
Lateral stability derivatives

In the previous chapter, we found relations for the longitudinal stability derivatives. Now we’ll examine
the lateral stability derivatives.

1 Sideslip angle stability derivatives

1.1 Horizontal forces

We start by examining derivatives with respect to the sideslip angle β. This angle is defined as

β = arcsin
( v

V

)
≈ v

V
. (1.1)

We will now examine CYβ
. Let’s examine an aircraft with a sideslip angle β. This sideslip angle causes

a horizontal force Y on the aircraft. The most important contributors to this horizontal force are the
fuselage and the vertical tailplane.

First let’s examine the vertical tailplane. Luckily, this tailplane has a lot of analogies with the horizontal
tailplane, so we can use some short cuts. For example, the force acting on the vertical tailplane is given
by (

CYβ

)
v

= CYvα

dαv

dβ

(
Vv

V

)2
Sv

S
, (1.2)

where Sv is the vertical tailplane surface area and Vv is the average velocity over it. Also, CYvα
= ∂CYv

∂αv
.

Let’s take a closer look at the effective angle of attack of the tailplane αv. It’s not equal to β.
This is because the fuselage also alters the flow by an angle σ. (σ is similar to the downwash ε for the
horizontal tailplane.) The vertical tailplane thus has an angle of attack of αv = −(β − σ). (The minus is
present due to sign convention.) Inserting this relation into the above equation gives

(
CYβ

)
v

= −CYvα

(
1− dσ

dβ

) (
Vh

V

)2
Sv

S
. (1.3)

Usually, most terms in the above equation are known. Only dσ/dβ is still a bit of a mystery. It is very
hard to determine. However, it usually is negative. (So dσ/dβ < 0.)

Next to the tailplane contribution, there is usually also a contribution by the fuselage. However, we don’t
go into depth on that here.

1.2 Rolling momemts

Now let’s examine the so-called effective dihedral Clβ . The coefficient Cl was defined as

Cl =
L

1
2ρV 2b

. (1.4)

It is important to note that L is not the lift. It is the moment about the X axis. Cl is thus not the lift
coefficient either.

The effective dihedral Clβ mostly depends on the wing set-up. Both the wing-dihedral Γ and the
sweep angle Λ strongly effect Cl. (The wing-dihedral Γ is the angle with which the wings have been
tilted upward, when seen from the fuselage.)

First let’s examine an aircraft with a wing-dihedral Γ. We suppose that the aircraft is sideslipping to
the right. From the aircraft, it now appears as if part of the flow is coming from the right. This flow
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‘crouches’ under the right wing, pushing it more upward. However, it flows over the left wing, pushing
that one downward a bit. This thus causes the aircraft to roll to the left.

To find more info about the moment caused by the wing-dihedral, we need to examine the new angle of
attacks of the wings αwl

and αwr
. By using small angle approximations, we can find that

αwl
≈ α− βΓ and αwr

≈ α + βΓ. (1.5)

The changes in the angles of attack are thus ∆αwl
= −βΓ and ∆αwr

= βΓ. So the moment caused by
the wing-dihedral is approximately linearly dependend on both β and Γ. (We thus have Clβ ∼ Γ.)

Second, we look at an aircraft with a wing sweep angle Λ. The lift of a wing strongly depends on the
flow velocity perpendicular to the leading edge. Again, we suppose that part of the flow is coming in
from the right. This causes the flow to be more perpendicular w.r.t. to the right wing leading edge, thus
increasing the lift. However, the flow is more parallel w.r.t. the leading edge of the left wing. The left
wing thus has reduced lift. It can be shown that the change in lift for the aircraft, due to a sweep angle
Λ, is

∆L = CL
1
2
ρV 2 S

2
(
cos2 (Λ− β)− cos2 (Λ + β)

)
≈ CL

1
2
ρV 2S sin (2Λβ) . (1.6)

The rightmost part of the equation is an approximation. It only works for small values of β. The above
equation shows that the lift more or less linearly depends on Λ and β. It can be shown that the same
holds for the moment Cl. The effective dihedral Clβ is thus proportional to Λ.

Next to the wing, also the horizontal tailplane and the fuselage effect Clβ . However, we won’t examine
these effects.

1.3 Yawing moments

The stability derivative Cnβ
is called the static directional stability. (It’s also known as the Weath-

ercock stability.) It is about just as important as Cmα
. It can be shown that, if Cnβ

is positive, then
the aircraft is stable for yawing motions. However, if Cnβ

is negative, then the aircraft is unstable for
yawing motions.

Naturally, we want to have Cnβ
> 0. Luckily, the wings and the horizontal tailplane have a slightly

positive effect on Cnβ
. However, the fuselage causes Cnβ

to decrease. To compensate for this, a vertical
tailplane is used, strongly increasing Cnβ

.

Let’s examine the effects of this tailplane. You may remember that the normal force on it was(
CYβ

)
v

= −CYvα

(
1− dσ

dβ

) (
Vv

V

)2
Sv

S
. (1.7)

This normal force causes a moment(
Cnβ

)
v

= −
(
CYβ

)
v

(
zv − zcg

b
sinα0 +

xv − xcg

b
cos α0

)
. (1.8)

We can usually assume α0 to be small. (Thus cos α0 ≈ 1.) Also, zv−zcg

b sinα0 is usually quite small,
compared to the other term, so we neglect it. If we also use the tail length of the vertical tailplane
lv = xv − xcg, we can rewrite the above equation to(

Cnβ

)
v

= CYvα

(
1− dσ

dβ

) (
Vv

V

)2
Svlv
Sb

. (1.9)

From this, the correspondence to Cmα
again becomes clear. To emphasize this, we once more show the

equation for the horizontal tailplane contribution to Cmα
. Rather similar to

(
Cnβ

)
v
, it was given by

(Cmα)h = −CNhα

(
1− dε

dα

) (
Vh

V

)2
Shlh
Sc̄

. (1.10)
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2 Roll rate stability derivatives

2.1 Horizontal forces

It is time to investigate the effects of roll. In other words, we will try to find the stability derivatives CYp ,
Clp and Cnp

. (Of these three, Clp is the most important.) First we examine CYp
. It is defined such that

Yp = CYp

pb

2V

1
2
ρV 2S. (2.1)

The only part having a more or less significant contribution to CYp is the vertical tailplane. Let’s examine
a rolling aircraft. Due to this rolling, the vertical tailplane is moving horizontally. It will therefore get an
effective angle of attack. This causes a horizontal force. A positive roll rate gives a negative horizontal
force. CYp

is thus negative.

However, CYp
is usually rather small. For this reason it is often neglected. So we say that CYp

≈ 0.

2.2 Rolling moments

Now we will try to find Clp . Again, we examine a rolling aircraft. One wing of the aircraft goes up, while
the other one goes down. This motion changes the effective angle of attack and thus also the lift of the
wings. The upward going wing will get a lower lift, while the downward moving wing will experience a
bigger amount of lift. The wing forces thus cause a moment opposite to the rolling motion. This means
that Clp is highly negative. It also implies that the rolling motion is very strongly damped. (We will see
this again, when examining the aperiodic roll in chapter 10.)

We can also investigate the actual effects of the rolling motion. To do this, we examine a chord at a
distance y from the fuselage. This chord will have an additional vertical velocity of py. The change in
angle of attack of this chord thus is

∆α =
py

V
=

pb

2V

y

b/2
. (2.2)

So a chord that is far away from the fuselage will experience a big change in angle of attack. The change
in lift is therefore biggest for these chords. These chords also have a relatively big distance to the CG of
the aircraft. For this reason, they will significantly effect the resulting moment.

Other parts of the aircraft may also influence Clp slightly. However, their influence is very small, compared
to the effects of the wings. The contributions of the other parts are therefore neglected.

2.3 Yawing moments

To find Cnp
, we again examine a rolling aircraft. The rolling of the aircraft has two important effects.

First, we look at the vertical tailplane. As was discussed earlier, this tailplane will move. It thus has an
effective angle of attack, and therefore a horizontal force. This horizontal force causes the aircraft to yaw.
A positive rolling motion causes a positive yawing moment. The vertical tailplane thus has a positive
contribution to Cnp . (So

(
Cnp

)
v

> 0.)

But now let’s look at the wings. Let’s suppose that the aircraft is rolling to the right. For the right wing,
it then appears as if the flow comes (partially) from below. The lift is per definition perpendicular to the
direction of the incoming flow. The lift vector is thus tilted forward. Part of this lift causes the aircraft
to yaw to the left. The opposite happens for the left wing: The lift vector is tilted backward. Again, this
causes a yawing moment to the left. (This effect is known as adverse yaw.) So we conclude that, due
to the wings, a positive rolling motion results in a negative yawing moment. We thus have

(
Cnp

)
w

< 0.
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For most normal flights, the effects of the vertical stabilizer are a bit bigger than the effects of the wing.
We thus have Cnp

> 0. However, high roll rates and/or high angles of attack increase the effect of the
wings. In this case, we will most likely have Cnp

< 0.

3 Yaw rate stability derivatives

3.1 Horizontal forces

In this part, we’ll try to find the stability derivatives CYr
, Clr and Cnr

. We start with the not very
important coefficient CYr . Let’s examine a yawing aircraft. Due to the yawing moment, the vertical
tailplane moves horizontally. Because of this, its effective angle of attack will change by

∆αv =
rlv
V

=
rb

2V

lv
b/2

. (3.1)

The contribution of the tailplane to CYr
is now given by

(CYr
)v = 2CYvα

(
Vv

V

)2
Svlv
Sb

. (3.2)

The contribution is positive, so (CYr
)v > 0. Next to the vertical tailplane, there are also other parts

influencing CYr
. Most parts have a negative contribution to CYr

. However, none of these contributions
are as big as (CYr )v. The stability derivative CYr is therefore still positive. It is only slightly smaller
than (CYr )v.

3.2 Rolling moments

We will now examine Clr . There are two important contributions to Clr . They come from the vertical
tailplane and the wings.

First we examine the vertical tailplane. We just saw that a yawing motion causes a horizontal force on
the vertical tailplane. This horizontal force causes a moment

(Clr )v = (CYr
)v

(
zv − zcg

b
cos α0 −

xv − xcg

b
sinα0

)
. (3.3)

A positive yawing motion results in a positive moment. We thus have (Clr )v > 0.

Now let’s examine the wings. Because of the yawing motion, one wing will move faster, while the other
wing will move slower. This causes the lift on one wing to increase, while it will decrease on the other
wing. This results in a rolling moment.

Sadly, it’s rather hard to find an equation for the moment caused by the wings. So we won’t examine
that any further. However, it is important to remember that a positive yawing motion causes a positive
rolling moment. We thus have (Clr )w > 0. The total coefficient Clr is then, of course, also positive.

3.3 Yawing moments

Finally, we examine Cnr
. The most important contribution comes from the vertical tailplane. We know

that a yawing motion causes a horizontal force on the vertical tailplane. This force is such that it damps
the yawing motion. The contribution (Cnr )v is thus very highly negative. In fact, it is given by

(Cnr
)v = − (CYr

)v

lv
b

= −2CYvα

(
Vv

V

)2
Svl2v
Sb2

. (3.4)
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The vertical tailplane is about the only part seriously effecting the coefficient Cnr
. Sometimes also the

fuselage effects it. This effect is also negative. (So (Cnr
)f < 0.) The coefficient Cnr

itself is thus also
very strongly negative. This implies that the yawing motion is highly damped.

4 Other lateral stability derivatives

4.1 Aileron deflections

Let’s consider the ailerons. The aileron deflection δa is defined as

δa = δaright
− δaleft

. (4.1)

A deflection of the ailerons causes almost no change in horizontal forces. We thus have CYδa
= 0. The

so-called aileron effectiveness Clδa
is, of course, not negligible. (Causing moments about the X axis

is what ailerons are for.) The coefficient Cnδa
usually isn’t negligible either. By the way, the moments

caused by an aileron deflection are given by

L = Clδa
δa

1
2
ρV 2Sb and N = Cnδa

δa
1
2
ρV 2Sb. (4.2)

Clδa
is negative. A positive aileron deflection causes a negative rolling moment. Cnδa

is, however, positive.
So a positive aileron deflection causes positive yaw.

4.2 Rudder deflections

The rudder stability derivatives are CYδr
, Clδr

and Cnδr
. The forces and moments caused by a rudder

deflection are given by

Y = CYδr
δr

1
2
ρV 2S, L = Clδr

δr
1
2
ρV 2Sb. and N = Cnδr

δr
1
2
ρV 2Sb. (4.3)

The coefficient CYδr
is given by

CYδr
= CYvδ

(
Vv

V

)2
Sv

S
. (4.4)

The coefficient Clδr
is then given by

Clδr
= CYδr

(
zv − zcg

b
cos α0 −

xv − xcg

b
sinα0

)
. (4.5)

Clδr
is positive. This means that a positive rudder deflection causes a positive rolling moment. This

effect is generally not desirable. Especially if zv − zcg is big, measures are often taken to reduce this
effect.

Finally, the rudder effectiveness Cnδr
is given by

Cnδr
= −CYδr

lv
b

. (4.6)

This coefficient is negative. A positive rudder deflection thus causes a negative yawing moment.

4.3 Spoiler deflections

The last things we examine are the spoilers. Spoilers are often used in high-speed aircraft to provide roll
control. A spoiler deflection δs on the left wing is defined to be positive. Due to this definition, we have
Clδs

< 0 and Cnδs
< 0. Of these two, the latter is the most important.
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