cmq , we first have to understand some theory behind rotations. Why do the coefficients
change, when the aircraft rotates? This is because the effective angle of attack changes. Imagine an
aircraft with its nose pitching upward. The tailplane of the aircraft is thus pitching downward. Now
imagine you’re sitting on the tailplane. As seen from the tailplane, it looks like the flow of air is coming
upward. This means that the tailplane experiences a bigger angle of attack.

To find the exact value of the change in angle of attack ∆α, we examine the center of rotation. This
is the point about which the aircraft appears to be rotating. The center of rotation lies on the Zs-axis.
The apparent rotation itself is performed with a radius R, which is given by

R =
V

q
. (4.2)

The change in angle of attack ∆α, at any point x on the airplane, is then given by

∆α =
x− xcg

R
=

x− xcg

c̄

qc̄

V
. (4.3)

4.2 The changing coefficients

We know that the apparent angle of attack changes across the aircraft. This is especially important for
the horizontal tailplane. In fact, the change in angle of attack of the tailplane is given by

∆αh =
xh − xcg

c̄

qc̄

V
≈ lh

c̄

qc̄

V
. (4.4)
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This change in angle of attack causes the normal force of the tailplane to change. In fact, it changes by
an amount

∆CNh
= CNhα

(
Vh

V

)2
Sh

S
∆αh = CNhα

(
Vh

V

)2
Shlh
Sc̄

qc̄

V
. (4.5)

Similarly, the change of the moment is given by

∆Cm = −CNhα

(
Vh

V

)2
Shlh
Sc̄

∆αh = −CNhα

(
Vh

V

)2
Shl2h
Sc̄2

qc̄

V
. (4.6)

We know that CZq
= ∂CZ/∂ qc̄

V and Cmq
= ∂Cm/∂ qc̄

V . By using this, we can find the contributions of the
horizontal tailplane to Czq and Cmq . They are

(
CZq

)
h

= −CNhα

(
Vh

V

)2
Shlh
Sc̄

and
(
Cmq

)
h

= −CNhα

(
Vh

V

)2
Shl2h
Sc̄2

. (4.7)

(The minus sign in the left part appeared, because CN is defined upward, while CZ is defined downward.)
There is, however, one small problem. The aircraft doesn’t consist of only a horizontal tailplane. It also
has various other parts. But it is very difficult to calculate the effects of all these parts. For that reason,
we make an estimate. We say that the contribution of the full aircraft CZq

is twice the contribution of
the horizontal tailplane

(
CZq

)
h
. This implies that

CZq
= 2

(
CZq

)
h

= 2CNhα

(
Vh

V

)2
Shlh
Sc̄

. (4.8)

For Cmq
, we apply the same trick. But instead of a factor 2, a factor between 1.1 to 1.2 should now be

used, depending on the aircraft. We thus get

Cmq
= (1.1 ∼ 1.2)

(
Cmq

)
h

= −(1.1 ∼ 1.2)CNhα

(
Vh

V

)2
Shl2h
Sc̄2

. (4.9)

5 Other longitudinal stability derivatives

5.1 Vertical acceleration stability derivatives

We now examine CZα̇ and Cmα̇ . (We assume CXα̇ = 0.) To do this, we look at the horizontal tailplane.
During a steady flight, it has an effective angle of attack

αh = α− ε + ih = α− dε

dα
α + ih. (5.1)

Now let’s suppose that the aircraft experiences a change in angle of attack. This causes the downwash
angle ε of the wing to change. A time ∆t = lh/V later will this change be experienced by the horizontal
tailplane. In other words, the downwash ε(t) at time t depends on the angle of attack α(t−∆t) at time
t−∆t. A linear approximation of α(t−∆t) is given by

α(t−∆t) = α(t)− α̇∆t. (5.2)

By using this, we find that the downwash is given by

ε(t) =
dε

dα
α(t−∆t) =

dε

dα
α(t)− dε

dα
α̇

lh
V

. (5.3)

This implies that the effective angle of attack is given by

αh = α− dε

dα
α +

dε

dα
α̇

lh
V

+ ih. (5.4)
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The change in effective angle of attack is

∆αh =
dε

dα

lh
c̄

α̇c̄

V
. (5.5)

We now have enough data to find the coefficients CZα̇ and Cmα̇ . We know that

∆CZ = −CNhα

(
Vh

V

)2
Sh

S
∆αh = −CNhα

(
Vh

V

)2
Shlh
Sc̄

dε

dα

α̇c̄

V
, (5.6)

∆Cm = −CNhα

(
Vh

V

)2
Shlh
Sc̄

∆αh = −CNhα

(
Vh

V

)2
Shl2h
Sc̄2

dε

dα

α̇c̄

V
. (5.7)

The coefficients CZα̇
and Cmα̇

are now given by

CZα̇ =
1

1
2ρSc̄

∂Z

∂ẇ
=

∂CZ

∂ α̇c̄
V

= −CNhα

(
Vh

V

)2
Shlh
Sc̄

dε

dα
, (5.8)

Cmα̇
=

1
1
2ρSc̄2

∂M

∂ẇ
=

∂Cm

∂ α̇c̄
V

= −CNhα

(
Vh

V

)2
Shl2h
Sc̄2

dε

dα
. (5.9)

5.2 Elevator angle stability derivatives

The last stability derivatives we will consider in this chapter are CXδe
, CZδe

and Cmδe
. Usually CX

doesn’t vary a lot with δe, so we assume that CXδe
= 0. But what about CZδe

? Well, this one is given by

CZδe
= −CNhδe

(
Vh

V

)2
Sh

S
. (5.10)

Finally there is Cmδe
. We can find that it is

Cmδe
= CZδe

xh − xcg

c̄
≈ −CNδe

(
Vh

V

)2
Shlh
Sc̄

. (5.11)

The coefficient CZδe
usually isn’t very important. However, Cmδe

is very important. This is because the
whole goal of an elevator is to apply a moment to the aircraft.

5.3 Effects of moving the center of gravity

We have one topic left to discuss. What happens when the CG moves from position 1 to position 2? In
this case, several coefficients change. This goes according to

Cmα2
= Cmα1

− CZα

xcg2 − xcg1

c̄
, (5.12)

CZq2
= CZq1

− CZα

xcg2 − xcg1

c̄
, (5.13)

Cmq2
= Cmq1

−
(
CZq1

+ Cmα1

) xcg2 − xcg1

c̄
+ CZα

(
xcg2 − xcg1

c̄

)2

, (5.14)

Cmα̇2
= Cmα̇1

− CZα̇

xcg2 − xcg1

c̄
. (5.15)
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