Longitudinal stability derivatives

We have seen a lot of stability derivatives in previous chapters. However, it would be nice to know
their values. We're therefore going to derive some relations for them. In this chapter, we will look at
longitudinal stability derivatives. In the next chapter, we’ll examine lateral stability derivatives.

1 Nominal stability derivatives

1.1 Methods of finding the stability derivatives

There are three methods to find the stability derivatives. The first one is of course by performing
flight tests or wind tunnel tests. These tests are, however, quite expensive. An alternative is using
computational fluid dynamics (CDF). This is usually less expensive, but it still requires a lot of work.

Finally, simple analytic expressions can be used. They are usually not very accurate. (Especially not
for strange aircraft configurations.) However, they don’t require a lot of work. In this chapter, we're
going to examine these analytic expressions.

1.2 Equations of motion

Before we will find stability derivatives, we first need to re-examine the equations of motion. The
symmetric equations of motion, for an airplane in a steady flight, are

X =—Dcosa+ Lsina + T, cos(ag + i,) = W siny, (1.1)
Z =— Lcosa — Dsina — Tp, sin(ag + i) = —W cos . (1.2)
Here, «y is the initial angle of attack. (It is now not the zero-lift angle of attack.) Also, & now denotes

the deviation from this flight condition. We assume ag + %, is small, so we can use the small angle
approximation. If we also non-dimensionalize the above relations, we find that

w
Cx=-C +Cpsina+ T = ———sin~o, 1.3
X D COS v Lsina+ T, V23 sin o (1.3)
Cz=—Cpcosa—Cpsina — Th(ag +ip) = —W oS Y0, (1.4)
where we have defined T
T = 2. (1.5)
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1.3 Nominal flight conditions

Let’s examine an aircraft flying a steady horizontal flight. We will now try to find the nominal stability
derivatives Cx,, Cz, and Cy,,. Since the aircraft is flying horizontally, we have o = 79 = 0. (Remember
that « is the deviation from the steady flight.) The relations of the previous paragraph now turn into

w

Finally, from moment equilibrium follows that Cp,, = 0.



2  Velocity stability derivatives

2.1 The basic relations

Now let’s find the stability derivatives with respect to the velocity. They are Cx,, Cz, and C,,,. They
are very hard to determine experimentally. This is because wind tunnels and flying aircraft can’t change
their velocity in a very accurate way. Luckily, we can find expressions for them.

Let’s start to examine Cx,. We can recall that

1 0X 1
Cx, = T—ane d X =CxzpV?s. 2.1
T Tvsov ™ X @1)
(We have used the fact that 0V/0u ~ 1.) Taking the derivative of the second relation, with respect to

V, gives
0X 0Cx 1

= s VX 2.2
% CxpVS+ FYa 2pV S (2.2)
Inserting this into the first relation will give
oCx
Cx, =2C —V. 2.3
X, X + v (2.3)

In a similar way, we can find the expressions for Cz, and C,,,. They are

B o, - 9Cin
CZu = 2CZ + WV and Cmu = 2Cm + WV (24)

2.2 Rewriting the relations

There are still some terms we don’t know in the relations of the previous paragraph. They are Cx, Cyz,
Cm, 0Cx OV, 0C/OV and 0C,,/0V. How can we rewrite them?

We are considering deviations from the steady horizontal flight. So we can replace Cx by Cx, = —Cp+T..
Similarly, C'z is replaced by Cz, = —C, —T/(ag +1,) and Cy, by Cy,, = 0. That simplifies the equations
quite a bit.

The derivatives are a bit harder to rewrite. At a steady horizontal flight, we have Cx = —Cp + T and
Cyz = —Cp — T!(ao + ip). Differentiating this gives

C C T’ C 0 T’
That leaves us with some more derivatives. First, let’s examine 0Cp/IdV, 0CL/0V and 0C,,/0V. To
find them, we have to know why the coefficients Cp, C, and C,, vary with airspeed. These variations
are partly caused by changes in Mach number M, changes in thrust 7. and changes in Reynolds number
Re. Although changes in the Reynolds number may be neglected, we do have to consider M and T..
This implies that

0Cp 9Cp M _ 9Cp OT}

v~ oM av T or av’ (2:6)
9C, 9CLOM  9Cy O -
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If we use this, in combination with earlier equations, we will find that

aCp\ dT. . 9Cp

— / . c p— —

Cx, =—2Cp + 2T + (1 57 > G onr M- (2.9)
. . acL\ dT.. . aCy

Oz, = —2CL — 2T (a0 + i) — ((ao +1ip) + T > VoM (2.10)

_9Cy dT! | 9Cy,
™THT AV M

M. (2.11)

2.3 The thrust derivative

The equations of the previous paragraph still have a lot of derivatives. We won’t go into detail on
derivatives with respect T, or M. However, we will consider dT7,/dV. It turns out that we can write this
derivative as T -

o —k v (2.12)
where the constant k depends on the flight type. If we have a gliding flight, then 7. = 0. Thus also
dT}/dV = 0 and therefore k = 0. If we have a jet-powered aircraft, then T, = T/3pV2S = constant.
From this follows that £ = 2. Finally, for propeller-powered aircraft, we have T,V = Té%pvg’S =

constant. This implies that k£ = 3.

Let’s use the above relation to simplify our equations. The equations for Cx,, Cz, and Cy,, now become

B aCo\\ ., 9Ch
OXu_—2CD+(2—k<1— aTg)>TC_ S M, (2.13)
— . aOL / 8CL
CZu = — ZCL + ((k — 2)(0{0 + Zp) + k; aTC' > Tc — WM, (214)
607” / 607”
Cm, ==Ky Tt Gap M- (2.15)

When specific data about the type of flight is known, the above equations can be simplified even further.
For example, when the flight is at low subsonic velocities, then Mach effects may be neglected. Thus
0Cp/OM = 0Cr/OM = 0C,,/OM = 0. In other cases, there are often other simplifications that can be
performed.

3 Angle of attack stability derivatives

3.1 The basic relations for Cx_, and C,

We will now try to find relations for Cx_, Cz, and C,,, . First we examine C'x, and Cz_ . They are

defined as
1 90X 0Cx 1 0Z 0Cyz

= Tvsow~ e ™ T Lvsow oa ()

If we take the derivative of equations (1.3) and (1.4), we find that
Cx,=—Cp,cosa+ Cpsina+ Cyp,_ sina+ Cf, cos o, (3.2)
Cyz,=—Cp, cosa+ Crsina— Cp,_ sina— Cp cosa. (3.3)

We are examining an aircraft performing a steady horizontal flight. Thus o = 0. This simplifies the
above equations to

CXQZCL_CDQ and CZOL:_CL(,—OD%—CLQ%_CNQ- (3.4)

In the last part of the above equation, we have used the fact that Cp is much smaller than C7p,_ .



3.2 Rewriting the relation for Cx,_

We can try to rewrite the relation for Cx, . To do this, we examine Cp,_. Let’s assume that the aircraft
has a parabolic drag curve. This implies that

2
Cp =Cp, + &, which, in turn, implies that Cp,. = QCLQ CrL. (3.5)
mAe “ mAe
If we combine this with the former expression for Cx,, we wind up with
Cr,
Cx, =Cp(1-2—=). 3.6
Xe L ( 7rAe> (36)

3.3 The relation for C,,

In a previous chapter, we have already considered C,,_. After neglecting the effects of many parts of the
aircraft, we wound up with

Tog — Tu de\ (Vi \? Syl
e (1 ) () 5

4 Pitch rate stability derivatives

4.1 The reasons behind the changing coefficients

We will now try to find Cx,, Cz, and Cy,,. Luckily, Cx doesn’t get influenced a lot by ¢. So it is usually
assumed that Cx, = 0. That saves us some work. We now only need to find Cz, and Cy,,. They are

defined as
1 0Z 0Cyz 1 oM oCp,

S Ivsioq or MM O Tvsaag T ow
To find Cz, and C,, , we first have to understand some theory behind rotations. Why do the coefficients
change, when the aircraft rotates? This is because the effective angle of attack changes. Imagine an
aircraft with its nose pitching upward. The tailplane of the aircraft is thus pitching downward. Now
imagine you're sitting on the tailplane. As seen from the tailplane, it looks like the flow of air is coming
upward. This means that the tailplane experiences a bigger angle of attack.

Cz (4.1)

To find the exact value of the change in angle of attack A«a, we examine the center of rotation. This
is the point about which the aircraft appears to be rotating. The center of rotation lies on the Zs-axis.
The apparent rotation itself is performed with a radius R, which is given by

R=—. (4.2)
q
The change in angle of attack Ac«, at any point x on the airplane, is then given by

T — T, T — Teg qC

4.2 The changing coefficients

We know that the apparent angle of attack changes across the aircraft. This is especially important for
the horizontal tailplane. In fact, the change in angle of attack of the tailplane is given by

xh_xcggéNlh

_ th qc
Aap=——— ¥ 2" (44)



This change in angle of attack causes the normal force of the tailplane to change. In fact, it changes by
an amount

Wi 2 Sh Vi 2 Shlh qc
A = — | —=Aap = — —. 4.
On = i, <V> g Aan = O, (V Se V (45)
Similarly, the change of the moment is given by
Vi, 2 Shln Vi 2 Shl% qc
AC,, = — — | —Aap=— — —. 4.
¢ ONi <V> s fn="n 7 ) S22 v (4.6)

We know that Cz, = 802/8‘176 and Cy,, = 8Cn,/8q75. By using this, we can find the contributions of the
horizontal tailplane to C,, and C,, . They are

2 2 2
(Czq)h = _CNha (‘(;) Sgléh and (Cmq)h = —CNha (Vh) Shlh,. (4.7)

(The minus sign in the left part appeared, because Cy is defined upward, while C is defined downward.)
There is, however, one small problem. The aircraft doesn’t consist of only a horizontal tailplane. It also
has various other parts. But it is very difficult to calculate the effects of all these parts. For that reason,
we make an estimate. We say that the contribution of the full aircraft C'z, is twice the contribution of
the horizontal tailplane (CZq)h' This implies that

Vi ) ® Suln (4.8)

Oz, =2(Cz,), = 2. (V i,

For C,,,, we apply the same trick. But instead of a factor 2, a factor between 1.1 to 1.2 should now be

used, depending on the aircraft. We thus get

2 5,12
Se2

Crn, = (11~ 1.2) (C, ), = =(11 ~ 1.2)Cly, (Vh)

v (4.9)

5 Other longitudinal stability derivatives

5.1 Vertical acceleration stability derivatives

We now examine Cz, and C,,,. (We assume Cx, = 0.) To do this, we look at the horizontal tailplane.
During a steady flight, it has an effective angle of attack

d
ah:a—e—i—ih:a—ia—ﬁ—ih. (5.1)

Now let’s suppose that the aircraft experiences a change in angle of attack. This causes the downwash
angle ¢ of the wing to change. A time At = [, /V later will this change be experienced by the horizontal
tailplane. In other words, the downwash £(¢) at time ¢ depends on the angle of attack a(t — At) at time
t — At. A linear approximation of a(t — At) is given by

a(t — At) = at) — aAt. (5.2)
By using this, we find that the downwash is given by
_ de de de .l

t)= —a(t—At) = —a(t) — —a—. .
(t) = Galt = A = Sa(t) - St (53)
This implies that the effective angle of attack is given by
de de .1, .
ah—a—d—a—i—% V—i—zh (5.4)



The change in effective angle of attack is

_delpac
A= 3TV (55)
We now have enough data to find the coefficients Cz, and C,,,. We know that
Vi 2 Sh Vi 2 Sl de ac
ACy =-C — | FAq,=-C — — = 5.6
z Nha(v) 5 ~h N"“(V S¢ da V' (5.6)
ACH = Cyy, () Stbipg, — gy, (Vi) Sulh dede (5.7)
mE TN Y ) Tee ST TN\ YV ) S22 da V- '

The coefficients Cz, and C,, are now given by

1 07 802 Vh 2 Shlh de
Oy =-— 2 _""2_ (¢ 2h = 5.8
Ze T 1pSeow 992 N (v) S da’ (5:8)
1 0M  9C, Vi \? Spl2 de
C,. = o _Tm h "h O 5.9
¢ 3pSe 0w 94f Nha (V) Se? da (59)

5.2 Elevator angle stability derivatives

The last stability derivatives we will consider in this chapter are Cx, , Cz; and C,, . Usually Cx
doesn’t vary a lot with d, so we assume that C'x, = 0. But what about C'z; 7 Well, this one is given by

Vi\? S
Cz,, = —Ch,,. (V’}) ?h (5.10)
Finally there is C,y,; . We can find that it is
2
_ Th = Teg Vi\" Suln
Cms, =C2z,, . Cns, (V> o (5.11)

The coefficient C'z; usually isn’t very important. However, C,, is very important. This is because the
whole goal of an elevator is to apply a moment to the aircraft.

5.3 Effects of moving the center of gravity

We have one topic left to discuss. What happens when the CG moves from position 1 to position 2?7 In
this case, several coefficients change. This goes according to

Cine, = Cona, — OZQLE:EC“, (5.12)
Cz,, =Cz, — CZQLEQJWI7 (5.13)
Crngy = Cimgy = (Czy + Oy, ) === 1 O, <“c“)2 : (5.14)
Cinay = Cimg, — Oz, 222002, (5.15)



