
Longitudinal stability and control

In this chapter, we will start to investigate the stability of the entire aircraft. This can be split up into
two parts: longitudinal and lateral stability. In this chapter, we will only look at longitudinal stability.

1 Stick fixed longitudinal stability

1.1 Effects of the wing and the tail on stability

To start our investigation in the stability of an aircraft, we reexamine the moment equation. In an earlier
chapter, we found that

Cm = Cmac
+ CNwα

(α− α0)
xcg − xw

c̄
− CNh

(
Vh

V

)2
Shlh
Sc̄

= 0, (1.1)

where CNh
is given by

CNh
= CNhα

(
(α− α0)

(
1− dε

dα

)
+ (α0 + ih)

)
+ CNhδe

δe. (1.2)

We can also rewrite the moment equation to Cm = Cmw
+Cmh

. In this equation, Cmw
is the contribution

due to the wings. Similarly, Cmh
is the contribution from the horizontal tailplane. They are both given

by

Cmw
= Cmac

+ CNwα
(α− α0)

xcg − xw

c̄
and Cmh

= −CNh

(
Vh

V

)2
Shlh
Sc̄

. (1.3)

Taking a derivative of the moment equation will give us Cmα
= Cmαw

+ Cmαh
, where

Cmαw
= CNwα

xcg − xw

c̄
and Cmαh

= −CNhα

(
1− dε

dα

)(
Vh

V

)2
Shlh
Sc̄

. (1.4)

To achieve stability for our aircraft, we should have Cmα < 0. Usually, the wing is in front of the CG.
We thus have xcg − xw > 0 and also Cmαw

> 0. The wing thus destabilizes the aircraft. Luckily, the
horizontal tailplane has a stabilizing effect. This is because Cmαh

< 0. To achieve stability, the stabilizing
effect of the tailplane should be bigger than the destabilizing effect of the wings. We should thus have

|Cmαw
| < |Cmαh

|. (1.5)

1.2 Effects of the center of gravity on stability

We will now examine the effects of the CG on the stability. To do this, we suppose xcg increases (the
CG moves to the rear). However, the other parameters (including δe) stay constant. The movement of
the CG causes Cmα

to increase. At a certain point, we will reach Cmα
= 0. When the CG moves beyond

this position, the aircraft becomes unstable.

Let’s examine the point at which Cmα = 0. We remember, from a previous chapter, that this point is
called the neutral point. And, because the stick deflection is constant (δe is constant), we call this point
the stick fixed neutral point. Its x coordinate is denoted by xnfix

. To find it, we can use

Cmα
= CNwα

xnfix
− xw

c̄
+ CNhα

(
1− dε

dα

)(
Vh

V

)2
Sh

S

xnfix
− xh

c̄
. (1.6)
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After some mathematical trickery, we can find the position of the stick fixed neutral point, with respect
to the wing. It is given by

xnfix
− xw

c̄
=

CNhα

CNα

(
1− dε

dα

)(
Vh

V

)2
Shlh
Sc̄

. (1.7)

From this, we can also derive the position of the stick fixed neutral point, with respect to the aircraft
CG. This is given by

Cmα
= CNα

xcg − xnfix

c̄
. (1.8)

The quantity
xcg−xnfix

c̄ is known as the (stick fixed) stability margin. It is an indication of how much
the CG can move, before the aircraft becomes unstable.

1.3 The elevator trim curve

Now let’s examine the effects of the elvator deflection δe. We know from a previous chapter that the
elevator deflection necessary to keep the aircraft in equilibrium is

δe = − 1
Cmδe

(Cm0 + Cmα
(α− α0)) . (1.9)

δe depends on α. To see how, we plot δe versus α. We usually do this, such that the y axis is reversed.
(Positive δe appear below the horizontal axis.) Now we examine the slope of this graph. It is given by

dδe

dα
= − Cmα

Cmδe

. (1.10)

We always have Cmδe
< 0. To make sure we have Cmα < 0 as well, we should have dδe/dα < 0. The line

in the δe, α graph should thus go upward as α increases. (Remember that we have reversed the y axis of
the graph!)

δe also depends on the aircraft velocity V . To see how, we will rewrite equation (1.9). By using CN ≈
CNα

(α− α0) ≈ W
1
2 ρV 2S

, we find that

δe = − 1
Cmδe

(
Cm0 +

Cmα

CNα

W
1
2ρV 2S

)
. (1.11)

We can now plot δe against V . (Again, we reverse the δe axis.) We have then created the so-called
elevator trim curve. Its slope is given by

dδe

dV
=

4W

ρV 3S

1
Cmδe

Cmα

CNα

. (1.12)

To have Cmα < 0, we should have dδe/dV > 0. The line in the graph should thus go downward. Also, if
you want to fly faster in a stable aircraft, you should push your stick forward.

2 Stick free longitudinal stability

2.1 The stick free elevator deflection

Previously, we have assumed that δe is constant. The pilot has his stick fixed. But what will happen if
the pilot releases his stick? It would be nice if the aircraft remains stable as well.
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Let’s suppose the pilot releases the stick. In that case, aerodynamic force will give the elevator a certain
stick free elevator deflection δefree

. To find δefree
, we examine the moments He about the elevator

hinge point. (Or, to be more precise, we look at the non-dimensional version Che
.) Contributing to this

hinge moment are the horizontal tailplane, the elevator and the trim tab. By using a linearization, we
find that

Chefree
= Chααh + Chδ

δefree
+ Chδt

δte = 0. (2.1)

It follows that the stick free elevator deflection is

δefree
= −Chα

Chδ

αh −
Chδt

Chδ

δte
. (2.2)

From this, we can also derive that (
dδe

dα

)
free

= −Chα

Chδ

(
1− dε

dα

)
. (2.3)

The elevator deflection thus changes as the angle of attack is changed.

2.2 Differences in the moment due to the stick free evelator

The free elevator deflection effects the contribution Cmh
of the horizontal tailplane to the moment Cm.

Let’s investigate this. We can remember that

Cmh
= −

(
CNhα

αh + CNhδ
δe

)(Vh

V

)2
Shlh
Sc̄

. (2.4)

We now substitute δe by δefree
. If we also differentiate with respect to α, and work things out, we will

get

Cmαhfree
= −

(
CNhα

− CNhδ

Chα

Chδ

)(
1− dε

dα

)(
Vh

V

)2
Shlh
Sc̄

. (2.5)

If we compare this equation to the right side of equation (1.4), we see that only CNhα
has changed. In

fact, we can define

CNhαfree
= CNhα

− CNhδ

Chα

Chδ

. (2.6)

If we use CNhαfree
, instead of CNhα

, then our stability analysis is still entirely valid.

Let’s take a closer look at the differences between CNhαfree
and CNhα

. This difference is the term

CNhδ

Chα

Chδ

. We know that CNhδ
> 0. The term Chδ

is interesting. If it would be positive, then it can be
shown that the elevator position is unstable. So, we have to have Chδ

< 0. Finally there is Chα
. This

term can be either positive or negative. If it is positive (Chα
> 0), then the stick free aircraft will be

more stable than the stick fixed aircraft. If, however, it is negative (Chα
< 0), then it will be less stable,

or possibly even unstable.

2.3 The stick free neutral point

Let’s find the stick free neutral point xnfree
. Finding xnfree

goes similar to finding xnfix
. In fact, we

can adjust equations (1.7) and (1.8) to

xnfree
− xw

c̄
=

CNhαfree

CNα

(
1− dε

dα

)(
Vh

V

)2
Shlh
Sc̄

, (2.7)
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Cmαfree
= CNαfree

xcg − xnfree

c̄
. (2.8)

In this equation, we have CNαfree
≈ CNα

. This is because the elevator has a negligible influence on CNα
,

compared to the influence of the wing.

We can also find the position of the stick free neutral point, with respect to the stick fixed neutral point.
Subtracting equation (1.7) from equation (2.7) gives

xnfree
− xnfix

c̄
= −

CNhδ

CNα

Chα

Chδ

(
1− dε

dα

)(
Vh

V

)2
Shlh
Sc̄

=
Cmδ

CNα

Chα

Chδ

(
1− dε

dα

)
. (2.9)

2.4 Elevator stick forces

Now we will examine the stick forces which the pilot should exert. We denote the stick deflection by
se. By considering the work done by the pilot, we find that Fedse + Hedδe = 0. From this follows that
the stick force Fe is given by

Fe = −dδe

dse
He = −dδe

dse
Che

1
2
ρV 2

h Sec̄e. (2.10)

By the way Se is the elevator surface and c̄e is the mean elevator chord. If we massively rewrite the
above equation, we can eventually find that

Fe = −dδe

dse
Sec̄e

(
Vh

V

)2(
C ′

h0

1
2
ρV 2 + C ′

hα

W

S

1
CNα

)
. (2.11)

We see that Fe consists of two parts. One part varies with the airspeed, while the other part does not.
By the way, the coefficients C ′

h0
and C ′

hα
are given by

C ′
h0

=− Chδ

Cmδ

Cmac
− Chδ

CNhδ

CNhαfree
(α0 + ih) + Chδt

δte
, (2.12)

C ′
hα

=− Chδ

Cmδ

Cmαfree
= − Chδ

Cmδ

CNα

xcg − xnfree

c̄
. (2.13)

We see that C ′
h0

depends on δte
. To simplify our equation, we can apply a small trick. We define δte0

to
be the value of δte

for which C ′
h0

= 0. It follows that

δte0
=

1
Chδt

(
Chδ

Cmδ

Cmac
+

Chδ

CNhδ

CNhαfree
(α0 + ih)

)
. (2.14)

We can now rewrite the stick deflection force as

Fe =
dδe

dse
Sec̄e

(
Vh

V

)2(
W

S

Chδ

Cmδe

xcg − xnfree

c̄
− 1

2
ρV 2Chδt

(
δte

− δte0

))
. (2.15)

The control forces, which the pilots need to exert, greatly determine how easy and comfortable it is to
fly an airplane. The above equation is therefore rather important.

We can also derive something else from the above equation. Let’s define the trim speed Vtr to be the
speed at which Fe = 0. We now examine the derivative dFe/dV at this trim speed. (So at Fe = 0.) If
it is positive (dFe/dV > 0), then the aircraft is said to have elevator control force stability in the
current flight condition. It can be shown that this derivative is given by(

dFe

dV

)
Fe=0

= −2
dδe

dse
Sec̄e

(
Vh

Vtr

)2
W

S

Chδ

Cmδe

xcg − xnfree

c̄

1
Vtr

. (2.16)

It’s the job of the designer to keep this derivative positive.
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3 Longitudinal control

3.1 Special manoeuvres

Previously, we have only considered steady flight. Now we suppose that we are performing some special
manoeuvre. We will consider both a steady pull-up manoeuvre and a horizontal steady turn.

During these manoeuvres, we will have a certain load factor n = N/W . There are two parameters that
are important for the manoeuvres. They are the elevator deflection per g, denoted by dδe/dn, and
the stick force per g, denoted by dFe/dn. Both these parameters should be negative. And they may
not be too high or too low either.

3.2 The elevator deflection per g

We will now find an expression for dδe/dn. Let’s suppose we’re initially in a horizontal steady flight. But
after a brief moment, we’ll be in one of the special manoeuvres. In this brief moment, several aircraft
parameters have changed.

Let’s examine the change in normal force ∆CN and the change in moment ∆Cm. The change in normal
force is effected by the angle of attack α and the pitch rate q. This gives us

∆CN =
∆N

1
2ρV 2S

=
W

1
2ρV 2S

∆n = CNα
∆α− CZq

∆
qc̄

V
. (3.1)

Similarly, the change in moment is effected by the angle of attack α, the pitch rate q and the elevator
deflection δe. This gives us

∆Cm = 0 = Cmα
∆α + Cmq

∆
qc̄

V
+ Cmδe

∆δe. (3.2)

You may wonder, why is ∆Cm = 0? This is because both in the initial situation and the final situation,
we have a steady manoeuvre. There is thus no angular acceleration present. The moment must thus stay
constant.

From the first of the above two equations, we can find the derivative of α with respect to n. It is given
by

dα

dn
=

1
CNα

W
1
2ρV 2S

+
CZq

CNα

d qc̄
V

dn
. (3.3)

From the second of these equations, we can find that

dδe

dn
= − 1

Cmδe

(
Cmα

dα

dn
+ Cmq

d qc̄
V

dn

)
. (3.4)

Inserting the value of dα/dn will eventually give us

dδe

dn
= − 1

Cmδe

(
Cmα

CNα

W
1
2ρV 2S

+
(

CmαCZq

CNα

+ Cmq

)
d qc̄

V

dn

)
. (3.5)

We will determine the term d qc̄
V /dn later, since it depends on the type of manoeuvre that is being

performed.

3.3 The stick force per g

It’s time to find an expression for dFe/dn. From equation (2.10), we can derive that

dFe

dn
= −dδe

dse

1
2
ρV 2

h Sec̄e

(
Chα

dαh

dn
+ Chδ

dδe

dn

)
. (3.6)
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We already have an expression for dδe/dn. The expression for αh is a bit tricky. This is because we also
have a rotation q. If we take this into account, we will have

αh = (α− α0)
(

1− dε

dα

)
+ (α0 + ih) +

lh
c̄

qc̄

V
. (3.7)

The derivative of αh, with respect to n, will then be

dαh

dn
=
(

1− dε

dα

)
dα

dn
+

lh
c̄

d qc̄
V

dn
. (3.8)

Luckily, we still remember dα/dn from equation (3.3). From this, we can derive an equation that’s way
too long to write down here. However, once we examine specific manoeuvres, we will mention the final
equation.

3.4 The pull-up manoeuvre

Let’s consider an aircraft in a pull-up manoeuvre. When an aircraft pulls its nose up, the pilot will
experience higher g-forces. This will thus cause the load factor n to change.

To be able to study pull-up manoeuvres, we simplify them. We assume that both n and V are constant.
If this is the case, the aircraft’s path will form a part of a circle. The centripetal accelaration thus is
N −W = mV q. By using n = N/W and W = mg, we can rewrite this as

qc̄

V
=

gc̄

V 2
(n− 1). (3.9)

Differentiating with respect to n gives

d qc̄
V

dn
=

gc̄

V 2
=

1
2µc

W
1
2ρV 2S

, where µc =
m

ρSc̄
=

W

gρSc̄
. (3.10)

By using this, we can find the elevator deflection per g for a pull-up manoeuvre. It is

dδe

dn
= − 1

Cmδe

W
1
2ρV 2S

(
Cmα

CNα

(
1 +

CZq

2µc

)
+

Cmq

2µc

)
. (3.11)

Often the term CZq
/2µc can be neglected. This simplifies matters a bit. We can also derive a new

expression for the stick force per g. We will find that

dFe

dn
=

dδe

dse

W

S

(
Vh

V

)2

Sec̄e
Chδ

Cmδe

(
Cmαfree

CNα

+
Cmqfree

2µc

)
. (3.12)

In this equation, we can see the parameters Cmαfree
and Cmqfree

. These are the values of Cmα
and Cmq

when the pilot releases his stick. They are given by

Cmαfree
= CNwα

xcg − xw

c̄
+ Cmαhfree

and Cmqfree
= Cmq

− Cmδe

Chα

CNα

lh
c̄

. (3.13)

(The relation for Cmαhfree
was already given in equation (2.5).)

3.5 The steady horizontal turn

Now let’s consider an aircraft in a steady horizontal turn. It is performing this turn with a constant roll
angle ϕ. From this, we can derive that

N cos ϕ = W and N −W cos ϕ = mV q. (3.14)
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If we combine the above relations, and rewrite them, we will get

qc̄

V
=

gc̄

V 2

(
n− 1

n

)
. (3.15)

Differentiating with respect to n will then give us

d qc̄
V

dn
=

1
2µc

W
1
2ρV 2S

(
1 +

1
n2

)
. (3.16)

By using this, we can find the elevator deflection per g for a horizontal steady turn. It is

dδe

dn
= − 1

Cmδe

W
1
2ρV 2S

(
Cmα

CNα

+
(

Cmα

CNα

CZq

2µc
+

Cmq

2µc

)(
1 +

1
n2

))
. (3.17)

Again, we may often assume that CZq/2µc ≈ 0. This again simplifies the equation. We also have the
stick force per g. In this case, it is given by

dFe

dn
=

dδe

dse

W

S

(
Vh

V

)2

Sec̄e
Chδ

Cmδe

(
Cmαfree

CNα

+
Cmqfree

2µc

(
1 +

1
n2

))
. (3.18)

It is interesting to see the similarities between the pull-up manoeuvre and the steady horizontal turn. In
fact, if the load factor n becomes big, the difference between the two manoeuvres disappears.

3.6 The manoeuvre point

An important point on the aircraft, when performing manoeuvres, is the manoeuvre point. It is defined
as the position of the CG for which dδe/dn = 0. First we will examine the stick fixed manoeuvre
point xmfix

. To have dδe/dn = 0 for a pull-up manoeuvre (neglecting CZq
/2µc), we should have

Cmα

CNα

+
Cmq

2µc
=

xcg − xnfix

c̄
+

Cmq

2µc
= 0. (3.19)

If the above equation holds, then the CG equals the manoeuvre point. We thus have

xmfix
− xnfix

c̄
= −

Cmq

2µc
and also

xcg − xmfix

c̄
=

Cmα

CNα

+
Cmq

2µc
. (3.20)

(Remember that the above equations are for the pull-up manoeuvre. For the steady turn, we need to
multiply the term with Cmq

by an additional factor
(
1 + 1/n2

)
.) By using the above results, we can

eventually obtain that
dδe

dn
= − 1

Cmδe

W
1
2ρV 2S

xcg − xmfix

c̄
. (3.21)

By the way, this last equation is valid for both the pull-up manoeuvre and the steady horizontal turn.

We can also find the stick free manoeuvre point xmfree
. This goes, in fact, in a rather similar way.

We will thus also find, for the pull-up manoeuvre, that

xmfree
− xnfree

c̄
= −

Cmqfree

2µc
and

xcg − xmfree

c̄
=

Cmαfree

CNα

+
Cmqfree

2µc
. (3.22)

(For the steady turn, we again need to multiply the term with Cmqfree
by
(
1 + 1/n2

)
.)
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